CAAP Math C, Mr. Church, Study Questions http://www.math.uchicago.edu/~tchurch/

Here are some selected problems and exercises that you might find it useful to study. (The test will of course be shorter than this.) I recommend trying to solve every question if you can. For the questions where "prove your answer is correct" is mentioned separately, I mean it. I also recommend reviewing the definition of a group and of a commutative ring. You should study the axioms, but you don't need to memorize them—they will be provided if necessary. You are all well prepared for this test. Good luck!

- 1. Compute the greatest common divisor of pairs of numbers, for example gcd(7, 12), gcd(6, 15), gcd(10, 40), gcd(99999, 99). Try some other pairs.
- 2. For each pair a, b, find integers x and y so that you can write the greatest common divisor in the form gcd(a, b) = ax + by. For the above examples, this is: find x and y so that gcd(7, 12) = 7x + 12y; find x and y so that gcd(6, 15) = 6x + 15y, and find x and y so that gcd(10, 40) = 10x + 40y.

3. Define $\mathcal{E} = \{n \in \mathbb{Z} | n \text{ is even}\}$ to be the set of even integers. Is \mathcal{E} a group under the operation of addition?

- 4. Let the function $f : \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x 7; $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = x^3$, and $h : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ by $h(x) = \frac{1}{x^2}$.
 - (a) What is $f \circ g$? What is $g \circ f$?
 - (b) What is $f \circ h$? What is $h \circ h$?
 - (c) In each case, what are the restrictions on the domain that are necessary? For example, is $f \circ h$ defined on all of \mathbb{R} ? or some smaller subset?

- 5. We make the following definitions:
 - let $\mathcal{E} = \{n \in \mathbb{Z} | n \equiv 0 \pmod{2}\}$ be the set of even numbers,
 - let $\mathcal{P} = \{n \in \mathbb{Z} | n \text{ is prime}\}$ be the set of primes,
 - let $\mathcal{M}_3 = \{n \in \mathbb{Z} | n \equiv 0 \pmod{3}\}$ be the set of multiples of three,
 - and let $Sq = \{n \in \mathbb{Z} | \text{there exists } m \text{ such that } m^2 = n\}$ be the set of perfect squares.
 - (a) What is $\mathcal{E} \cap \mathcal{P}$?
 - (b) What is $\mathcal{E} \cap \mathcal{M}_3$?
 - (c) What is $\mathcal{E} \cap \mathcal{S}q$?
 - (d) What is $\mathcal{P} \cap \mathcal{S}q$?
 - (e) (difficult) For any k, define $\mathcal{M}_k = \{n \in \mathbb{Z} | n \equiv 0 \pmod{k}\}$ to be the set of multiples of k. In general, what is $\mathcal{M}_a \cap \mathcal{M}_b$?
- 6. Prove your answer to each part of the previous question.

7. Using the axioms and theorems from class, prove that (a-b)(c-d) = (ac+bd) - (ad+bc).

- 8. Define the function $f: \mathbb{Z} \to \mathbb{Z}$ by f(n) = n + 1, $g: \mathbb{Z} \to \mathbb{Z}$ by g(n) = 2n, and $h: \mathbb{Z} \to \mathbb{Z}$ by h(n) = |n|. (That is, h(n) = n if $n \ge 0$, and h(n) = -n if n < 0.)
 - (a) Is f one-to-one? Onto?
 - (b) Is g one-to-one? Onto?
 - (c) Is h one-to-one? Onto?
 - (d) Is $f \circ g$ equal to $g \circ f$? If so, prove it; if not, give a counterexample.
 - (e) Is $g \circ h$ equal to $h \circ g$? If so, prove it; if not, give a counterexample.