Math 210A: Modern Algebra Thomas Church (tfchurch@stanford.edu) http://math.stanford.edu/~church/teaching/210A-F17

Homework 8

Due Thursday night, November 16 (technically **2am** Nov. 17)

Question 1. Let $V = \mathbb{R}^{2n}$ with basis v_1, \ldots, v_{2n} . Find an explicit vector $\omega \in \bigwedge^2 V$ such that $\omega \wedge \omega \wedge \cdots \wedge \omega \in \bigwedge^{2n} V$ is nonzero.

Question 2. Let $R = \mathbb{Z}$ and let M be the R-module $M = \mathbb{Q}/\mathbb{Z}$. Compute $T^*(M)$.

Question 3. Let $R = \mathbb{Z}[\sqrt{-30}]$, and let I be the ideal $I = \{2a + b\sqrt{-30} \mid a, b \in \mathbb{Z}\} = (2, \sqrt{-30}) \subset R$. Compute $\bigwedge^2 I$ as an abelian group.

(but keep in mind the \bigwedge^2 is as an *R*-module, i.e. it's a quotient of $I \otimes_R I$).

Question 4. Prove that for any *R*-modules *M* and *N*, and any $k \ge 0$, there is an isomorphism

$$\bigwedge^k (M \oplus N) \cong \bigoplus_{a+b=k} (\bigwedge^a M) \otimes (\bigwedge^b N).$$

(If M and N are free, this is pretty easy, because the natural basis for $\bigwedge^k (M \oplus N)$ splits up appropriately; the resulting partition corresponds to the combinatorial identity $\binom{m+n}{k} = \sum_{a+b=k} \binom{m}{a} \binom{n}{b}$. This doesn't help directly for general M and N, but perhaps it at least helps you get straight what's going on.)

NOTE on Q4: If you like, you can prove this just for k = 3, i.e. that

This is no harder or easier than the general case, but might be simpler notationally.

Question 5. Given an abelian group M and a subgroup $A \subset M$, define the saturation of A to be

$$\operatorname{sat}(A) = \{ m \in M \mid \exists n \neq 0 \in \mathbb{Z} \text{ s.t. } n \cdot m \in A \}.$$

This sat(A) is a subgroup of M (you may assume this without proof).

Prove that if M is finitely generated, then for any subgroup $A \subset M$ the saturation sat(A) is a direct summand of M; that is, there exists a subgroup $N \subset M$ such that $M = \text{sat}(A) \oplus N$.

Question 6. Given k linearly independent vectors v_1, \ldots, v_k in \mathbb{Z}^n , there are two definitions of the *discriminant*:

Definition 1: Consider the element $\omega = v_1 \wedge \cdots \wedge v_k \in \bigwedge^k \mathbb{Z}^n$.

Let $\operatorname{disc}_1(v_1,\ldots,v_k)$ be the largest $d \in \mathbb{N}$ such that ω is divisible by d.

(i.e. such that there exists some other $\mu \in \bigwedge^k \mathbb{Z}^n$ such that $\omega = d \cdot \mu$)

Definition 2: Let $K = \langle v_1, \ldots, v_k \rangle$ be the subgroup of \mathbb{Z}^n generated by these elements. Let L be the quotient $L = \mathbb{Z}^n / K$. Let $\operatorname{disc}_2(v_1, \ldots, v_k)$ be the cardinality of the torsion subgroup $\operatorname{Torsion}(L)$. Prove that $\operatorname{disc}_1(v_1, \ldots, v_k) = \operatorname{disc}_2(v_1, \ldots, v_k)$.

Question 7. Let V be an n-dimensional vector space over \mathbb{Q} , and fix $k \geq 1$.

Recall from class that for any endomorphism $T: V \to V$, we obtain an endomorphism $T_*: V^{\otimes k} \to V^{\otimes k}$ defined on generators by

$$T_*(v_1 \otimes \cdots \otimes v_k) = T(v_1) \otimes \cdots \otimes T(v_k)$$

In this question, we want to find the endomorphisms of $V^{\otimes k}$ that commute with T_* for all T.

Recall from class that the permutation group S_k acts on $V^{\otimes k}$ (on the right) by

$$(v_1 \otimes \cdots \otimes v_k) \cdot \sigma = v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$$

Let $f_{\sigma} \in \operatorname{End}_{\mathbb{Q}}(V^{\otimes k})$ be this endomorphism. We can easily check that this commutes with T_* , since

$$(T_*(v_1 \otimes \cdots \otimes v_k)) \cdot \sigma = (T(v_1) \otimes \cdots \otimes T(v_k)) \cdot \sigma$$
$$= T(v_{\sigma(1)}) \otimes \cdots \otimes T(v_{\sigma(k)})$$
$$= T_*(v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)})$$
$$= T_*((v_1 \otimes \cdots \otimes v_k) \cdot \sigma)$$

In other words, $f_{\sigma} \circ T_* = T_* \circ f_{\sigma}$.

The same is automatically true for linear combinations: for any $x = \sum a_{\sigma} \sigma \in \mathbb{Q}[S_k]$, the endomorphism $f_x \coloneqq \sum a_{\sigma} f_{\sigma}$ has the same property that $f_x \circ T_* = T_* \circ f_x$ for all $T \in \text{End}_{\mathbb{Q}}(V)$.

Your task: prove that these are the *only* endomorphisms that commute with all T_* . That is, prove that if $g \in \operatorname{End}_{\mathbb{Q}}(V^{\otimes k})$ satisfies $g \circ T_* = T_* \circ g$ for all $T \in \operatorname{End}_{\mathbb{Q}}(V)$, then there exists some $x \in \mathbb{Q}[S_k]$ such that $g = f_x$.