
MATH 210A, FALL 2017
HW 9 SOLUTIONS

WRITTEN BY DAN DORE

(If you find any errors, please email ddore@stanford.edu)

Let V be a vector space over a field F, and let ω : V × V → F be an alternating form.
An ω-symplectic basis is an ordered basis a1, b1, a2, b2, . . . , an, bn for V with the property that

ω(ai, bi) = 1 for all i

ω(ai, aj) = ω(ai, bj) = ω(bi, aj) = ω(bi, bj) = 0 if i 6= j

Question 1. Suppose that ω is a nondegenerate alternating form over an arbitrary1 field F.
Prove there exists an ω-symplectic basis.

Solution. Note that in particular, we are showing that any vector space which admits an alternating non-
degenerate form has even dimension 2n. We will show by induction on n that a vector space of dimension
2n with a non-degenerate alternating form admits a symplectic basis and that a vector space of dimension
2n+ 1 does not admit a non-degenerate symplectic form. The base case is n = 0. When V has dimension 0
the claim is vacuously true. When V = F · e has dimension 1, there cannot be a non-degenerate alternating
form ω on V : ω(xe, ye) = xyω(e, e) = 0 for any x, y ∈ F.

Now, both inductive steps will rest on the following lemma:

Lemma 1. Let V be a vector space with a non-degenerate alternating form ω on V . If V1 ⊆ V is a two-
dimensional subspace with basis vectors e, f with ω(e, f) = 1, then if V2 := V ⊥1 = {v ∈ V | ω(v, V1) = 0}
is the orthogonal complement of V1 in V with respect to ω, we have V = V1 ⊕ V2 and furthermore ω|V2 is
alternating and non-degenerate.

Before we prove the lemma, let’s see why it suffices for both inductive steps. For arbitrary a ∈ V , there
exists b′ ∈ V with ω(a, b′) 6= 0 by nondegeneracy. Taking b = 1

ω(a,b)b
′ we have ω(a, b) = 1. In particular

a and b are linearly independent (because otherwise ω(a, b) = ω(a, ca) = cω(a, a) = 0). So let V1 be the
space of a, b. Thus, we may apply the lemma. In particular it implies dimV2 = dimV − 2. If the dimension
of V is odd, so is the dimension of V2, but the lemma shows that ω|V2 is an alternating non-degenerate form
on V2. By induction, we know that this is impossible.

If the dimension of V is even, so is the dimension of V2, so we may find a symplectic basis a2, b2, . . . , an, bn
for V2. Then letting a1 = a, b1 = b, we can see that a1, b1, a2, b2, . . . , an, bn is a symplectic basis since
ω(a1, b1) = 1, a2, b2, . . . , an, bn is a symplectic basis for V2, and a1, b1 live in the orthogonal complement
to V2.

Now, we must prove the lemma:

Proof. First, note that V1 ∩ V2 = 0. To see this, let ce+ df ∈ V1 with c, d ∈ F. If this is in V2, then we have
0 = ω(ce+ df, e) = dω(f, e) = −d and 0 = ω(ce+ df, f) = cω(e, f) = c, so c = 0 and d = 0.

Now, we need to show that V = V1 + V2. To do this, since V1 ∩ V2 = 0, it suffices to show that
dimV2 = dimV − 2. Now, the bilinear form ω induces a map ω̃ : V → V ∨ by sending v ∈ V to the map

1Note we do not need to assume anything about which elements are squares, nor anything about charF.
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w 7→ ω(v, w). Non-degeneracy of ω means exactly that ω̃ is injective: if ω(v, w) = 0 for all w ∈ V , then
v = 0. Since V, V ∨ are vector spaces of the same finite dimension, this implies that ω̃ is an isomorphism.

V2 exactly consists of the v such that ω̃(v)|V1 = 0. But the map from V ∨ to (V1)
∨ sending ϕ to ϕ|V1 is a

surjection onto the two-dimensional vector space (V1)
∨, so its kernel has codimension 2 in V ∨. Therefore,

V2 has codimension 2 in V , so we have shown V = V1 ⊕ V2.
Now, we need to show that ω|V2 is alternating and non-degenerate. The fact that it is alternating is

obvious: for v ∈ V2, ω|V2(v, v) = ω(v, v) = 0. To see that it is non-degenerate, fix some v ∈ V2. We
need to find some w ∈ V2 with ω|V2(v, w) = ω(v, w) 6= 0. Since ω is non-degenerate, we may pick some
w0 ∈ V with ω(v, w0) 6= 0. Since V = V1 ⊕ V2, we may uniquely write w0 = w1 + w2 with wi ∈ Vi. Then
we have ω(v, w0) = ω(v, w1) + ω(v, w2) = ω(v, w2), since w1 ∈ V1 and V2 is ω-orthogonal to V1. Thus,
ω(v, w2) 6= 0, so we are done.

Question 2. Let V be a 2n-dimensional vector space over F. Recall that V ∨ denotes the dual vector space
V ∨ = HomF(V,F).

Let ω : V × V → F be an alternating form. We can view ω as an element of
∧2(V ∨).

(make sure you understand how this correspondence works)

Is it true that ω is nondegenerate as a bilinear form if and only if ω ∧ · · · ∧ ω ∈
∧2n(V ∨) is nonzero?

