
Math 145. Fiber dimension
Let f : Z → Z ′ be a map between affine varieties over an algebraically closed field k, with respective

dimensions d and d′. We assume that f(Z) is dense in Z ′. As we saw in class, this forces the k-algebra
map f∗ : k[Z ′]→ k[Z] to be injective, so there is a corresponding map f∗ : k(Z ′)→ k(Z) between function
fields; comparing transcendence degrees over k shows d ≥ d′, as we’d expect from geometric pictures. Some
examples were given in class to illustrate the kind of behavior that can occur for the fibers f−1(z′) as we
vary z′ ∈ Z ′. The purpose of this handout is to prove that for “most” z′, the Zariski closed set f−1(z′)
is non-empty with all irreducible components of dimension d − d′. The proof we give for this “geometric
form” of transitivity of transcendence degree illustrates once again the power of Noether normalization for
allowing us to use geometric reasoning to reduce to studying affine spaces, provided we have enough algebraic
technique.

Theorem 0.1. If f has dense image then d ≥ d′ and for some non-empty open U ′ in Z ′ the fibers of f
over z′ ∈ U ′ have dimension exactly d − d′. The non-empty fibers of f over z′ ∈ Z ′ have all irreducible
components of dimension at least d− d′.

Corollary 0.2. For z′ in some non-empty open of Z ′, the fibers have all of their irreducible components
with dimension d− d′.

This illustrates the basic guiding principle that what happens on the level of function fields (e.g., transi-
tivity of transcendence degree) describes what happens geometrically over a suitable dense open.

Proof. (of theorem) Let us first explain why it suffices to prove in general the weaker assertion in which the
final part of the theorem is relaxed to just require that all non-empty fibers merely have total dimension at
least d− d′, allowing for the possibility that some irreducible components of these fibers might a priori have
dimension less than d−d′. Grant this weaker-looking claim (again, we assume it to be proven in general, not
just in one specific case!). We have to rule out the possibility that there is some z′ ∈ Z ′ with the closed set
f−1(z′) in Z non-empty with an irreducible component T of dimension strictly smaller than d−d′. Assuming
there is such a z′, let {Ti} be the irreducible components of f−1(z′), with T1 = T . There is at least one
other Tj (since the non-empty fiber f−1(z′) has dimension at least d− d′), so

V = f−1(z′)−
⋃
j>1

Tj

is a non-empty open subset of f−1(z′) lying entirely inside of the irreducible affine variety T = T1. Thus, V
has dimension equal to that of T , namely an integer less than d− d′.

But the closed set f−1(z′) inherits the induced topology from Z (recall the definition of the Zariski
topology), so there is an open W in Z with W ∩ f−1(z′) = V . Choose a basic open Za in Z around a point
of V with Za ⊆W . We can identify Za with an affine variety of dimension d in such a way that the map

g : Za ⊆ Z → Z ′

is the geometric map corresponding to the injection k[Z ′] → k[Z]a (see HW 3, Exercise 5(i)). But now g
is a map between affine varieties of dimensions d and d′ yet there is a fiber g−1(z′) = f−1(z′) ∩ Za which
is non-empty and open in the irreducible (d − d′)-dimensional V , so g−1(z′) has dimension strictly smaller
than d − d′. This is a contradiction, as we assumed the weaker theorem had been proven in general (e.g.,
including the case of the newly constructed map g). We conclude that it is indeed enough to weaken the
final condition of the theorem to just the total dimension of the non-empty fibers being at least d− d′.

