
Math 145. Closed subspaces, products, and rational maps

The purpose of this handout is to develop a good notion of product for abstract algebraic sets,
and to work out some examples. We certainly expect that An+m should be a “product” of An and
Am (via projection to the first n and last m coordinates), but already for n = m = 1 we see that
the Zariski topology on An+m is not the product topology. In general X × Y will have underlying
set given by the product but its topology will be more subtle.

1. Closed subsets

Let X be an abstract algebraic set, and Z ⊂ X a closed subset. We wish to equip Z with a
natural structure of abstract algebraic set in its own right, recovering the familiar construction in
the affine case that assigns to any Z ⊂ MaxSpec(A) the structure MaxSpec(A/I(Z)). We will also
insist on a good mapping property. This is all captured by:

Theorem 1.1. For any closed subset Z in an abstract algebraic set X there is a unique sheaf O of
k-valued functions on Z so that the ringed space (Z,O) is an abstract algebraic set and for every
map of abstract algebraic sets f : Y → X with f(Y ) ⊂ Z the induced set-theoretic map f : Y → Z
is a map of ringed spaces over k.

Explicitly, if U = MaxSpec(A) is an open affine subspace of X then Z∩U with its induced ringed
space structure as an open subspace of U is MaxSpec(A/J) where J is the radical ideal of elements
of A that vanish on Z ∩ U .

We call such a pair (Z,O) a closed subspace of the abstract algebraic set X. We emphasize
that its structure sheaf is part of the data, but the theorem says that this is determined by the
algebro-geometric structure on X.

Even when X is affine, this theorem has content: in such cases it says that for any map of abstract
algebraic sets f : Y → MaxSpec(A) which factors through MaxSpec(A/J) set-theoretically, the
induced map of sets Y → MaxSpec(A/J) is a morphism of ringed spaces over k. This is important
in practice (so we do not leave the world of morphisms of ringed spaces over k).

Proof. The uniqueness of the ringed space structure on Z (granting existence!) is formal, as follows.
Suppose there are two sheaves of k-algebras O ′ and O ′′ on Z that solve the problem, and write Z ′

and Z ′′ to denote the resulting ringed spaces over k with underlying topological space Z. We wish
to prove that O ′ = O ′′ as sheaves of k-valued functions on Z. This amounts to checking that the
identity map of Z promotes to morphisms of ringed spaces Z ′ → Z ′′ and Z ′′ → Z ′ (as the first gives
O ′′(V ) ⊂ O ′(V ) for all open V ⊂ Z and the second gives the reverse inclusion). But by hypothesis
the inclusion Z → X promotes to maps of ringed spaces j′ : Z ′ → X and j′′ : Z ′′ → X over k,
each of which lands in Z set-theoretically. Thus, by applying the universal property of Z ′′ to the
morphism j′ we get a morphism Z ′ → Z ′′ (i.e., map of ringed spaces over k) that is the identity
map on underlying sets, and similarly we get the morphism in the reverse direction. This proves the
uniqueness in general, so the problem is one of existence of the required sheaf of k-valued functions
on Z.

We first handle the case of affine X (for which we have seen that there is something to be done),
and then we will bootstrap to the general case by gluing. So for now assume X = MaxSpec(A),
and let f : Y → X be a morphism landing in the closed set Z corresponding to a radical ideal
J ⊂ A via the Nullstellensatz. We seek to show that the induced map of sets Y → MaxSpec(A/J)
is a morphism of ringed spaces. This latter map is at least continuous, since MaxSpec(A/J) →
MaxSpec(A) is topologically a homeomorphism onto its image. Thus, the problem is now one of
compatibility with structure sheaves, and it is local on Y due to the local nature of sheaves of
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functions. (This just expresses “gluing for morphisms” of ringed spaces as at the end of Exercise
3(ii) in HW8.) In other words, if {Ui} is an open cover of Y and the continuous map Y → Z
becomes a morphism of ringed spaces upon restriction to each Ui ⊂ Y then it is a morphism of
ringed spaces. (Make sure you understand this!)

We may now choose a covering of Y by open affines to thereby reduce to the case (for the given
affine X) when Y is also affine! But now we are in a familiar territory: Y = MaxSpec(B) and
f : Y → X corresponds to a k-algebra map ϕ : A → B. By hypothesis the map f lands in Z(J).
In the affine setting we know that for any ideal I in A, the preimage of Z(I) under f is Z(ϕ(I)B).
Hence, the ideal ϕ(J)B vanishes everywhere on Y (as f−1(Z(J)) is the entirety of Y , by hypothesis),
which is to say that it is zero since B is reduced. In other words, ϕ(J) = 0, so ϕ : A → B factors
as A � A/J → B for a k-algebra map ϕ : A/J → B. This latter map defines a morphism
f : Y → MaxSpec(A/J) whose composition with the inclusion MaxSpec(A/J) → MaxSpec(A)
(corresponding to the canonical quotient map A � A/J) is exactly the map MaxSpec(ϕ) = f .
Hence, f is the map of interest on underlying sets, so we have recovered that map of sets as
associated to a map of ringed spaces over k, as desired. This settles the case when X is affine.