Solution. First, let’s make the correspondence between the space of alternating forms on V and
∧2(V ∨)

precise.

Proposition 2. For a vector space V ' F2n, there is a natural linear isomorphism ω 7→ evω between
∧2V ∨

and the vector space of alternating bilinear forms on V .

Proof. Note that the space of skew-symmetric bilinear forms on V is canonically isomorphic to (
∧2V )∨:

the universal property of exterior powers says exactly that a linear map from
∧2V to R is the same thing as a

skew-symmetric bilinear form on V . So we are defining a map from
∧2(V ∨) to (

∧2V )∨. We define this
by mapping ϕ ∧ ψ to the bilinear form evϕ∧ψ : (v, w) 7→ ϕ(v)ψ(w)− ψ(v)ϕ(w). Since this map is clearly
linear in each of v, w, ϕ, ψ, this at least defines a map from V ∨⊗V ∨ to (V ⊗V )∨. Since evϕ∧ψ = −evψ∧ϕ,
it factors through the canonical projection V ∨ ⊗ V ∨ →

∧2(V ∨), so it gives us a map
∧2(V ∨) to (V ⊗ V )∨.

Finally, since evϕ∧ψ(v, v) = ϕ(v)ψ(v)− ϕ(v)ψ(v) = 0, the image lands inside the subspace of alternating
forms (V ∧ V )∨ ⊆ (V ⊗ V )∨. Note that this definition makes it clear that ev• is functorial in V , i.e. that if
T : V →W is a linear map, then

evT ∗(ϕ∧ψ)(v1, v2) = ev(T ∗ϕ∧T ∗ψ)(v1, v2)

= ϕ(T (v1))ψ(T (v2))− ψ(T (v2))ϕ(T (v1))
= evϕ,ψ(T (v1), T (v2))

= (T ∗evϕ,ψ)(v1, v2)

We can compute what this is explicitly in a basis (note that the above construction was basis-independent!)
v1, . . . , v2n of V , with associated dual basis v1, . . . , v2n of V ∨ (defined by vi(vj) = δij). For ω ∈

∧2(V ∨),
we may write ω =

∑
i<j aijv

i ∧ vj , v =
∑

i bivi, and w =
∑

j cjvj . Then we have

evω(v, w) =
∑
i<j

aij(bicj − bjci) (1)
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We can check explicitly that this is alternating: if bi = ci, this is
∑

i<j aij(bibj − bjbi) = 0. To see that the
map is an isomorphism, note that for i < j, evω(vi, vj) = aij . Thus, if evω = 0, we have aij = 0 for all
i < j, so ω = 0. This shows that ev• is injective, and since

∧2V and (
∧2V ∨)∨ both have dimension

(
2n
2

)
,

we conclude that ev• is an isomorphism.

We can show one direction right away: if ω ∧ · · · ∧ ω 6= 0 in
∧2n(V ∨), then evω is non-degenerate.

Indeed, assume that evω is degenerate so that there exists some v ∈ V with evω(v, w) = 0 for all w ∈ V . Let
V1 = F · v, and let W = V/V1. Then also evω(w, v) = −evω(v, w) = 0, so evω descends to an alternating
form on W . By functoriality of the map ω 7→ evω, this means that ω is in the image of the natural inclusion∧2(W∨) ↪−→

∧2(V ∨). Thus, ω ∧ · · · ∧ ω ∈
∧2n(V ∨) is in the image of the natural inclusion of

∧2n(W∨).
But this space is 0 since W has dimension 2n− 1.

We can also work explicitly in a basis: assume that evω(v, w) = 0 for all w ∈ V . Then we can choose
a basis v1, . . . , v2n of V with v1 = v. Let ϕ1, . . . , ϕ2n be the dual basis of V ∨, i.e. ϕi(vj) = δij . Write
ω =

∑
i<j aijϕ

i ∧ ϕj . Then for all j = 1, . . . , 2n, we have 0 = evω(v1, vj) = a1j . Thus, ϕ1 does not occur
in the expression for ω, so ω is in

∧2V ′, where V ′ is the span of ϕ2, . . . , ϕ2n. Thus, ∧n(ω) is in
∧2nV ′ = 0,

so ∧n(ω) = 0.
Now, assume that evω is non-degenerate as a bilinear form. By Question 1, we may pick a symplectic

basis a1, b1, . . . , an, bn for V , i.e. evω(ai, bi) = 1 and evω(ai, aj) = evω(bi, bj) = evω(ai, bj) = 0 for all
i 6= j. If we let a1, b1, . . . , an, bn be the dual basis for V ∨ and express ω in terms of this basis, Equation (1)
shows that ω = a1 ∧ b1 + a2 ∧ b2 + · · ·+ an ∧ bn.

We may compute explicitly that ω ∧ · · · ∧ ω = n!
(
a1 ∧ b1 ∧ a2 ∧ · · · ∧ an ∧ bn

)
∈
∧2n(V ∨): this

is done in the solution to Question 1 on HW8 (while the computation there is stated in the case F = R,
this assumption is only used to conclude that n! 6= 0). Thus, we see that (because n! 6= 0 in a field F iff
char(F) > n):

Proposition 3. If ω ∈
∧2(V ∨) for a vector space V of dimension 2n over a field F, ω ∧ · · · ∧ ω 6= 0 iff evω

is non-degenerate and char(F) > n.