Now we begin the proof. Let us now show in general that the image of f contains a non-empty open over
which the fibers have dimension exactly d − d′ ≥ 0 (again, we are not proving directly that all irreducible
components of these fibers have dimension d− d′). We argue by induction on d− d′. The case d− d′ = 0 is
HW 5, Exercise 2(ii). Suppose now that d− d′ > 0 and the result is known for all smaller values. This will
allow us to “throw away” closed sets. Pay careful attention to how we do this; it illustrates the importance
in algebraic geometry of setting up proofs in extreme generality so as to make possible induction arguments
on dimension (as one is often faced with auxiliary abstract closed sets of lower dimension which can be
“discarded” if we had a very general inductive hypothesis).
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For the multiplicative set S = k[Z ′] − {0}, we see that S−1k[Z] is a finitely generated domain over the
infinite field S−1k[Z ′] = k(Z ′), so by Noetherian normalization, we can find a finite injection

k(Z ′)[T1, . . . , Tr] ↪→ S−1k[Z]

over k(Z ′) for some integer r, and upon comparing transcendence degrees of fraction fields (over k and over
k(Z ′)) we see r = d− d′ ≥ 1. Composing with a k(Z ′)-algebra automorphism of k(Z ′)[T1, . . . , Td−d′ ] which
multiplies the Tj ’s by suitable elements of S, we may suppose that the image of each Tj lands in k[Z] (just
“clear denominators”), so we get an injective map

k[Z ′][T1, . . . , Td−d′ ] ↪→ k[Z]

of k[Z ′]-algebras which becomes finite after inverting some non-zero a′ ∈ k[Z ′] (by HW 5, Exercise 2(ii)).
Geometrically, our map Z → Z ′ factors as a composite

Z
π−→ Y

`−→ Z ′

where k[Y ] = k[Z ′][T1, . . . , Td−d′ ] over k[Z ′] with ` the canonical projection, π has dense image containing
an open set (by the “d − d′ = 0” case), and for some non-zero a′ ∈ k[Z ′] the map π becomes finite (and
thus surjective!) when we look at Za′ → Ya′ , using HW 3, Exercise 5 (i). By HW 5, Exercise 2 (ii) there
is a non-zero g ∈ k[Y ] so that Yg ⊆ Ya′ and over Yg the map π becomes finite free (i.e., k[Y ]g → k[Z]g is
finite free). If we write the non-zero g ∈ k[Y ] as a polynomial over k[Z ′], consider any one of its non-zero
coefficients. Replacing a′ by its multiple by such a coefficient, we may assume that for all z′ ∈ Z ′a′ , the
polynomial

g(z′) ∈ k[T1, . . . , Td′ ]

obtained by “evaluating” the k[Z ′]-coefficients of g at z′ has a non-zero coefficient and so is non-zero (note
that “evaluation at z′” is the inverse of the natural isomorphism k ' k[Z ′]/mz′).

Thus, for all z′ ∈ Z ′a′ we have that `−1(z′)g is a non-empty open in the affine (d − d′)-space `−1(z′).
Observe also that `−1(z′) ⊆ Ya′ , with π finite over Ya′ , so looking over the closed subset `−1(z′) in Ya′ we
see that the map of affine algebraic sets

π : f−1(z′) = π−1(`−1(z′))→ `−1(z′)

is also finite for z′ ∈ Z ′a′ . But now look over the non-empty open `−1(z′)g in the affine space `−1(z′). By
the definition of g, the map Zg → Yg is finite free, so looking over the closed subset `−1(z′)g ⊆ Yg we see
that π : f−1(z′)g → `−1(z′)g arises from passing to reduced quotients on a map of affines which is finite free.
The justification of this uses that “inverting an element” is compatible with both passage to quotient rings
(HW 2, Exercise 3 (iii)) and to quotients by the nilradical (equivalently, Aa is reduced when A is reduced:
if x ∈ A and xn = 0 in Aa with n > 0 then some amxn = 0 in A, so (ax)mn = 0 in the reduced A and hence
ax = 0 in A, forcing x = 0 in Aa), as well as the fact that the identification of a basic open with an affine
algebraic set as in HW 3, Exercise 5 (i).

