CAAP Math, Mr. Church, Homework 1 Due at the beginning of class on Monday, July 7 http://www.math.uchicago.edu/~tchurch/

1. (a) Let \clubsuit be a binary operation defined for real numbers; this means that for any real numbers x and y, we have some definition of $x \clubsuit y$.

We say that the operation \clubsuit is *commutative* if for all real numbers x and y,

$$x \clubsuit y = y \clubsuit x.$$

We say that the operation \clubsuit is *associative* if for all real numbers x, y, and z,

$$x \clubsuit (y \clubsuit z) = (x \clubsuit y) \clubsuit z.$$

In the following questions, if the answer is "no", then give a counterexample: a pair of numbers that shows that the operation is not commutative, or three numbers that show that the operation is not associative.

- (b) Is addition of real numbers commutative?
- (c) Is multiplication of real numbers commutative?
- (d) Is subtraction of real numbers commutative?
- (e) Is division of nonzero real numbers commutative?
- (f) Is addition of real numbers associative?
- (g) Is multiplication of real numbers associative?
- (h) Is subtraction of real numbers associative?
- (i) Is division of nonzero real numbers associative?
- (j) Define the operation \heartsuit on the nonzero integers by $x \heartsuit y = x^y$. Is \heartsuit commutative? Is it associative?
- (k) Define the operation \diamondsuit on the integers by $x \diamondsuit y = (x+y)xy$. Is \diamondsuit commutative? Is it associative?
- (1) Is it true that $x \diamondsuit y = 0$ if and only if x = 0 or y = 0? If not, what is the condition on x and y given by $x \diamondsuit y = 0$? (Give an exact characterization of when this happens, not just some examples.)

- 2. Factor the polynomial $x^2 + 1000002x + 2000000$.
- 3. Try to reduce each fraction to lowest terms.
 - (a) Convert the decimal $0.1\overline{5}$ to a fraction.
 - (b) Convert the decimal $3.\overline{142857}$ to a fraction.
 - (c) Convert the decimal $0.\overline{9}$ to a fraction.
- 4. What is $(-1)^{1776}$?
- 5. Use long division of polynomials to compute the quotient and the remainder of

$$\frac{4x^3 - 11x^2 + 3x - 6}{2x - 3}$$

- 6. Starting with the curve defined by $y = x^3 5x^2 4x + 20$, we apply the transformation that shifts to the right by 1 unit. Which of the following is the equation of the resulting curve?
 - A. $x^3 2x^2 11x + 12$ B. $x^3 - 5x^2 - 4x + 11$ C. $x^3 - 8x^2 + 9x + 18$ D. $x^3 + 10x^2 - 4x - 5$