Question 3. Let Fq be a finite field of order q and characteristic p 6= 2, and let V be a 2-dimensional vector
space over Fq. Let us say a “quasi-definite2 form” is a symmetric bilinear form ω : V × V → Fq with the
property that ω(v, v) 6= 0 for all v 6= 0 ∈ V .

(a) How many different isomorphism classes of quasi-definite forms are there?
Please begin your answer by giving the number of isomorphism classes, and then giving one clear
representative of each isomorphism class (and then prove your answer is correct, of course).
Note that the answer3 may depend on properties of q or Fq.

(b) (Optional) Same question, but when q = 2k.

Solution. (a) We will prove the following:

Proposition 4. If Fq is a finite field of order q and characteristic p 6= 2, V is a 2-dimensional
vector space over Fq, and ω is a quasi-definite form on V , there is a basis e1, e2 of V such that

2“quasi-definite” isn’t an official term; I made it up because it’s kind of like positive-definite, except of course “positive” doesn’t
mean anything in Fq

3but of course the number is finite, because there are only finitely many set functions V × V → Fq
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ω(e1, e1) = 1, ω(e1, e2) = ω(e2, e1) = 0, and ω(e2, e2) = −d where d ∈ F×q is not a square.
Furthermore, the bilinear forms arising from any two choices of non-square d are isomorphic.

To see the second statement, note that by replacing e2 with ae2 for a ∈ Fq, we replace d with a2d and
otherwise keep the same form. Thus, only the class of d in F×q /(F

×
q )

2 matters. But F×q is a cyclic
group,4 isomorphic to Z/(q− 1)Z, so as 2 | (q− 1), F×q /(F

×
q )

2 ' Z/2Z, so the requirement that d is
not a square uniquely determines its class in F×q /(F

×
q )

2.

Proof. Let v1 6= 0 ∈ V be arbitrary and let V2 be the orthogonal complement V2 = {v ∈ V |
ω(v1, v) = 0}. Since ω(v1, v1) 6= 0, v1 6∈ V2. As ω is non-degenerate, the proof of Lemma 1 carries
through to show that dimV2 = 1, so we can choose some v2 ∈ V2 such that {v1, v2} is a basis for
V . Let ω(v1, v1) = d1, ω(v2, v2) = d2. By replacing vi with aivi, we can change the di by squares,
so only the classes of d1, d2 in F×q /(F

×
q )

2 matter. Then, the condition that ω(v, v) 6= 0 for all v says
exactly that there are no solutions with a, b ∈ Fq to the equation:

0 = ω(av1 + bv2, av1 + bv2) = a2d1 + b2d2

Rearranging and dividing by b2 and d1, this says that −d2/d1 is not a square in Fq. Thus, since
F×q /(F

×
q )

2 ' Z/2, exactly one of d1 and−d2 is a square. If d1 is a square, we can arrange that d1 = 1,
and this suffices to prove the proposition. Now, if −1 is a square in Fq, we could conclude that d2 is
a square and switch the roles of d1 and d2 to conclude as above. In general, we need to prove that if
ω(·, ·) is a quasi-definite symmetric bilinear form on a two-dimensional vector space V over Fq, then
there is some v ∈ V such that ω(v, v) is a square. Since scaling V by a ∈ Fq changes ω(v, v) by a2,
we see that this is equivalent to saying that there is some v ∈ V with ω(v, v) = 1. In order to prove
this, we will actually prove a stronger statement:

Lemma 5. If ω is a quasi-definite symmetric bilinear form on a vector space V of dimension 2 over
Fq with characteristic p 6= 2, then the map Qω : V → Fq defined by v 7→ ω(v, v) is surjective5.

Proof. As above, we may choose a basis v1, v2 for V such that ω(v1, v2) = 0, ω(v1, v1) = d1, and
ω(v2, v2) = d2. By replacing ω by ω′ = d−11 ω, we may assume that d1 = 1 (if Qω′ is surjective, then
Qω = d1Qω′ is surjective, as multiplication by the unit d1 is surjective). Thus, we may assume ω is of
the form

(
1 0
0 −d

)
with d non-square. Then Qω(av1 + bv2) = a2 − db2.

Since Qω(xv) = x2Qω(v), Qω is surjective iff it is surjective onto F×q /(F
×
q )

2. Since we are assuming
Qω(av1 + bv2) = a2 − db2, we see that Qω(v1) = 1, which is a square. Thus, we must show that the
image of Qω in F×q is not equal to (F×q )

2. Assume for the sake of contradiction that this is the case.
Then, in particular,−d = Qω(av1+bv2) is a square c2, so we haveQω(av1+bv2) = a2+(cb)2. Then
since c 6= 0, if b′ ∈ F×q , we may take b = b′c−1, so Qω(av1+ bv2) = a2+(b′)2, so for any a, b′ ∈ F×q ,
a2 + (b′)2 is a square. Since av1 + bv2 6= 0, a2 + (b′)2 is a non-zero square by quasi-definiteness of ω.

4More generally, any finite subgroup of the multiplicative group of a field is cyclic. This is because for any n, the number
of solutions in a field F of the equation xn = 1 is at most n. Thus, if G ⊆ F× is a subgroup such that every element of G
has order dividing n, then |G| ≤ n. Now, if G ⊆ F× is finite, by the structure theorem for finitely generated abelian groups,
G = Z/n1 ⊕Z/n2 ⊕ · · · ⊕Z/nk for n1 | n2 | · · · | nk. Then every element of the subgroup Z/n1 ⊕Z/n2 has order dividing n2,
but there are n1 · n2 elements, so n1 = 1 by the above discussion. Then we can induct on k to conclude.