But `−1(z′)g is a non-empty basic open in an affine (d − d′)-space, hence is irreducible with dimension
d− d′. Now we can deduce that the open f−1(z′)g in f−1(z′) has all irreducible components with dimension
d − d′, upon recalling from HW5, Exercise 1(iii) that if V ′ → V is a map of affine algebraic sets with k[V ]
a domain of dimension δ and k[V ′] a nonzero finite free k[V ]-module then all irreducible components of V ′

have dimension δ.
We have shown that for all z′ ∈ Z ′a′ , the fiber f−1(z′) contains an open set f−1(z′)g of dimension d− d′.

Thus, the closure of this open set in f−1(z′) has dimension d − d′. To prove that these fibers f−1(z′) over
z′ ∈ Z ′a′ have dimension exactly d − d′, it suffices to consider the closed complement C in Z of Zg and to
show that C ∩ f−1(z′) has dimension less than d− d′ (at least if we replace a′ by some non-zero multiple).

Since C is a proper closed subset of Z, the finitely many irreducible components {Ci} of C are all affine
varieties with dimension less than d. Thus, for each i, either Ci fails to have dense image in Z ′ and so
U ′i = Z ′ − f(Ci) is a non-empty open, or else (by induction!) Ci has dense image in Z ′ and there is a
non-empty open U ′i in Z ′ over which Ci → Z ′ has all fibers with dimension dimC ′i − d′ < d− d′. Replacing
a′ by a suitable non-zero multiple, we may assume at the start that Z ′a′ lies inside of all such U ′i (a vacuous
condition if C is empty). For any z′ ∈ Z ′a′ , the fiber then f−1(z′) meets each Ci in a closed set which is either
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empty or at worst of dimension less than d − d′. We conclude that f−1(z′) is non-empty with dimension
exactly d− d′ for all z′ ∈ Z ′a′ .

What remains to be proven is that all non-empty fibers have dimension at least d−d′. Assume otherwise,
with f−1(z′) having dimension less than d − d′. Composing with a finite surjective map p : Z ′ → kd

′
,

note that (p ◦ f)−1(p(z′)) is a disjoint union of the closed sets f−1(z′′) for the finitely many (closed) points
z′′ ∈ p−1(p(z′)). We may replace Z by a suitable basic open as near the beginning of the proof so as to
put ourselves in a situation where (p ◦ f)−1(p(z′)) is irreducible of dimension strictly smaller than d − d′.
Renaming kd

′
as Z ′ and p ◦ f as f , we may assume after linear change of coordinates that Z ′ = kd

′
and

f−1(0) is irreducible with dimension less than d−d′. Arguing as near the beginning of the proof with Noether
normalization, but ignoring the auxiliary a′ and g, we have a factorization of f as maps with dense image

Z
π−→ kd

`−→ kd
′

where ` is projection onto the last d′ coordinates and f−1(0) = π−1(`−1(0)) is non-empty with dimension
less than d − d′. But `−1(0) is an affine space of dimension d − d′ cut out by the “coordinate functions”

T1, . . . , Td′ from the coordinate ring of kd
′
. Thus, we are in the following geometrically strange situation: Z

is irreducible of dimension d and there are d′ elements t1, . . . , td′ ∈ k[Z] such that their common zero locus
f−1(0) is non-empty and of dimension less than d−d′. This violates one’s geometric intuition that imposing
r equations should cause the dimension of an affine algebraic set to drop by at most r (if the zero locus is
non-empty in the first place!). Actually, this intuition is incorrect on reducible spaces with components of
different dimensions.

By an induction on the number of equations, it suffices to prove the fundamental geometric fact about
dimension in the lemma below. This fact is very interesting in it’s own right and is a special case of Krull’s
Hauptidealsatz (“principal ideal theorem”), one of the most important theorems in commutative algebra. �

Lemma 0.3. Let Z be an affine algebraic set all of whose irreducible components have dimension d (e.g., Z
irreducible of dimension d). Let a ∈ k[Z] be a non-unit (so d > 0). Then the non-empty closed set Z(a) ⊆ Z
has all of its irreducible components of dimension at least d− 1.

