
Math 145. Bezout’s Theorem
Let k be an algebraically closed field. The purpose of this handout is to prove Bezout’s Theorem and

some related facts of general interest in projective geometry that arise along the way.

1. Setup and projective transformations

Let f, g ∈ k[X,Y, Z] be homogenous of respective degrees d, e ≥ 1, without any common irreducible
factor. The zero loci Z(f), Z(g) have as their respective sets of irreducible components the zero loci of the
(homogenous!) irreducible factors {fi} of f and {gj} of g due to:

Proposition 1.1. If f ∈ k[x0, . . . , xn] is homogeneous of degree d > 0 then all factors of f in k[x0, . . . , xn]
are homogeneous, and if f is irreducible then the closed set Z(f) ⊂ Pn

k is irreducible of dimension n− 1.
If g is another homogeneous irreducible polynomial in k[x0, . . . , xn] then Z(f) = Z(g) if and only if f = cg

for c ∈ k×.

Proof. If f = f1f2 with non-constant fj ’s then the degrees dj > 0 of the fj ’s must add up to d and the
top-degree parts of the fj ’s have product then must be the top degree part of f . But f is its own top-degree
part (as f is homogeneous). By similar reasoning, the least-degree parts of the fj ’s must have product equal
to f and in particular degrees that add up to d. These least degrees are respectively ≤ d1 and ≤ d2, yet
their sum is d = d1 + d2, so the least-degrees coincide with the top degrees for the fj ’s; i.e., each fj is
homogeneous.

Next assume that f is irreducible. To show that Z(f) is irreducible, consider the surjective morphism

q : An+1 − {0} → Pn
k .

The preimage is the zero locus of f on An+1 with the origin removed. If Z(f) is covered by two proper closed
subsets in Pn

k , then the zero locus of f in An+1
k − {0} would be covered by their proper closed preimages.

That is, the zero locus of f in the open subset Ω = An+1
k − {0} ⊂ An+1

k would be reducible. But the zero

locus of f in An+1
k is irreducible since f is irreducible, and it contains the origin as a proper closed subset

(since the origin is of codimension n+ 1 ≥ 2, so it cannot be an irreducible hypersurface), so its overlap with
An+1

k − {0} is a non-empty open subset of an irreducible space. Such an open subset is always irreducible.

The zero locus V of f in An+1
k − {0} is irreducible of dimension n, and it maps onto Z(f) with all fibers

of dimension 1. More specifically, each q−1(Ui) → Ui is a surjective map between affine varieties with all
fibers irreducible of dimension 1, so likewise whenever Z(f) ∩ Ui is non-empty we see that

V ∩ q−1(Ui)→ Z(f) ∩ Ui

is a surjective map between affine varieties with all fibers of dimension 1. Thus, by the earlier handout on fiber
dimension in the affine case, it follows that the target Z(f)∩Ui has dimension dim(V ∩q−1(Ui))−1 = n−1.

Finally, for irreducible homogenous g ∈ k[x0, . . . , xn] such that Z(g) = Z(f) we seek to prove that g = cf
for some c ∈ k×. Consider the preimages in An+1

k − {0}. These preimages are the complements of the

origin in the irreducible (!) zero loci of f and g in An+1
k , so the closures of these preimages in An+1

k are

those zero loci. That is, f and g have the same zero loci in An+1
k , whence each is a multiple of the other in

k[x0, . . . , xn] by their irreducibility and the Nullstellensatz. This forces the multiplier relating them to be a
unit in k[x0, . . . , xn], which is to say an element of c×. �

The hypotheses on f and g ensure that the irreducible curves Z(fi), Z(gj) are distinct, whence have
intersection of smaller dimension, whence finite! For non-constant polynomials h1, h2 ∈ k[u, v] and points P
not on a common irreducible component of Z(h1) and Z(h2) (i.e., an isolated point of Z(h1, h2) or a point
not in this common zero locus at all) our definition of the intersection number

I(P ;h1, h2) = dimk(OA2
k,P

/(h1, h2)) <∞

(which vanishes if one of h1 or h2 is nonzero at P ) is given in terms of the local rings (with h1, h2 ∈
k[u, v] = O(A2

k) having no common irreducible factor through P ). Thus, we can define intersection numbers
I(P ; f, g) for homogenous f, g and any point P by simply dehomogenizing f and g with respect to any of
the homogenous coordinates not vanishing at P and then computing the (finite!) intersection number in
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the corresponding A2
k via our affine theory. Note that if P has more than one non-vanishing coordinate

then it does not matter which coordinate we use for dehomogenization: for example, if P ∈ U0 ∩ U2 with
P = [1, a, b] = [1/b, a/b, 1] for b 6= 0 then we have an isomorphism

