
Math 210A: Modern Algebra
Thomas Church (tfchurch@stanford.edu)

http://math.stanford.edu/~church/teaching/210A-F17

Homework 9
Due Thursday night, November 30 (technically2am Dec. 1)

Let V be a finite-dimensional vector space over a field F, and let ω : V ×V → F be an alternating

form. An ω-symplectic basis is an ordered basis a1, b1, a2, b2, . . . , an, bn for V with the property that

ω(ai, bi) = 1 for all i

ω(ai, aj) = ω(ai, bj) = ω(bi, aj) = ω(bi, bj) = 0 if i 6= j

Question 1. Suppose that ω is a nondegenerate alternating form over an arbitrary1 field F.

Prove there exists an ω-symplectic basis.

Question 2. Let V be a 2n-dimensional vector space over F. Recall that V ∨ denotes the dual

vector space V ∨ = HomF(V,F).

Let ω : V × V → F be an alternating form. We can view ω as an element of
∧2(V ∨).

(make sure you understand how this correspondence works)

Is it true that ω is nondegenerate as a bilinear form if and only if ω ∧ · · · ∧ ω ∈
∧2n(V ∨) is nonzero?

Question 3. Let Fq be a finite field of order q and characteristic p 6= 2, and let V be a 2-dimensional

vector space over Fq. Let us say a “quasi-definite2 form” is a symmetric bilinear form ω : V ×V → Fq

with the property that ω(v, v) 6= 0 for all v 6= 0 ∈ V .

(a) How many different isomorphism classes of quasi-definite forms are there?

Please begin your answer by giving the number of isomorphism classes, and then giving one

clear representative of each isomorphism class (and then prove your answer is correct, of course).

Note that the answer3 may depend on properties of q or Fq.

(b) (Optional) Same question, but when q = 2k.

1Note we do not need to assume anything about which elements are squares, nor anything about charF.
2“quasi-definite” isn’t an official term; I made it up because it’s kind of like positive-definite, except of course

“positive” doesn’t mean anything in Fq
3but of course the number is finite, because there are only finitely many set functions V × V → Fq
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We know that every ideal in R[x] is principal (generated by one element). How about Z[x]?

Question 4. Let R = Z[x], and consider an ideal I ⊂ Z[x]. Prove that I is generated by finitely

many elements. Is there an upper bound on how many generators we need? (i.e. is every ideal gen by

2 elements? or by 5 elements? etc.)

Question 5. Let V be a finite-dimensional vector space over R, and let T : V → V be a linear

transformation. Let VC := V ⊗R C. By functoriality we have a map TC : VC → VC, defined by

TC(v ⊗ z) = T (v)⊗ z, called the complexification of T ; this is a C-linear transformation.

Without using the structure theorem for PIDs or rational canonical form, prove that the minimal

polynomial mTC ∈ C[t] is equal to the minimal polynomial mT ∈ R[t] (just prove it directly!); in

particular, mTC has coefficients in R.

Let V and W be finite-dimensional vector spaces over R, and let ωV : V ×V → R and ωW : W ×
W → R be positive definite symmetric forms. Given a linear transformation T : V →W , the adjoint

T ∗ : W → V is defined as follows (first verbosely, but see (ADJ) below for a self-contained definition).

Recall that the nondegeneracy of ωV means that ω induces an isomorphism V → V ∨. Concretely,

this means that for every linear map λ : V → R there is a unique vector v such that ωV (v, x) = λ(x).

For a given w ∈W , the function λw : V → R given by λw : v 7→ ωW (T (v), w) is a linear map from

V to R. We define T ∗(w) ∈ V to be the vector corresponding as above to λw. In other words, T ∗ is

defined by the identity

ωW (T (v), w) = ωV (v, T ∗(w)) for all v ∈ V and all w ∈W (ADJ)

It is very straightforward to verify from this definition the following properties:

(i) T ∗ is an R-linear transformation;

(ii) (T1 + T2)
∗ = T ∗1 + T ∗2 and (cT )∗ = c(T ∗) for c ∈ R;

(iii) (S ◦ T )∗ = T ∗ ◦ S∗.

Question 6. Let V be a finite-dimensional vector space over R, and let ωV : V × V → R be a

positive definite symmetric form. An endomorphism T : V → V is called self-adjoint if T ∗ = T .

Suppose that T : V → V is self-adjoint. Prove that the minimal polynomial mT ∈ R[t] splits

completely (i.e. mT (t) = (t− λ1)(t− λ2) · · · (t− λk) for some4 λ1, . . . , λk ∈ R). (For the different linear

maps or bilinear forms you use in the proof, be very careful to make clear what the domain and

codomain are, and to what extent they are linear/bilinear; this is the key point of the problem.)

[Note you cannot use the spectral theorem (since we used Q6 to prove the spectral theorem).]

4as I mentioned in class, you do not need to prove here that the λ1, . . . , λk are distinct (even though that turns out

to be true); you just need to prove mT (t) factors over R into linear terms
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