5This is the quadratic form associated to ω
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In particular, 2 = 12 +12 is a square x2, so 3 = 12 + x2 is a square, and continuing on like this we see
that 1 + 1 + · · ·+ 1 ∈ Fq is a non-zero square for any number of 1’s. However, taking p 1’s, this sum
is 0, which gives the desired contradiction.

As shown above, this suffices for the proof of the problem.

As a side note: we may interpret the surjectivity result in Lemma 5 a little bit differently, using the
arithmetic of field extensions of finite fields. Consider the quadratic field extension Fq2/Fq defined by
adjoining a square root of d to Fq (as any two non-squares in Fq differ by multiplication by a square,
there is a unique such extension). We know that F×

q2
is cyclic of order q2 − 1 = (q − 1)(q + 1), and

F×q is its unique subgroup of order q− 1. Thus, F×q = {xq+1 | x ∈ Fq2}, i.e. the map x 7→ xq+1 gives
a surjection from Fq2 to Fq.

An element of Fq2 may be written uniquely in the form a+ b
√
d, and Qω(av1 + bv2) = a2 − db2 =

(a+ b
√
d)(a− b

√
d). Thus, if we identify V with the two-dimensional vector space Fq2 by sending

v1 to 1 and v2 to d, Qω becomes the map x 7→ xx, where a+ b
√
d = a − b

√
d. The map x 7→ x is

unique non-trivial field automorphism in the Galois group of Fq2 over Fq, since it exchanges the two
roots of the polynomial X2 − d. Thus, we may identify Qω with the norm N(x) = xx, and we want
to show that this is surjective. In order to do so, we will show that N(x) = xq+1, identifying Qω with
the surjective map x 7→ xq+1 from Fq2 to Fq. This amounts to verifying that xq = x.

Since Fq2 has characteristic p and q = pk for some k, we have the identity (x+y)q = xq+yq: when we
take the binomial expansion, all other coefficients are divisible by p. Thus, (a+b

√
d)q = aq+bq(

√
d)q.

Since F×q is cyclic of order q − 1 and a, b ∈ Fq, aq−1 = bq−1 = 1, so we have:

(a+ b
√
d)q = a+ b(

√
d)q

Thus, we must show that (
√
d)q = −

√
d. Since

√
d ∈ F×

q2
\ F×q , we know that (

√
d)q

2−1 = 1 but

(
√
d)q−1 6= 1, as F×q is the subgroup of F×

q2
of elements with order dividing q− 1. Thus, (

√
d)q 6=

√
d.

This shows that the map x 7→ xq is a field automorphism which is non-trivial, so it must coincide with
x 7→ x as the Galois group of the quadratic extension Fq2/Fq is cyclic of degree 2. We can also see
this directly:

We have (
√
d)2 = d, so ((

√
d)q)2 = ((

√
d)2)q = dq = d, since d ∈ F×q . Thus, (

√
d)q is a solution in

Fq2 of the polynomial X2 − d. This polynomial factors as (X −
√
d)(X +

√
d), so we must have

(
√
d)q = ±

√
d. But we know (

√
d)q 6=

√
d, so we must have (

√
d)q = −

√
d.

(b) Let q = 2k. Then we will show there are no quasi-definite forms ω on a two-dimensional vector space
V over Fq. Indeed, assume ω is such a form. Then pick some v1 ∈ V . Let V1 = Fq · v1 and V2 be its
ω-orthogonal complement in V . Then, as in the previous part, the fact that ω is non-degenerate and
that ω(v1, v1) 6= 0 implies that V = V1 ⊕ V2. Thus, we have a basis {v1, v2} such that ω(v1, v2) = 0,
ω(v1, v1) = d1, and ω(v2, v2) = d2. Now, if we replace v1 with av1 for a ∈ Fq, we can change d1 to
a2d1 while keeping the form otherwise the same. Thus, we may change d1 and d2 by multiplying by
arbitrary squares. However, since q = 2k, F×q ' Z/(2k − 1)Z, and this is a cyclic group of odd order.
Therefore, the operation x 7→ x2 is an isomorphism, so in particular, every element of F×q is a square.
(Alternatively, since Fq has characteristic 2, (x+ y)2 = x2 + 2xy + y2 = x2 + y2, so squaring is a
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homomorphism of fields and is therefore an automorphism). Thus, we may arrange for d1 = d2 = 1.
Now, we have ω(av1 + bv2, av1 + bv2) = a2 + b2. But taking a = b, this is 2a2 = 0, so ω is not
quasi-definite.

What about the norm of a degree-two field extension? If Fq has characteristic 2, there is still a unique
quadratic extension Fq2 and the norm map x 7→ N(x) = x ·xq is a surjective homomorphism from F×

q2

to F×q . However, this quadratic form is not of the form Qω(v) = ω(v, v) for any symmetric bilinear
form ω, unlike the case when the characteristic is not 2.

We know that every ideal in R[x] is principal (generated by one element). How about Z[x]?

Question 4. Let R = Z[x], and consider an ideal I ⊂ Z[x]. Prove that I is generated by finitely many
elements. Is there an upper bound on how many generators we need? (i.e. is every ideal gen by 2 elements? or by
5 elements? etc.)

Solution. Since Z is a principal ideal domain, in particular it is a noetherian ring: every ideal is generated by
a single element. Then, our result follows from:

Theorem 6 (Hilbert Basis Theorem). If R is a noetherian ring, then the ring R[x] is also noetherian.

Thus, Z[x] is noetherian, i.e. every ideal is finitely generated. We’ll walk through the proof of this
theorem in the case R = Z (but it easily generalizes to arbitrary noetherian R).

Proof. Let I ⊆ Z[x] be an ideal. For each degree k, let Ik be the set of leading coefficients of all elements
of I of degree k, i.e. Ik = {n ∈ Z | ∃p(x) ∈ I, p(x) = nxk + ak−1x

k−1 + · · · + a0}. This is an
ideal of Z: To see this, let n,m ∈ Ik, so there are p(x), q(x) ∈ I with p(x) = nxk + ak−1x

k−1 +

· · · + a0, q(x) = mxk + bk−1x
k−1 + · · · + b0. Then since p(x), q(x) ∈ I , we have for any d ∈ Z,

(n + dm)xk + ck−1x
k−1 + · · · + c0 = p(x) + dq(x) ∈ I . Thus, n + dm ∈ Ik for any d ∈ Z, so

Ik is an ideal. Now, Ik ⊆ Ik+1 for any k, since if p(x) = nxk + ak−1x
k−1 + · · · + a0 ∈ I , then

xp(x) = nxk+1 + ak−1x
k + · · · + a0x ∈ I as well, so n ∈ Ik implies n ∈ Ik+1. We also have the ideal

I∞ = ∪kIk = {n ∈ Z | ∃p(x) ∈ I, p(x) = nxk + ak−1x
k−1 + · · · + a0}, i.e. the set of leading terms of

elements of I . This is an ideal since the Ik are all ideals and I` ⊆ Ik for all ` ≤ k.
Explicitly, let n,m ∈ I∞, so there are p(x), q(x) ∈ I with p(x) = nxk + ak−1x

k−1 + · · ·+ a0, q(x) =

mx` + b`−1x
`−1 + · · ·+ b0. Assume without loss of generality that ` ≤ k. Then since p(x), q(x) ∈ I , we

have for any d ∈ Z, (n+ dm)xk + ck−1x
k−1 + · · ·+ c0 = p(x) + dxk−`q(x) ∈ I . Thus, n+ dm ∈ I∞ for

any d ∈ Z, so I∞ is an ideal.
Since Z is a PID, I∞ = dZ for some d ∈ Z, i.e. the leading term of every element of I is divisible by d.

We have the infinite chain of inclusions of ideals I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ I∞ = dZ. Since d ∈ I∞ = ∪kIk,
we have that d ∈ Ik0 for some k0. Thus, I∞ = dZ ⊆ Ik0 ⊆ I∞, so Ik0 = I∞. In other words, the fact that
I∞ = dZ is finitely generated, which depends only on Z being noetherian, implies that the chain stabilizes.

Since d ∈ Ik0 , let p0(x) ∈ I be such that p0(x) = dxk0 + ak0−1x
k0−1 + · · ·+ a0. Now, if q(x) ∈ I has

degree ` ≥ k, we have q(x) = (b`d)x
` + b`−1x

`−1 + · · ·+ b0. Thus, q(x)− b`x`−kp0(x) has degree `− 1.
Repeating this process, we see that q(x) = r(x)p0(x) + q′(x) where q′(x) has degree less than k. Thus,
p0(x) together with the set {α(x) ∈ I | degα < k} = I ∩ (Z[x])<k generates the ideal I over Z[x]. But the
Z-module (Z[x])<k consisting of all polynomials in Z[x] of degree less than k is a finite free Z-module, and
I ∩ (Z[x])<k is a Z-submodule. This implies that it is finitely generated over Z (indeed, we even know that it
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is necessarily free 6), so it is certainly finitely generated over Z[x]. Taking a finite Z[x]-generating set for this
module along with p0(x) gives the required finite set of generators of I .

However, there are ideals which require arbitrarily large generating sets. For each k > 0, consider the
ideal Ik = (2k, 2k−1x, 2k−2x2, . . . , xk). We claim that this requires k + 1 generators, i.e. that any smaller
generating set will not suffice.

To see this, first note that Ik = (2, x)k, since the k+1 given generators are all possible degree k monomials
in 2 and x. (2, x) is a maximal ideal, sinceR/(2, x) ' Z/2 = F2, which is a field. Now, consider the module
Mk = Ik/Ik+1 = Ik/(2, x)Ik. This is a finitely generated module over the R-algebra F2 = R/(2, x). Thus,
it is a vector space of finite dimension over F2. Since Ik is spanned by 2k, 2k−1x, . . . , xk, Mk is spanned
by these elements, so it has F2-dimension at most k + 1. We want to show that these elements are actually
linearly independent over F2. This is equivalent to showing that if

ε02
k + ε12

k−1x+ · · ·+ εkx
k ∈ Ik+1 (2)

for εi ∈ {0, 1} then εi = 0 for all i. If Equation (2) holds, then we can write:

ε02
k + · · ·+ εkx

k = 2k+1p0(x) + 2kxp1(x) + · · ·+ xk+1pk+1(x)

with pi(x) = a0,i+ a1,ix+ · · ·+ adi,ix
di ∈ Z[x]. By comparing the constant terms on each side, we get that

ε02
k = 2k+1a0,0, so ε0 = 2a0,0, so since ε0 ∈ {0, 1}, we get ε0 = a0,0 = 0. Now, comparing degree-one

terms on both sides, we get that ε12k−1 = 2k+1a1,0+2ka1,1, so ε1 = 2(2a1,0+a1,1), and ε1 = 0. Continuing
in this manner, we see that εi = 0 for each i, as desired.

