MATH 145. INTEGRAL CLOSURE
This handout aims to show the following important finiteness theorem for integral closures in the context
of algebraic geometry.

Theorem 0.1. Let A be a domain finitely generated over an infinite perfect field k. Let L be a finite extension
of the fraction field K of A. Then the integral closure of A in L is a finite A-module. In particular, the
integral closure of A in its own fraction field K is a finite A-module.

The “infinite” condition on k is only there because we proved Noether normalization under this hypothesis.
Also, the result is true for arbitrary &, not necessarily perfect. However, if k has characteristic p > 0 and k is of
infinite degree over the subfield kP of pth powers (e.g., k = F, (X1, ..., ) with infinitely many indeterminates)
then one needs more sophisticated tools than we have. We only need the case when k is algebraically closed,
and the proof works if you make this assumption throughout.

The plan of the proof is to embed the integral closure inside a finite A-module, so by the noetherian
property of A, the module-finiteness of the integral closure follows. One can ask if the conclusion of the
theorem is valid for any noetherian domain A, even with just L = K (i.e., is the integral closure of A in its
own fraction field module-finite over A?). This is false in general, but deep work of Nagata, Zariski, and
Grothendieck shows that nearly all noetherian domains that arise “in nature” have this finiteness property.

Proof. By Noether normalization (!), there is a finite injection k[T},...,Ty] < A. The integral closure of
A in any finite extension L/K is the integral closure of k[T},...,Ty] in the finite extension L/k(T1,...,Ty).
Thus, we may rename k[T7,...,Ty] as A and so can assume that A is a polynomial ring in d variables over
k. If L’/L is any finite extension, then the integral closure of A in L is contained in the integral closure of
Ain L'. Since A is noetherian, to prove the theorem for a given L/K we may therefore replace L by any
finite extension L’ and prove the result for L'/K.

Let’s first take care of the case where L/K is a separable extension (which is automatic for characteristic
0). This step does not use that k is perfect and all we use about A is that it is an integrally closed noetherian
domain. We will have to use a trick exploiting perfectness of k and the nature of polynomial rings to reduce
the general case to this separable case. For separable L/K of degree n, we may replace L by a finite extension
to reduce to the case where L/K is Galois. Now pick a primitive element e so that L = K(e) is the splitting
field of the minimal (separable) polynomial f of e over K. Multiplying e by a suitable non-zero element of
A to kill denominators in its minimal polynomial over K, we may choose e to be integral over A, so e lies in
the integral closure A of A in L. We will find a non-zero D € K* so that
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This implies AC " A-(e'/D), whence module finiteness of A follows by the noetherian property of A.
Choose any
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with ¢; € K. For each 0 € I' = Gal(L/K) we have o(z) = Y cjo(e)?. Thus, we get the matrix equation

(0(z))o = (a(e)?) - (c);,
where (c); denotes the vertical vector of ¢;’s, the left side is the vertical vector of o(x)’s labelled by the
o € I', and the matrix has entries labelled by I' for the rows and j’s for the columns. Of course, to make
this matrix equation we have to choose an ordering on the set I'. Since e € g, certainly all o(e) € A, SO
ole)l € A for all j. Multiplying through our matrix equation by the adjoint matrix of (a(e)?),

(o(e))* (o ()0 = A+ (c);,
where the enormous adjoint matrix on the left has all entries as universal polynomials in the o(e)’’s with

Z coefficients, and so all its entries lie in A, while A = det(o(e)?) € A. Multiplying through by A on both
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sides, we see that for each j,
A2Cj € Av
But A is a vanderMonde determinant, so we can explicitly compute A = [(o(e)—7(e)) where the product
is taken over pairs of distinct elements 0,7 € I' with ¢ < 7 relative to the ordering of I' chosen in the matrix
equations above. Thus, A% = [](c(e) — 7(e)) where the product is taken over all ordered pairs (o, 7) of
distinct elements in T, irrespective of any non-canonical ordering. Writing 7 = o(o~17) with o =17 # 1, we

can therefore write
A =T]eo(]]e-r)|.
ocel T#1

where the inner product is nothing other than f’(e), where f € K[T] is the minimal (separable) polynomial
of f over K. Thus,

A? =TT o(f'(e)).
oel
But f is an irreducible separable polynomial over K with root e, so D def A2 # 0. Also, since D is visibly
invariant under the action of I'; it follows from the fundamental theorem of Galois theory that D € K.