OA2
k,(a,b)

= OU0,P = OP2
k,P

= OU2,P = OA2
k,(1/b,a/b)

which carries the X-dehomogenizations of h1 and h2 over to the Z-dehomogenizations of h1 and h2 respec-
tively, so passing to the respective quotients by these identifies (as local k-algebras with finite dimension as
k-vector spaces) the two local ring quotients.

It is important to check that that this well-posed definition is unaffected by arbitrary projective linear
change of coordinates, (not just the most trivial type which interchange the coordinates). That is, for
T ∈ PGL3(k) and T ′ ∈ GL3(k) representing T , we claim that

I(P ; f, g) = I(T−1(P ), f ◦ T ′, g ◦ T ′).

We give a computation-free proof below (as any other method appears tedious).

Remark 1.2. Intersection numbers can be defined entirely intrinsically — i.e., without making reference to
coordinates or A2’s — within the framework of schemes. The fact that we built our theory out of reduced
k-algebras forces us to use the above ad hoc approach, roughly because we cannot define the geometric object
Z(f) in such a way that it “knows” the multiplicites of the irreducible factors of f (if such multiplicities
occur which are > 1).

Lemma 1.3. The above definition of I(P ; f, g) is unaffected by projective linear change of coordinates.

Proof. From the affine case, it follows that our definition is “additive” with respect to taking products in f
and g. That is, if f = c

∏
fri
i and g = c′

∏
g
sj
j is the decomposition into irreducible (homogenous!) factors

(with c, c′ ∈ k×), then

I(P ; f, g) =
∑
i,j

risjI(P ; fi, gj)

(where the only non-zero terms on the right side are the ones for which fi(P ) = gj(P ) = 0). Since the
formation of the irreducible factorization behaves well under linear homogenous change of coordinates, we
are therefore reduced to studying the case in which f and g are irreducible. The point of this step is that
the closed subvarieties Z(f) and Z(g) “remember” the irreducible f and g, by Proposition 1.1.

For irreducible homogenous f and g which aren’t scalar multiples of each other (i.e., Z(f) 6= Z(g)), we
now give a description of I(P ; f, g) which depends only on the closed subvarieties Z(f), Z(g) ↪→ P = P2

k

and not on any choice of coordinate system. In general, let Σ be any irreducible surface (i.e., 2-dimensional
variety), and C, C ′ two distinct irreducible curves on Σ, so C ∩ C ′ is a finite set. Choose P ∈ C ∩ C ′, and
consider the surjections OΣ,P � OC,P ,OC′,P (why are these surjective?). Let IP , I ′P denote the respective
kernels, and define JP = IP + I ′P , which is morally the “ideal defining C ∩ C ′” at P (except that this ideal
might not be radical, which corresponds to the possibility of an intersection number being > 1).

For example, if Σ = A2
k and C = Z(f), C ′ = Z(f ′) for irreducible f, f ′ and P = (0, 0), then IP = fOA2

k,0
,

I ′P = f ′OA2
k,0

, and JP = (f, f ′)OA2
k,0

. This example naturally leads us to consider the quotient k-algebra

OΣ,P /JP .

In the case of distinct irreducible curves in A2
k passing through a point, this quotient k-algebra is exactly the

one whose k-dimension is the finite integer which we defined to be I(P ; f, g)! We conclude that with Σ = P2
k,

C = Z(f), C ′ = Z(g) where f and g are homogenous and irreducible (whence have irreducible dehomoge-
nizations with respect to any of the coordinate variables which is non-vanishing at a point P ∈ C ∩C ′), the
intrinsic k-algebra OΣ,P /JP is of finite k-dimension equal to the coordinate-dependently defined I(P ; f, g).
The intrinsic nature of this local ring quotient (its definition involves no specification of “coordinate”, ho-
mogenous or otherwise!) thereby implies that this integer is in fact unaffected by arbitrary projective linear
change of coordinates on P2

k.
�



3

2. Main result

Here is Bezout’s theorem:

Theorem 2.1. For f, g ∈ k[X,Y, Z] homogenous of respective positive degrees d, e and without any common
irreducible factor, ∑

P∈P2
k

I(P ; f, g) = de.