Now, if Ik can be generated over R by m elements a1, . . . , am ∈ Z[x], certainly the quotient module
Ik/Ik+1 can be as well. Thus, we must have m ≥ dimR/(2,x) Ik/Ik1 = k + 1.

Question 5. Let V be a finite-dimensional vector space over R, and let T : V → V be a linear transformation.
Let VC := V ⊗R C. By functoriality we have a map TC : VC → VC, defined by TC(v ⊗ z) = T (v) ⊗ z,
called the complexification of T ; this is a C-linear transformation.

Without using the structure theorem for PIDs or rational canonical form, prove that the minimal polynomial
mTC ∈ C[t] is equal to the minimal polynomial mT ∈ R[t] (just prove it directly!); in particular, mTC has
coefficients in R.

Solution. We will use the following lemma:

Lemma 7. If p(t) ∈ R[t] is a polynomial with real coefficients, p(TC) = 0 iff p(T ) = 0.

Proof. Let p(t) = ant
n + · · ·+ a0 ∈ R[t] ⊆ C[t] be a polynomial. Then p(TC) = (p(T ))C:

p(TC)(v ⊗ z) = an(TC)
n(v ⊗ z) + · · ·+ a0(v ⊗ z)

= an(T
n(v)⊗ z) + · · ·+ a0(v ⊗ z)

= (anT
n(v) + an−1T

n−1(v) + · · ·+ a0)⊗ z
= p(T )C(v ⊗ z)

6 This step works for general noetherian rings, where the detailed structure theory of Z-modules is not available: we just need the
fact(/definition) that a submodule of a finitely generated module over a noetherian ring is finitely generated.
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Here, we used that (TC)n(v⊗ z) = (TC)
n−1(TC(v⊗ z)) = (TC)

n−1(T (v)⊗ z) = · · · = Tn(v)⊗ z, which
follows from the definition of TC (more generally, (S ◦ T )C = SC ◦ TC), as well as the fact that for a ∈ R,
a(v ⊗ z) = v ⊗ az = av ⊗ z, since the tensor product is over R.

Now, clearly if S = 0, then SC = 0. Conversely, if SC = 0, then for all v ∈ V, z ∈ C, we have
SC(v⊗ z) = S(v)⊗ z = 0. In particular, S(v)⊗ 1 = 0 for all v ∈ V . But since R→ C is injective, and V
is a free and therefore flat R-module, the map V → VC given by v 7→ v⊗ 1 is injective. (Of course, invoking
flatness here is silly since C = R1⊕Ri, and we can take real and imaginary parts). Thus, if S(v)⊗ 1 = 0

for all v ∈ V , we have S(v) = 0 for all v ∈ V , so S = 0. Applying this to p(TC) = p(T )C, we see that
p(TC) = 0 iff p(T ) = 0, as desired.

Alternatively [TC: this is the more straightforward way to do it], we may write VC = V ⊗R C =

V ⊗R (R1⊕Ri) = (V ⊗ 1)⊕ (V ⊗ i) as an R-module. We may thus write any w ∈ V as v1 + iv2 with
v1, v2 ∈ V (i.e. w = v1 ⊗ 1 + v2 ⊗ i). Then we have

p(TC)(w) = p(TC)(v1 + iv2)

= p(TC)(v1) + p(TC)(iv2)

= p(T )C(v1 ⊗ 1) + p(T )C(v2 ⊗ i)
= p(T )(v1)⊗ 1 + p(T )(v2)⊗ i

Thus, p(TC)(w) = 0 iff p(T )(v1) = p(T )(v2) = 0.

Now, since p(T ) = 0 iff mT | p(T ) in R[t], and p(TC) = 0 iff mTC | p(T ) in C[t], we see that
mT | p(T ) in R[t] iff mTC | p(T ) in C[t]. In particular, mTC | mT in C[t].

By the lemma, in order to conclude the converse direction that mT | mTC ∈ C[t], and thus mT = mTC

(since both are required by definition to be monic), we need to show that mTC ∈ R[t]. Equivalently, mTC =

mTC , where p(t) denotes complex conjugation in C[t] (i.e. a0 + a1t+ · · ·+ antn = a0+ a1t+ · · ·+ ant
n).