Proof. It is sufficient to treat the irreducible components of Z separately (and we can ignore the components
on which a has no zeros). Thus, we may assume Z is irreducible. Suppose that the proper closed set Z(a)
has an irreducible component of dimension strictly less than d − 1. By replacing Z with a basic open that
meets Z(a) in this component but is disjoint from the other irreducible components of Z(a), we may suppose
that Z(a) is of dimension less than d− 1.

Now by Noether normalization we can find a finite surjection π : Z → kd, so π(Z(a)) is a closed set in kd

of dimension less than d − 1. Now consider a monic polynomial f =
∑
cjX

j ∈ k[T1, . . . , Td][X] for which
f(a) = 0 in k[Z]. More specifically, since k[T1, . . . , Td] is integrally closed, we may take f to be the minimal
polynomial of a over the field k(T1, . . . , Td). The “constant term” c0 ∈ k[T1, . . . , Td] is non-zero (as a 6= 0)
and c0 is certainly non-constant (i.e., not in k×) or else the condition f(a) = 0 would provide a multiplicative
inverse to a in k[Z], namely

(−1/c0)(an−1 + π∗(cn−1)an−2 + · · ·+ π∗(c1)),

contadicting the non-emptiness of Z(a). Thus, Z(c0) has dimension d− 1, so the preimage of this under the
finite surjective map π has dimension at least d− 1 (though it could well be reducible).

The idea at this point is that Z(c0) of dimension d− 1 should not have dimension less than that of Z(a),
because, at least if f split completely over k[Z] with roots a = a1, . . . , an, then c0 (or rather, π∗(c0)) is the
product of these roots (up to sign) and Galois theory should move each aj to a1 = a and hence move each
Z(aj) to Z(a). This would tell us that all of the Z(aj)’s have dimension less that d − 1, yet their union is
Z(π∗(c0)) = π−1(Z(c0)), which has dimension d − 1. The problem with carrying out this idea is that k[Z]
might not contain such a set of roots and there’s no reason to beleive that k[Z] is stable under Galois theory
automorphisms of k(Z). In order to take care of this, we will need to replace k(Z) by a suitable “Galois
closure” and replace k[Z] by an integral closure in there (while at the same time not destroying the running
hypotheses).
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Let K/k(T1, . . . , Td) be a splitting field for the minimal polynomials of a finite set of generators for k(Z)
over k(T1, . . . , Td), so this is a normal extension (i.e., purely inseparable over a Galois extension). Let R be
the integral closure of k[T1, . . . , Td] in K, so by the integral closure handout R is finite over k[T1, . . . , Td] and
of course contains k[Z]. Thus, R has dimension d (look at function fields) and k[Z] ↪→ R corresponds to a
finite surjective map of affine varieties Z ′ → Z. In particular, each irreducible component of Z(aR) maps onto
an irreducible closed set in Z(a) via a finite map, so it follows (why?) that all such irreducible components
have dimension less than d − 1. Thus, we may replace Z by Z ′ and so can assume that k(Z) is a normal
extension of k(T1, . . . , Td) and k[Z] is the integral closure of k[T1, . . . , Td] in k(Z). But Galois theory tells us
(since k(Z) is a normal extension of k(T1, . . . , Td), but perhaps not Galois if we are in positive characteristic)
that the minimal polynomial f of a over k(T1, . . . , Td) splits completely in k(Z) with roots a = a1, . . . , an
and there exist automorphisms of K over k(T1, . . . , Td) moving each aj to a1. Such automorphisms must
bring the integral closure k[Z] back to itself (why?), so we get automorphisms of Z moving each Z(aj) to
Z(a1) and thus all of these zero loci have dimension less than d− 1. Thus, Z(

∏
aj) has dimension less than

d − 1. But
∏
aj = (−1)nc0, so π−1(Z(c0)) = Z(π∗(c0)) has dimension less than d − 1, contradicting the

previous paragraph. �


