Math 210A: Modern Algebra
Thomas Church (tfchurch@stanford.edu)
http://math.stanford.edu/~church/teaching/210A-F17

Homework 8

Due Thursday night, November 16 (technically $\mathbf{2 a m}$ Nov. 17)

Question 1. Let $V=\mathbb{R}^{2 n}$ with basis $v_{1}, \ldots, v_{2 n}$.
Find an explicit vector $\omega \in \bigwedge^{2} V$ such that $\omega \wedge \omega \wedge \cdots \wedge \omega \in \bigwedge^{2 n} V$ is nonzero.

Question 2. Let $R=\mathbb{Z}$ and let M be the R-module $M=\mathbb{Q} / \mathbb{Z}$. Compute $T^{*}(M)$.

Question 3. Let $R=\mathbb{Z}[\sqrt{-30}]$, and let I be the ideal $I=\{2 a+b \sqrt{-30} \mid a, b \in \mathbb{Z}\}=(2, \sqrt{-30}) \subset R$. Compute $\bigwedge^{2} I$ as an abelian group.
(but keep in mind the Λ^{2} is as an R-module, i.e. it's a quotient of $I \otimes_{R} I$).

Question 4. Prove that for any R-modules M and N, and any $k \geq 0$, there is an isomorphism

$$
\bigwedge^{k}(M \oplus N) \cong \bigoplus_{a+b=k}\left(\bigwedge^{a} M\right) \otimes\left(\bigwedge^{b} N\right)
$$

(If M and N are free, this is pretty easy, because the natural basis for $\bigwedge^{k}(M \oplus N)$ splits up appropriately; the resulting partition corresponds to the combinatorial identity $\binom{m+n}{k}=\sum_{a+b=k}\binom{m}{a}\binom{n}{b}$. This doesn't help directly for general M and N, but perhaps it at least helps you get straight what's going on.)

NOTE on Q4: If you like, you can prove this just for $k=3$, i.e. that

\[

\]

This is no harder or easier than the general case, but might be simpler notationally.

Question 5. Given an abelian group M and a subgroup $A \subset M$, define the saturation of A to be

$$
\operatorname{sat}(A)=\{m \in M \mid \exists n \neq 0 \in \mathbb{Z} \text { s.t. } n \cdot m \in A\} .
$$

This $\operatorname{sat}(A)$ is a subgroup of M (you may assume this without proof).
Prove that if M is finitely generated, then for any subgroup $A \subset M$ the saturation sat (A) is a direct summand of M; that is, there exists a subgroup $N \subset M$ such that $M=\operatorname{sat}(A) \oplus N$.

Question 6. Given k linearly independent vectors v_{1}, \ldots, v_{k} in \mathbb{Z}^{n}, there are two definitions of the discriminant:

Definition 1: Consider the element $\omega=v_{1} \wedge \cdots \wedge v_{k} \in \wedge^{k} \mathbb{Z}^{n}$. Let $\operatorname{disc}_{1}\left(v_{1}, \ldots, v_{k}\right)$ be the largest $d \in \mathbb{N}$ such that ω is divisible by d. (i.e. such that there exists some other $\mu \in \bigwedge^{k} \mathbb{Z}^{n}$ such that $\omega=d \cdot \mu$)

Definition 2: Let $K=\left\langle v_{1}, \ldots, v_{k}\right\rangle$ be the subgroup of \mathbb{Z}^{n} generated by these elements. Let L be the quotient $L=\mathbb{Z}^{n} / K$. Let $\operatorname{disc}_{2}\left(v_{1}, \ldots, v_{k}\right)$ be the cardinality of the torsion subgroup Torsion (L).

Prove that $\operatorname{disc}_{1}\left(v_{1}, \ldots, v_{k}\right)=\operatorname{disc}_{2}\left(v_{1}, \ldots, v_{k}\right)$.

Question 7. Let V be an n-dimensional vector space over \mathbb{Q}, and fix $k \geq 1$.
Recall from class that for any endomorphism $T: V \rightarrow V$, we obtain an endomorphism $T_{*}: V^{\otimes k} \rightarrow V^{\otimes k}$ defined on generators by

$$
T_{*}\left(v_{1} \otimes \cdots \otimes v_{k}\right)=T\left(v_{1}\right) \otimes \cdots \otimes T\left(v_{k}\right) .
$$

In this question, we want to find the endomorphisms of $V^{\otimes k}$ that commute with T_{*} for all T.
Recall from class that the permutation group S_{k} acts on $V^{\otimes k}$ (on the right) by

$$
\left(v_{1} \otimes \cdots \otimes v_{k}\right) \cdot \sigma=v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}
$$

Let $f_{\sigma} \in \operatorname{End}_{\mathbb{Q}}\left(V^{\otimes k}\right)$ be this endomorphism. We can easily check that this commutes with T_{*}, since

$$
\begin{aligned}
\left(T_{*}\left(v_{1} \otimes \cdots \otimes v_{k}\right)\right) \cdot \sigma & =\left(T\left(v_{1}\right) \otimes \cdots \otimes T\left(v_{k}\right)\right) \cdot \sigma \\
& =T\left(v_{\sigma(1)}\right) \otimes \cdots \otimes T\left(v_{\sigma(k)}\right) \\
& =T_{*}\left(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}\right. \\
& =T_{*}\left(\left(v_{1} \otimes \cdots \otimes v_{k}\right) \cdot \sigma\right)
\end{aligned}
$$

In other words, $f_{\sigma} \circ T_{*}=T_{*} \circ f_{\sigma}$.
The same is automatically true for linear combinations: for any $x=\sum a_{\sigma} \sigma \in \mathbb{Q}\left[S_{k}\right]$, the endomorphism $f_{x}:=\sum a_{\sigma} f_{\sigma}$ has the same property that $f_{x} \circ T_{*}=T_{*} \circ f_{x}$ for all $T \in \operatorname{End}_{\mathbb{Q}}(V)$.

Your task: prove that these are the only endomorphisms that commute with all T_{*}.
That is, prove that if $g \in \operatorname{End}_{\mathbb{Q}}\left(V^{\otimes k}\right)$ satisfies $g \circ T_{*}=T_{*} \circ g$ for all $T \in \operatorname{End}_{\mathbb{Q}}(V)$, then there exists some $x \in \mathbb{Q}\left[S_{k}\right]$ such that $g=f_{x}$.