We emphasize that there are only finitely many non-zero terms in the sum, corresponding to the finite
set Z(f) ∩ Z(g).

Proof. By Lemma 1.3, we may make any linear homogenous change of coordinates. Also, using additivity of
both intersection numbers and degrees with respect to products in f and g (as in the proof of Lemma 1.3),
we immediately reduce to the case where f and g are irreducible. Since Z(f) ∩ Z(g) is a finite set, we may
find a line P1

k ↪→ P2
k disjoint from this finite set (how?), and may then apply a projective linear change of

coordinates so that this line is the line at infinity, Z = 0. That is, we can assume the intersection points all
lie in the “ordinary affine plane” {Z 6= 0} = U2.

Let S = k[X,Y, Z], on which we have a natural direct sum decomposition

S = ⊕r≥0Sr

with Sr the space of homogeneous polynomials of degree r. An ideal I ⊂ S is called homogeneous if
I = ⊕Ir with Ir = I ∩ Sr; i.e., I contains all homogeneous parts of all of its elements. The quotient
S/I = ⊕r≥0(Sr/Ir) by a homogeneous ideal inherits a natural notion of “homogeneous part” (namely, the
spaces Sr/Ir, or equivalently the image of Sr in S/I for each r ≥ 0). It is clear that a sum of homogeneous
ideals is homogeneous (check!), and that if h ∈ S is homogeneous then the principal ideal (h) = hS is
homogeneous (why?). Thus, (f), (g), and (f, g) = (f) + (g) are homogeneous ideals, so each of the quotients
S/f, S/g, S/(f, g) has a natural notion of “homogeneous parts”.

The homogeneous parts of each are quotients of the Sr’s and so have finite k-dimension as vector spaces.
Since f and g are irreducibles in the UFD S and are not unit multiples of each other, the sequence of k-vector
spaces

0→ S/g
f→ S/g → S/(f, g)→ 0

is exact. Note that although the second map respects the notion of “degree of homogeneous part” induced
from S, the first map shifts such degrees up by the degree d of the homogenous f . If we let (·)r denote the
degree-rth homogeneous part of the ring then we have an exact sequence

0→ (S/g)r−d
f→ (S/g)r → (S/(f, g))r → 0

(where the pieces in negative degrees are understood to be 0). Thus,

dimk(S/(f, g))r = dimk(S/g)r − dimk(S/g)r−d.

Using the exact sequence

0→ S
g→ S → S/g → 0

and similar considerations with grading (where now the first map shifts up degrees by the degree e of g), we
deduce

dimk(S/g)n = dimk Sn − dimk Sn−e.

But for m ≥ 0 we have dimk Sm = m(m − 1)/2. Note that this applies to Sn−e only for n ≥ e. Inserting
this into the above formulae, we deduce

dimk(S/(f, g))r = de

for r sufficiently large (more precisely, for r ≥ e + d). The idea is now to show that for r sufficiently large,
(S/(f, g))r has dimension equal to the sum of the intersection numbers. Roughly speaking, we want to view
S/(f, g) as the “coordinate ring” of the “necessarily affine closed subscheme”

Z(f) ∩ Z(g) ⊆ P2
k − {Z = 0} ' A2

k,
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but to make this precise we will need to be attentive to the fact that elements of S are not really functions
on P2

k and moreover the correct way to define this intersection Z(f) ∩ Z(g) as a geometric object requires
allowing nilpotents in the structure sheaf (this corresponds to points P with I(P ; f, g) > 1). Nonetheless,
once such a “scheme-theoretic” intersection is defined (which we will do here without requiring the concept
of a scheme), the k-dimension of its coordinate ring ought to be that sum of intersection numbers. Anyway,
this is the geometric motivation (which comes from thinking about schemes and modern intersection theory).

Now consider the dehomogenizations fZ , gZ ∈ k[x, y]. We claim that the sum∑
P∈P2

k

I(P ; f, g) =
∑

P∈A2
k

I(P ; fZ , gZ)

is equal to dimk k[x, y]/(fZ , gZ). Since fZ and gZ have no common irreducible factor in k[x, y], the method
of proof in §2 of the handout on intersection numbers shows that the natural map of k-algebras

k[x, y]/(fZ , gZ) '
∏

fZ(P )=gZ(P )=0

k[x, y]mP
/(fZ , gZ).

