MATH 145. DIMENSION THEORY FOR LOCALLY CLOSED SUBSETS

Recall that the dimension of a topological space X (for applications to algebraic geometry)
is defined to be the supremum over all n > 0 such that X contains a strictly increasing chain
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with each Z; an irreducible closed subset of X. We have seen in class that if Y is a subspace
of X then dimY < dim X. In this handout, we address the behavior of dimension on
“reasonable” subspaces of X.

Let Y C X be a subset that is locally closed in the following sense: for all y € Y there
exists an open set U, C X containing y such that Y (U, is closed in U,. For visualization
purposes, the basic example to keep in mind is to begin with a closet set Z C X and to
remove a closed subset of Z. This gives all examples. That is, a subset Y of X is locally
closed if and only if Y = Z (U for a closed set Z in X and an open set U in X. Indeed,
the implication “<= is clear, and for the converse we note that U := Uer U, contains Y as
a closed subset (since U —Y meets each open U, in the subset U, — (Y NU,) that is open in
Uy, and an arbitrary union of open subsets is open). Thus, Y = Z (U for a closed set Z in
X as desired. Locally closed sets arise very often in algebraic geometry: we may begin with
a closed set Z in k™, and then pass to the open set Z N {f # 0} for some f € k[zy,...,x,].

Another way to express the “locally closed” condition is that Y is open in its closure
Y. Indeed, since the formation of closures in topological spaces commutes with intersecting
against an open subset (check!), if Y = ZNU for closed Z in X and open U in X then Y NU
is the closure of Y in U, which is simply Y. That is, Y = UNY is open in Y. Conversely,
if Y is open in Y then Y = Z (U where Z =Y is closed in X and U is some open subset
of X.

Our main goal is to prove:

Theorem 0.1. IfY is locally closed in an affine algebraic set X then dimY = dimY .

To prove this, we will use the result (proved in class) that in the irreducible case, dim X =
trdeg,k(X) where k(X) denotes the fraction field of the coordinate ring k[X]| (a domain
since X is irreducible).

First note that we can replace X by Y, bringing us to the case where Y = U is a dense
open subset of X. In such cases we seek to prove that dim U = dim X. The first key step is
to pass to the case when X is irreducible, as follows. If { X, ..., X,,} is the set of irreducible
components of X then Z; = XoU---U X, is closed in X and not equal to X (as X; ¢ 7)),
so UN (X — Zy) is a non-empty open subset of X; since U is dense in X and X — 7 is
a non-empty open subset of X. Hence, U N X; is also a non-empty open subset of Xj.
Likewise, U N X; is a non-empty open subset of X; for all i.

Open sets in irreducible spaces are dense, so each U N Xj is irreducible (as its closure X; in
X is irreducible) and U N X; is not contained in U N Xy whenever i # ¢’ (as their respective
closures X; and X; in X are distinct). Hence, {U N X;} is the finite set of irreducible
components of the noetherian topological space U, so dim U = maxdim(U N X;). Likewise,
dim X = maxdim X;. It therefore suffices to show that dim(U N X;) = dim X; for each 1,
so we may now assume that X is irreducible. Thus, every non-empty open subset of X is

dense.
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The next step is to pass to a more concrete U. Pick xy € U, and let J be the ideal in the
coordinate ring k[X] of X corresponding to the closed set X — U in X. There must be some
f € J that is non-vanishing at z( (since v ¢ X —U = Z(J)),s0o Xy :={z € X | f(z) #0} =
X — Z(f) is an open subset of X that contains z( (so it is non-empty) and is contained in
U (since f € J). That is,

Xo € Xf - U - X,
so dim Xy < dimU < dim X and hence it suffices to prove that dim Xy = dim X. That is,
we can replace U with X for some nonzero f in the coordinate ring k[X].

Now comes the key point. Recall that we are granting the link between dimension theory
of affine algebraic sets and transcendence degree: dim X = trdeg,k(X). We shall prove
likewise that dim X, = trdeg,k(X). Although X is open in X and generally not closed, the
Rabinowitz trick that arose in the proof of the Nullstellensatz will enable us to homeomor-
phically identify the irreducible open set X; with an affine algebraic set whose function field
is also k(X)) (so we would be done).

Consider the affine space k¥ (with coordinates z, ..., zy) that contains X as Z(J) for a
radical ideal J. Since X is irreducible, J = P is even prime. The Rabinowitz trick identifies
X as a set with the affine algebraic set X’ in kN (with coordinates zy,...,zy,t) defined
by killing J and ¢ f(x) — 1. Explicitly, the continuous projection map kV*! — k¥ to the first
N coordinates restricts to a continuous map X’ — X that is visibly bijective with inverse
7 (2,1/f()).

Grant for a moment that this set-theoretic inverse map X; — X' is also continuous. We
conclude that Xy is (naturally) homeomorphic to X', so by the topological nature of the
definition of dimension we see that dim Xy = dim X’ = trdeg(k(X’)). But the coordinate
ring k[X'] is k-isomorphic to k[X][t]/(tf — 1) ~ k[X]y, so k[X’] is a domain whose fraction
field is Frac(k[X];) = Frac(k[X]) = k(X). Hence, comparing transcendence degrees over k
then gives that dim X; = dim X’ = trdeg,k(X) = dim X, so we would be done. It remains
(granting the equality dim X = trdeg,(k(X)) for irreducible X) to show that the inverse
map X; — X' C kMt is continuous. We shall show that the preimage of any closed set in
kNt s closed in X (which will give the result, since the topology on X’ is defined to make
it closed in KVF1,

Since every closed set in k¥ *! is an intersection of finitely many hypersurfaces, it suffices
to show that for any h € k[z1, ..., xx,t] the preimage in Xy of Z(h) C k[X’] is closed in X}.
This preimage consists of points x € &V such that h(z,1/f(x)) # 0. If h has degree d then

we can write .
hci,...,ca,1/f(c)) = %

where H is an auxiliary polynomial in k[xy, ..., ,], so the visibly closed subset Z(H) C kN
is the preimage in X' of Z(h) C X'.



