
Math 121. Eisenstein criterion and Gauss’ Lemma

Let R be a UFD with fraction field K. The aim of this handout is to prove an irreducibility
criterion in K[X] due to Eisenstein: if f = anX

n + · · · + a0 ∈ R[X] has positive degree n and
π is a prime of R which does not divide an but does divide ai for all i < n, yet π2 - a0, then f
is irreducible in K[X]. As we saw in class, this is immediately reduced to Gauss’ Lemma (stated
below), and we will focus on proving Gauss’ Lemma. As an application of the method of proof, we
will establish a UFD property for polynomial rings in several variables.

1. Gauss’ Lemma

Before proving Gauss’ Lemma, let’s give one example of Eisenstein’s criterion in action (the trick
of “translation”) and one non-example to show how the criterion can fail if we drop primality as
a condition on π (recall that in the proof of Eisenstein’s criterion, the role of π being prime was
crucial for knowing that R/π is a domain, so (R/π)[X] is a domain).

Example 1.1. Let p be a prime in Z and consider Φp = Xp−1 + · · ·+X + 1 ∈ Z[X]. We claim that
this is irreducible in Q[X] (this is easily verified by bare hands for Φ2 = X+1 and Φ3 = X2+X+1,
but for p ≥ 5 it is clear that hands-on manipulation is pointless). To prove Φp is irreducible in
Q[X], we make the change of variable X  X+1: it is equivalent to show Φp(X+1) is irreducible.
But this is a polynomial to which Eisenstein applies in Z for the prime p.

Indeed, in Fp[X] we have by the magic of characteristic p that

(X − 1)Φp(X) = Xp − 1 = (X − 1)p,

so Φp(X) = (X − 1)p−1 in Fp[X], so Φp(X + 1) = Xp−1 in Fp[X]. This says that the monic
polynomial Φp(X + 1) ∈ Z[X] of degree p− 1 has all lower-degree coefficients divisible by p, so we
just have to make sure the constant term of Φp(X + 1) is not divisible by p2. Ah, but the constant
term is obtained by specializing the variable to zero, and Φp(1) = p by inspection.

Example 1.2. To show what goes wrong if we don’t require primality, consider Φ5 = X4 + X3 +
X2 +X + 1 ∈ Z[X]. Applying Eisenstein to Φ5(X + 1) with p = 5 shows irreducibility in Q[X], as
we saw above. But consider the ring R = Z[α] where α = (−1 +

√
5)/2 satisfies α2 + α − 1 = 0.

Since α satisfies a monic quadratic with Z coefficients, R = Z ⊕ Zα is finite free as a Z-module.
Using some elementary algebraic number theory (Math 154), it can be shown that R is a UFD.
But the fraction field K = Q(

√
5) of R has the property that in K[X] we have the factorization

Φ5 = X4 +X3 +X2 +X + 1 = (X2 − αX + 1)(X2 − (−1− α)X + 1),

as one checks by using the relation α2 = −α+ 1.
Thus, Φ5 is reducible in K[X] (the factorization even takes place in R[X]), but it is still true in

R that Φ5(X + 1) has all lower degree coefficients divisible by 5 (as this is even true in Z) and its
constant term Φ5(0) = 5 is not divisible by 52 (one can check that 5/25 = 1/5 does not lie in R).
But Eisenstein’s criterion does not apply to this situation over K with π = 5 ∈ R since 5 is not
prime in R! In fact,

√
5 = 2α+ 1 ∈ R has the property that it is a non-unit in R (check!) and its

square is 5. Hence, 5 ∈ R admits a non-trivial factorization and thus is not prime.

Theorem 1.3. (Gauss’ Lemma) Let R be a UFD with fraction field K. If f ∈ R[X] has positive
degree and f is reducible in K[X], then f = gh with g, h ∈ R[X] having positive degree.

We should give a warning about how careful one has to be concerning factorization statements
when the coefficient ring is not a field. For example, consider 2X in Z[X]. Viewing Z[X] as an
absract ring in its own right, clearly the element 2X is “reducible” in the sense that it is a product

1



2

of two non-units (namely, 2 and X). In contrast, 2X ∈ Q[X] is irreducible, since 2 ∈ Q×. The
point is that whether or not an element is a unit may change if one passes to a bigger ring (and
hence may get more units), so statements of “irreducibility” of an element in R[X] when R is not
a field (and hence not all nonzero elements of R are units) must be treated very carefully lest one
make oversights.