Now, we will conclude by the following lemma:

Lemma 8. If T : V → V is a linear transformation, then if p(t) ∈ C[t] is a polynomial, p(TC)(v ⊗ z) =
p(TC)(v ⊗ z) for any v ∈ V , z ∈ C. Here, complex conjugation is defined on VC by v ⊗ z = v ⊗ z

This lemma suffices for the proof, since in particular it implies that p(TC) = 0 iff p(TC) = 0. Thus,
mTC(TC) = 0, so mTC | mTC , and since these are monic polynomials of the same degree, we conclude that
mTC = mTC , as desired. Now, we are left to prove the lemma:

Lemma 9. Let p(t) = z0 + z1t+ · · ·+ znt
n with zi ∈ C. Let zi = ai + ibi with ai, bi ∈ R. Now, we may

compute:

p(TC)(v ⊗ z) = z0(v ⊗ z) + z1TC(v ⊗ z) + · · ·+ zn(TC)n(v ⊗ z)
= z0(v ⊗ z) + z1(T (v)⊗ z) + · · ·+ zn(Tn(v)⊗ z)
= v ⊗ z0z + T (v)⊗ z1z + · · ·+ Tn(v)⊗ znz
= v ⊗ z0z + T (v)⊗ z1z + · · ·+ Tn(v)⊗ znz
= (z0 + TC + · · ·+ TnC(v))(v ⊗ z)
= p(TC)(v ⊗ z)
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Let V and W be finite-dimensional vector spaces over R, and let ωV : V ×V → R and ωW : W ×W →
R be positive definite symmetric forms. Given a linear transformation T : V →W , the adjoint T ∗ : W → V

is defined as follows (first verbosely, but see (ADJ) below for a self-contained definition).
Recall that the nondegeneracy of ωV means that ω induces an isomorphism V → V ∨. Concretely, this

means that for every linear map λ : V → R there is a unique vector v such that ωV (v, x) = λ(x). For a given
w ∈W , the function λw : V → R given by λw : v 7→ ωW (T (v), w) is a linear map from V to R. We define
T ∗(w) ∈ V to be the vector corresponding as above to λw. In other words, T ∗ is defined by the identity

ωW (T (v), w) = ωV (v, T
∗(w)) for all v ∈ V and all w ∈W (ADJ)

It is very straightforward to verify from this definition the following properties:
(i) T ∗ is an R-linear transformation;

(ii) (T1 + T2)
∗ = T ∗1 + T ∗2 and (cT )∗ = c(T ∗) for c ∈ R;

(iii) (S ◦ T )∗ = T ∗ ◦ S∗.

Question 6. Let V be a finite-dimensional vector space over R, and let ωV : V × V → R be a positive
definite symmetric form. An endomorphism T : V → V is called self-adjoint if T ∗ = T .

Suppose that T : V → V is self-adjoint. Prove that the minimal polynomial mT ∈ R[t] splits completely
(i.e. mT (t) = (t− λ1)(t− λ2) · · · (t− λn) for some λ1, . . . , λn ∈ R). (For the different linear maps or bilinear
forms you use in the proof, be very careful to make clear what the domain and codomain are, and to what
extent they are linear/bilinear; this is the key point of the problem.)

Solution. Any monic polynomial p(t) ∈ R[t] of degree n factors in C[t] as

p(t) = [(t− λ1)(t− λ1)][(t− λ2)(t− λ2)] · · · [(t− λk)(t− λk)](t− τ1) · · · (t− τn−2k)

with τi ∈ R, λi ∈ C−R. Thus, to show that mT splits completely in R, it is necessary and sufficient to
show that all of the roots of mT over C are real. By Question 6, mT = mTC , so it is equivalent to show that
all of the roots in C of mTC are real. But these are exactly the eigenvalues of TC, so we need to show that
the eigenvalues of TC are real.

In order to do this, we need to extend ωV to a form on VC, so we can make sense of the property of being
self-adjoint. The notion of positive-definite symmetric form does not make sense over C: if ω is a C-bilinear
form on VC, then ω(iv, iv) = i2ω(v, v) = −ω(v, v), so positive-definiteness is lost.

A replacement for complex vector spaces is the notion of a hermitian form. If W is a complex vector
space, a C-semilinear form ω(·, ·) on W is an R-bilinear form such that ω(zw1, w2) = zω(w1, w2),
and ω(w1, w2) = ω(w2, w1) for all z ∈ C, wi ∈ W . Note that in particular, this implies that we have
ω(w1, zw2) = ω(zw2, w1) = zω(w2, w1) = zω(w1, w2), and ω(w,w) = ω(w,w), so ω(w,w) ∈ R for all
w ∈W . A hermitian form on W is a C-semilinear form such that ω(w,w) > 0 for all w ∈W − {0}. The
notion of adjoints still make sense with respect to hermitian forms: as above, if T is a C-linear transformation
acting on W , we define T ∗ by:

ω(T (v), w) = ω(v, T ∗(w))

for all v, w ∈ W . Just as in the real case, we can show that this makes sense via non-degeneracy. ω is
non-degenerate in the sense that if ω(w, v) = 0 for all w ∈ W , then v = 0, since we may take w = v and
ω(v, v) > 0 unless v = 0. Likewise, if ω(v, w) = 0 for all w ∈W , then v = 0. Thus, the map ω̃ : W →W∨

which sends w to ω̃(w) : v 7→ ω(v, w) is injective. Note that since ω(zv, w) = zω(v, w) for z ∈ C, this map
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really does produce a C-linear form on W . However, the map ω̃ itself is not C-linear, since ω̃(zw) = zω̃(w).
Nonetheless, it is an injective R-linear map between real vector spaces of the same dimension, and thus it is
a isomorphism of real vector spaces which is moreover “conjugate-linear” in C. We then may define T ∗(w)
for w ∈W to be the unique element of W such that ω̃(T ∗(w)) = ω̃(w) ◦ T . Unwinding the definitions, this
says exactly that for all v ∈W , ω(v, T ∗(w)) = ω(T (v), w).