As we noted earlier, Dc; = A%¢; € A for all j. But D,c; € K, so Dc; € ANK = A since A is integrally
closed. We finally conclude that for our arbitrarily chosen z = Y ¢je/ € A, we have Dz = 3 (Dc¢;)e; €
S Aed. Thus, D- A C Y Aed, as desired. This settles the case where L/K is separable.

Now suppose L/K is not separable, or more generally that we are in characteristic p > 0. In order to
reduce back to the separable case, we need to introduce some auxiliary fields as follows. Let K be an algebraic
closure of K containing L (at the expense of introducing some awkwardness, we could get by without the
use of this algebraic closure below). Define the rising chain of subfields K, = k:(Tl1 /P T, ... ,T;/ P T) inside
of K, for > 0. Note that there is no ambiguity about the meaining of pth-power roots, as we are in
characteristic p > 0. Also, since k = kP (as k is perfect!), we see easily that the subfield K? of pth powers
in K, is exactly K,_1 for r > 1 and is K when r = 1. In fact, the pth power maps define surjective maps,
hence isomorphisms, of fields K, ~ K,_; for r > 0; beware these are not maps over k (but rather, over
the pth power map on k). These isomorphisms take k[T}/7 ,...  T;/" ] onto k[Ty,. .., Ty], with le/pr = T
Thus, we may view K, as the fraction field of a polynomial ring over k in indeterminates denoted le/ P
In particular, the subalgebra k[Tll/pT, . ,le/pT] of K, is a UFD finite over k[T1,...,Ty] and hence is the

integral closure of k[T1,...,Ty] in K. That is, K, is a finite extension of K in which the integral closure
is an explicitly computed k[T1,. .., Ty]-module which is itself a polynomial ring over k in d variables le/ P
(and so is a finite k[T, ..., Ty]-module, as each le/ " satisfies a monic relation XP" — T; over this ring).

Let K., C K be the union of the K,’s. As this is a rising union of subfields K,, K., is a subfield. By
construction, any element of K lies in some K, and hence has a pth root in K,1; C K. That is, every
element in K, has a pth root in K. We conclude that K, is a perfect field. Thus, the finite composite
extension LK, of K, inside of K is a separable extension, so it has a primitive element b with a minimal
polynomial g € K [T] which is separable. Since g has only finitely many coefficients, for a sufficiently large r
we have g € K,.[T], and in here g is separable and irreducible, as this is true when viewed over the algebraic
extension K. If L/K has generators a1, ..., Gm, then each a; € LK., = Koo (b) = K [b] can be expressed
as a polynomial in b with coefficients in K. Only finitely many such coefficients arise, so by choosing r
sufficiently large we can suppose that a; € K, [b] for all j. That is, L C K, [b] = K, (D).

Now we may replace L with the finite extension K,.(b), which is itself finite separable over K, (as b has
minimal polynomial g over K, which is separable). Recalling that the integral closure R of k[T1,...,Tq]
in K, is a polynomial ring over k in d variables, and is finite over k[T},...,Ty], we see that the integral
closure of k[Ty,...,Ty] in L is equal to the integral closure of R in L. It suffices to show that this is a finite
R-module, as it is then clearly a finite k[T7, ..., Ty]-module (since composites of finite ring maps are finite).
But the situation L/K, with polynomial ring R in K, is ezactly the separable case we treated above! |