Proof. (of Theorem 1.3) If f = c · f̃ for some nonzero c ∈ R and some f̃ ∈ R[X], it suffices to treat
f̃ instead of f . Thus, by factoring out the greatest common divisor of the coefficients of f (which
makes sense since the coefficient ring R is a UFD), we may assume that the coefficients of f have
gcd equal to 1. We call such polynomials primitive (e.g., for R = Z, we have that 7X2 − 14X + 2
is primitive in Z[X] whereas 6X2 − 15 is not).

The key fact we need is that a product of primitives is primitive. To prove it, let g, h ∈ R[X] be
such that gh ∈ R[X] is not primitive. We wish to prove that one of g or h is not primitive. The
non-primitivity of gh implies that some nonzero non-unit c ∈ R divides all coefficients of gh. If π
is an irreducible factor of c then π divides all coefficients of gh.

Let R = R/(π), a domain since π is irreducible and R is a UFD. Working in R[X], we have
gh = gh = 0. But a polynomial ring over a domain is again a domain (why?), so one of g or h
vanishes. This says that π divides all coefficients of g or h, so one of these is non-primitive, as
desired.

Say our given non-trivial factorization is f = gh with g, h ∈ K[X] having positive degree. If we
write the coefficients of g as reduced form fractions with a “least common denominator” (possible
since R is a UFD) and then consider the gcd of the numerators, we can write g = qg0 where q ∈ K×
and g0 ∈ R[X] is primitive. Likewise, h = q′h0 where q′ ∈ K× and h0 ∈ R[X] is primitive. Hence,
f = (qq′)g0h0 with f and g0h0 both primitive. Writing qq′ = a/b as a reduced-form fraction with
a, b in the UFD R, bf = ag0h0 in R[X]. Comparing gcd’s of coefficients on both sides, it follows
that a = bu with u ∈ R× (!), so qq′ = u ∈ R×. Hence, f = (ug0)(h0) is a factorization of f in R[X]
with ug0, h0 having positive degree. �

2. Refinements

The technique of studying primitive polynomials has some interesting further applications. We
begin with a determination of the irreducibles in Z[X] using factorizations in Z and Q[X]. More
generally with any UFD:

Theorem 2.1. If R is a UFD with fraction field K, then R[X] is a UFD. An element f ∈ R[X]
is irreducible if and only if f ∈ R is irreducible (degree 0 case) or f is primitive in R[X] and
irreducible in K[X] (positive degree case).

For example, since Z× = {±1}, the irreducibles in Z[X] are the ordinary (positive) primes,
primitive monic polynomials of positive degree which are irreducible over Q, and negatives of
these. The basic principle of the proof is to peel off the UFD property from K[X], using the UFD
property of R to control nonzero constant scaling factors which are absorbed as units when working
over K. In particular, it must be stressed that the general UFD proof in this corollary uses the
known special case when the coefficient ring is a field. That is, to use this corollary with R = k a
field (trivially a UFD) to deduce the UFD property of k[X] would be circular reasoning.

Proof. As a warm-up, we begin by verifying the classification of irreducibles in R[X]. Since degrees
add when multiplying, it is clear that an irreducible in R is irreducible in R[X] (and a reducible in
R is reducible in R[X]; a non-unit of R cannot become a unit in R[X]). Meanwhile, if f ∈ R[X]
has positive degree then it is reducible if it is not primitive (e.g., 6X+15 ∈ Z[X]). If f is primitive,
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a non-trivial factorization f = ab in R[X] must have a and b of positive degree, so in K[X] we get
a non-trivial factorization. Note that conversely if f ∈ R[X] is primitive of positive degree and f
is reducible in K[X] then f is also reducible in R[X]; this follows from Gauss’ Lemma! Hence, we
conclude that the irreducibles in R[X] are exactly as advertised.