For a common zero P of fZ and gZ , the intersection number I(P ; fZ , gZ) is exactly the k-dimension of the
P th factor in this direct product, so the sum of these k-dimensions over all such P is the common k-dimension
of both sides of this isomorphism of k-algebras, which in turn is visibly dimk k[x, y]/(fZ , gZ).

We have proven that the two sides of Bezout’s theorem are equal to the k-dimensions of k[x, y]/(fZ , gZ)
and (S/(f, g))r (for large r) respectively. Now in general for any ideal I in k[x, y], define Ih ⊆ S to be the
radical homogenous ideal corresponding to the Zariski closure of Z(I) ⊆ A2

k = P2
k − {Z = 0} in P2

k. This
closure meets the open A2

k ⊆ P2
k in Z(I), so I is exactly the set of f ∈ k[x, y] whose Z-homogenization lies

in Ih. What is more important is that if F ∈ S and ZF ∈ Ih then F ∈ Ih (as is easy to check from the
definition of Ih in terms of Z-homogenization and Z-dehomogenization).

The ring A = k[x, y]/I has finite k-dimension, and I claim that any finite k-algebra B admits a filtration
by ideals Ij with

0 = I0 ( I1 ( · · · ( IN = B

with dimk Ij/Ij−1 = 1 for all 0 < j ≤ N . Indeed, since B breaks up into a finite product of finite local
k-algebras, we only need to consider local B. If B = k there’s nothing to say. Otherwise, since B/mB = k
(as k is algebraically closed!!), we must have mB 6= 0, so there is some integer n ≥ 1 such that mn

B 6= 0,

mn+1
B = 0. Choose any non-zero b ∈ mn

B , so the non-zero principal ideal (b) is killed by mB and hence is
of dimension 1 as a k-vector space, Applying induction on k-dimension to B/b, we get the desired chain of
ideals. Now fix such a rising chain of ideals {Ij} in A = k[x, y]/I, each of k-codimension 1 in the next, so
dimk A =

∑
dimk Ij/Ij−1. The rising chain of ideals {Ij} in A gives rise to a rising chain of homogenous

ideals Ih
j in S/(f, g) (here I am implicitly identified ideals in a quotient ring with certain ideals in the original

ring), whence (S/(f, g))r has a filtration by the rising chain of subspaces (Ih
j /I

h
j−1)r. We will now prove that

if r is sufficiently large, then

dimk(Ih
j /I

h
j−1)r = 1

for all j. Taking the sum over j (with large r) will then complete the proof.
More generally, if J ⊆ K is an inclusion of ideals in k[x, y] with dimk K/J = 1, we claim that

dimk(Kh/Jh)r = 1

for large r (and hence the same conclusion applies for sufficiently large r for any finite rising chain of such
ideals, so we’d be done). Let n ∈ N = Kh/Jh be a homogenous element represented by a homogenous
element F ∈ Kh of some degree r. Since the multiplication map by Z on N = Kh/Jh is injective (why?),
we see that F/Zr = FZ 6∈ J if and only if F /∈ Jh, which is equivalent to n 6= 0. Since every element
in K has the form FZ for some homogenous F ∈ Kh and K 6= J , we conclude that N 6= 0. Now choose
homogenous n ∈ N non-zero with minimal degree d (note that by its definition, N has vanishing graded
terms in negative degrees) and choose a homogenous degree d representative F for n as above. For any
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d′ ≥ d and any homogenous n′ ∈ Nd′ represented by a homogenous F ′, since K/J has k-dimension 1 with
basis given by FZ , we conclude that F ′Z ≡ cFZ mod J for some c ∈ k, whence

Zm(ZdF ′ − cZd′
F ) ∈ Jh

for a large integer m. But this implies

F ′ ≡ cZd′−dF mod Jh

(as multiplication by Z is injective on Kh/Jh), so n′ = cZd′−dn in Nd′ . Thus, for d′ ≥ d the non-zero (!)

element Zd′−dn ∈ Nd′ is a k-basis, so indeed Nr = (Kh/Jh)r has k-dimension equal to 1 for all large r (i.e.,
r ≥ d). This is what we needed to prove.
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