CAAP Math C, Mr. Church, Study Questions
http://www.math.uchicago.edu/~tchurch/

Here are some selected problems and exercises that you might find it useful to study. (The test will of course be shorter than this.) I recommend trying to solve every question if you can. For the questions where "prove your answer is correct" is mentioned separately, I mean it. I also recommend reviewing the definition of a group and of a commutative ring. You should study the axioms, but you don't need to memorize them - they will be provided if necessary. You are all well prepared for this test. Good luck!

1. Compute the greatest common divisor of pairs of numbers, for example $\operatorname{gcd}(7,12)$, $\operatorname{gcd}(6,15), \operatorname{gcd}(10,40), \operatorname{gcd}(99999,99)$. Try some other pairs.
2. For each pair a, b, find integers x and y so that you can write the greatest common divisor in the form $\operatorname{gcd}(a, b)=a x+b y$. For the above examples, this is: find x and y so that $\operatorname{gcd}(7,12)=7 x+12 y$; find x and y so that $\operatorname{gcd}(6,15)=6 x+15 y$, and find x and y so that $\operatorname{gcd}(10,40)=10 x+40 y$.
3. Define $\mathcal{E}=\{n \in \mathbb{Z} \mid n$ is even $\}$ to be the set of even integers. Is \mathcal{E} a group under the operation of addition?
4. Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=2 x-7 ; g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=x^{3}$, and $h: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}$ by $h(x)=\frac{1}{x^{2}}$.
(a) What is $f \circ g$? What is $g \circ f$?
(b) What is $f \circ h$? What is $h \circ h$?
(c) In each case, what are the restrictions on the domain that are necessary? For example, is $f \circ h$ defined on all of \mathbb{R} ? or some smaller subset?
5. We make the following definitions:

- let $\mathcal{E}=\{n \in \mathbb{Z} \mid n \equiv 0(\bmod 2)\}$ be the set of even numbers,
- let $\mathcal{P}=\{n \in \mathbb{Z} \mid n$ is prime $\}$ be the set of primes,
- let $\mathcal{M}_{3}=\{n \in \mathbb{Z} \mid n \equiv 0(\bmod 3)\}$ be the set of multiples of three,
- and let $\mathcal{S} q=\left\{n \in \mathbb{Z} \mid\right.$ there exists m such that $\left.m^{2}=n\right\}$ be the set of perfect squares.
(a) What is $\mathcal{E} \cap \mathcal{P}$?
(b) What is $\mathcal{E} \cap \mathcal{M}_{3}$?
(c) What is $\mathcal{E} \cap \mathcal{S} q$?
(d) What is $\mathcal{P} \cap \mathcal{S} q$?
(e) (difficult) For any k, define $\mathcal{M}_{k}=\{n \in \mathbb{Z} \mid n \equiv 0(\bmod k)\}$ to be the set of multiples of k. In general, what is $\mathcal{M}_{a} \cap \mathcal{M}_{b}$?

6. Prove your answer to each part of the previous question.
7. Using the axioms and theorems from class, prove that $(a-b)(c-d)=(a c+b d)-(a d+b c)$.
8. Define the function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ by $f(n)=n+1, g: \mathbb{Z} \rightarrow \mathbb{Z}$ by $g(n)=2 n$, and $h: \mathbb{Z} \rightarrow \mathbb{Z}$ by $h(n)=|n|$. (That is, $h(n)=n$ if $n \geq 0$, and $h(n)=-n$ if $n<0$.)
(a) Is f one-to-one? Onto?
(b) Is g one-to-one? Onto?
(c) Is h one-to-one? Onto?
(d) Is $f \circ g$ equal to $g \circ f$? If so, prove it; if not, give a counterexample.
(e) Is $g \circ h$ equal to $h \circ g$? If so, prove it; if not, give a counterexample.