Note that the definition above forces T ∗ to be C-linear (it is clearly R-linear, since T ∗ = ω̃−1 ◦T∨ ◦ ω̃ is
a composite of R-linear maps): we have ω(v, T ∗(zw)) = ω(T (v), zw) = zω(T (v), w) = zω(v, T ∗(w)) =

ω(v, zT ∗(w)) for all z ∈ C, v, w ∈W . Then, by non-degeneracy, this implies that T ∗(zw) = zT ∗(w) for
all z ∈ C, w ∈W . In other words, the conjugate-linearity of ω̃ and ω̃−1 “cancel out” to get a C-linear map.

Now, we want to extend ωV to a hermitian form ωC on VC in such a way that (T ∗)C = (TC)
∗.

The obvious choice of ωC is:

ωC(v ⊗ z, v′ ⊗ z′) = zz′ · ω(v, v′)

In other words, we have:

ωC(v1 + iv2, w1 + iw2) = ω(v1, w1) + ω(v2, w2) + i
(
ω(v2, w1)− ω(v1, w2)

)
(3)

We need to check that this is hermitian. It is clearly R-bilinear. To check the identities ωC(zw1, w2) =

zωC(w1, w2) and ωC(w2, w1) = ωC(w1, w2), by R-bilinearity it suffices to consider the case that wi =
vi ⊗ zi. Then, we have

ωC(z(v1 ⊗ z1), v2 ⊗ z2) = zz1z2ω(v1, v2) = zωC(w1, w2)

and
ωC(v2 ⊗ z2, v1 ⊗ z1) = z2z1ω(v2, v1) = z2z1ω(v1, v2) = z1z2ω(v1, v2) = ω(w1, w2)

Here, we used that ω is symmetric and that ω(v1, v2) ∈ R for any v1, v2 ∈ V . Thus, ωC is C-semilinear.
To check that it is hermitian, we need ωC(w,w) > 0 for w ∈ W . Writing w = v1 + iv2 (shorthand for
v1 ⊗ 1 + v2 ⊗ i), we compute by Equation (3):

ωC(v1 + iv2, v1 + iv2) = ω(v1, v1) + ω(v2, v2) + i(ω(v2, v1)− ω(v1, v2))
= ω(v1, v1) + ω(v2, v2) > 0

Here, we used the symmetry and positive-definiteness of ω.
Now, we want to show that (T ∗)C = (TC)

∗. Recall that (TC)∗ is defined by the condition that

ωC(TC(w1), w2) = ωC(w1, (TC)
∗(w2))

for allw1, w2 ∈ VC. By R-bilinearity of ωC and R-linearity of TC, it suffices to check this whenw1 = v1⊗z1
and w2 = v2 ⊗ z2. Thus, in order to prove that (TC)∗ = (T ∗)C, it suffices to prove that:

ωC(TC(w1 ⊗ z1), w2 ⊗ z2) = ωC(w1 ⊗ z1, (T ∗)C(w2 ⊗ z2))

Now, we compute:

ωC(TC(w1 ⊗ z1), w2 ⊗ z2) = ωC(T (w1)⊗ z1, w2 ⊗ z2)
= z1z2ω(T (w1), w2)

= z1z2ω(w1, T
∗(w2))

= ωC(w1 ⊗ z1, T ∗(w2)⊗ z2)
= ωC(w1 ⊗ z1, (T ∗)C(w2 ⊗ z2))
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Now, since T is self-adjoint, we have TC = (T ∗)C = (TC)
∗, so TC is self-adjoint with respect to the

hermitian form ωC. We want to show that its eigenvalues are real, so assume that w ∈ VC, w 6= 0 is such that
TC(w) = λw for λ ∈ C. For any v ∈ V , we compute:

λωC(w,w) = ωC(λw,w)

= ωC(TC(w), w)

= ωC(w, TC(w))

= ωC(w, λw)

= λωC(w,w)

Thus, since ωC(w,w) 6= 0, we have λ = λ, so λ ∈ R as desired.
We can actually prove even more [though this was not necessary for the HW]: the minimal polynomialmT

splits into distinct factors, i.e. T is semi-simple. Since mT splits over R, every eigenvalue of TC is already an
eigenvalue of T . In particular, T has an eigenvector v ∈ V with eigenvalue λ ∈ R. Let Vλ be the eigenspace
for λ, and let Wλ be the ω-orthogonal complement of Vλ. We claim that Wλ is T -stable: if w ∈Wλ, we have
for any v ∈ Vλ, 0 = λω(v, w) = ω(λv,w) = ω(T (v), w) = ω(v, T (w)). Thus, T (w) is orthogonal to Vλ.
But T |Wλ

is still self-adjoint with respect to ω|Wλ
, since the identity ω(T (w), w′) = ω(w, T (w′)) holds for

any w,w′ ∈ λ. Similarly, ω|Wλ
is still symmetric and positive-definite. Thus, by induction on dimV , T |Wλ

is semisimple. Since the direct sum of semisimple transformations is semisimple by HW6, this implies that
T is semisimple.
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