Now we prove that every nonzero non-unit f ∈ R[X] is a product of irreducibles, the factoriza-
tion being unique up to ordering and unit multiples. For elements of degree 0, the only possible
factorizations involve elements of degree 0. Thus, the UFD property of R settles both the exis-
tence and uniqueness aspects for degree 0 elements in R[X] (the unit ambiguity is not a problem,
since R[X]× = R×). Now consider f ∈ R[X] with positive degree. We use the UFD property of
R to write f = cf0 with c ∈ R and f0 primitive. By Gauss’ Lemma, if f0 is not irreducible in
K[X] then it has a non-trivial factorization f0 = g0h0 in R[X] with g0 and h0 of positive degree,
and clearly necessarily primitive (as f0 is primitive). Inducting on degrees, we conclude that any
positive degree primitive in R[X] is a product of positive degree primitives which are irreducible in
K[X] (and hence irreducible in R[X], by Gauss’ Lemma). If we also apply the UFD property of R
to the coefficient c, we can break up the factorization f = cf0 into f =

∏
pi ·

∏
πj where pi ∈ R are

irreducibles (there are none of these if f is primitive) and πj ∈ R[X] are positive degree primitive
irreducibles (necessarily also irreducible in K[X], by Gauss’ Lemma). This proves the existence of
factorization into irreducibles.

For the uniqueness aspect, suppose f ∈ R[X] of positive degree admits two factorizations∏
pi ·

∏
πj = f =

∏
p′r ·

∏
π′s,

where the pi’s and p′r’s are the degree 0 factors and the πj ’s and π′s’s are the positive degree
irreducible factors (necessarily irreducible in K[X], from the classification of irreducibles in R[X]).
In K[X], the πj ’s and π′s’s are irreducible and

∏
πj = u

∏
π′s where u =

∏
p′r ·

∏
p−1

i ∈ K× is a
unit. Hence, by the UFD property of K[X] we conclude that the two collections {πj} and {π′s}
are the same up to ordering and K×-multiple. But these collections consist of primitives, and if
g, h ∈ R[X] are primitive then g, h are K×-multiples in K[X] if and only if they are R×-multiples in
R[X]. To see this, note that if g = ch for some c ∈ K× then we write c = a/a′ with a, a′ ∈ R−{0}
having no non-trivial common factor (this can be done since R is a UFD), so then a′g = ah in
R[X]. The gcd’s of the collection of R-coefficients on each of the two sides are a′ and a respectively,
since g and h are primitive, so since gcd’s are only well-defined up to unit multiple we conclude
that a = a′u for u ∈ R×, whence c = a/a′ = u ∈ R× as desired.

We conclude that the two collections {πj} and {π′s} are the same up to ordering and R×-multiple.
Cancelling, we see that

∏
pi and

∏
p′r in R are off by unit multiple, so by the UFD property of

R we deduce that {pi} and {p′r} are the same up to ordering and R×-multiple. This proves the
uniqueness of factorization into irreducibles in R[X] (up to ordering and unit multiples). �

Corollary 2.2. If R is a UFD, so is R[X1, . . . , Xn] for all n ≥ 1.

Proof. The case n = 1 is the preceding corollary. Since R[X1, . . . , Xn] ' (R[X1, . . . , Xn−1])[Xn] for
n > 1, we may induct on n (note the need to have the previous corollary for arbitrary UFD’s in
order to carry out the induction!). �

As one example, Z[X1, . . . , Xn] is a UFD for all n ≥ 1. It is actually not a PID for any n ≥ 1.
Likewise, k[X1, . . . , Xn] is a UFD for n ≥ 1, but it is not a PID when n > 1. To give counterexamples
to the PID property, one just has to check that if R is a UFD which is not a field and π ∈ R is
an irreducible (which exists by the UFD property applied to any non-zero non-unit, such elements
existing in R precisely when R is not a field), then (π,X) is a non-principal ideal in R[X]. This is
a pleasant exercise.
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It is also instructive to chase through the proof of the UFD property in several variables to try
to make it effective. For example, follow the method of proof used above to factor

−6X3 + 6X2Y 2 + 6X3Y − 3XY + 3Y 3 + 3XY 2 ∈ Z[X,Y ]

into irreducibles.