Before we turn to the case of generalX, it will be convenient to record a “localization” observation
which will help in the gluing. Suppose that the problem has been solved for a given pair (X,Z).
Then for any open subset U ⊂ X (not necessarily affine, even if X is affine) we may view the
closed set Z ∩ U in U as an open subset of the ringed space Z and hence equip it with a structure
of abstract algebraic set (via the structure sheaf on Z, not X!). In this way, we claim that the
problem is solved for the pair (U,Z ∩ U). For any map of abstract algebraic sets f : Y → U that
lands in Z ∩ U set-theoretically, we may view f as a map into X that lands in Z set-theoretically.
Thus, the induced map of sets Y → Z is a morphism of ringed spaces over k (by our hypothesis
that the problem is solved for (X,Z)), and this lands inside the open subset Z ∩U . Since we equip
Z ∩ U with the structure sheaf arising from the one of Z (evaluated just on open subsets of the
open subset Z ∩U), it follows that this map f : Y → Z ∩U is a morphism of ringed spaces over k,
as desired.

Now we handle general X. Letting {Xi} be a choice of open cover of X by affines, we can apply
the preceding case to the closed set Zi = Z ∩Xi in Xi. This provides a structure sheaf Oi on Zi
making (Zi,Oi) an abstract algebraic set (even affine!) so that the injection Zi → Xi has the desired
universal mapping property (for maps to Xi that factor set-theoretically through Zi). To define
the global abstract algebraic set structure on Z, we glue the Oi’s as follows (being careful about
the fact that the overlaps Xij = Xi ∩Xj may not be affine). Consider the overlap Zij = Zi ∩ Zj .
This is an open subset of Z, so it is open in both Zi and Zj . Our “localization” argument above
can be applied to U = Zij for the pairs (Xi, Zi) and (Xj , Zj), so the two sheaves Oi|Zij and Oj |Zij

on Zij both solve the problem for (Xij , Zij). But we have shown the uniqueness already in general,
so Oi|Zij = Oj |Zij as sheaves on Zij . Hence, we can glue the Oi’s in accordance with Exercise 3
on HW8 to get a sheaf O of k-valued functions on Z with O|Zi = Oi for all i. This makes (Z,O)
into a ringed space over k such that the open subsets Zi becomes the ringed spaces (Zi,Oi) that
are assumed to be abstract algebraic sets. Hence, there are opens Uij ⊂ Zi covering Zi such that
each ringed space (Uij ,Oi|Uij ) is affine. But

Oi|Uij = (O|Zi)|Uij = O|Uij ,

so the opens Uij that cover (Z,O) are all affine. That is, (Z,O) is an abstract algebraic set.
It remains to prove that O “works”. That is, if f : Y → X is a map of ringed spaces over k

such that f(Y ) ⊂ Z then we claim that the induced set map f : Y → Z is a map of ringed spaces
over k. The map f : Y → Z is at least continuous, since Z has the subspace topology from X and
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Y → X is continuous, and the opens Zi that cover Z have preimages Yi = f−1(Xi) that are an
open cover of Y . Our problem is one of compatibility of the structure sheaves of Y and Z, so by
the local nature of sheaves it suffices to treat the pairs (Yi, Zi). That is, we want to show that each
map Yi → Zi is a map of ringed spaces when Zi is equipped with the sheaf of functions O|Zi = Oi.
But the composite map of sets

fi : Yi → Zi → Xi

is induced by restriction to open sets for the map of ringed spaces f : Y → X, so each fi is a map
of ringed spaces. Thus, by the mapping property for each (Zi,Oi) relative to Zi → Xi (due to how
each Xi was chosen and Oi defined) we conclude that Yi → Zi is a map of ringed spaces over k as
desired. �

2. Products

Let V and V ′ be abstract algebraic sets. A product of V and V ′ is a triple (P, f, f ′) where P
is an abstract algebraic set and f : P → V and f ′ : P → V ′ are morphisms of abstract algebraic
sets with the mapping property of a product as in any category: if h : Y → V and h′ : Y → V ′ are
morphisms then there is a unique morphism g : Y → P such that f ◦ g = h, f ′ ◦ g = h′. We will
build such a product with underlying set (but not underlying topological space!) P = V ×V ′. The
real content will be that the computations on underlying sets correspond to morphisms of ringed
spaces. We will build up in stages: first with affine spaces, then with affine algebraic sets in general,
and finally the general case.

Lemma 2.1. The affine space An+m equipped with its projections f : An+m → An and f ′ :
An+m → Am to the first n and last m components is a categorical product.

That is, if h : Y → An and h′ : Y → Am are morphisms of ringed spaces then the map of sets
g : Y → An+m defined by y 7→ (h(y), h′(y)) is a morphism of ringed spaces.

Proof. The problem of continuity of g is “local on Y ”, and once this is settled then the problem
of compatibility of structure sheaves is local on Y . That is, if {Yi} is an open cover of Y then it
suffices to prove the result for all maps restricted to a fixed (but arbitrary) choice of open Yi in Y .
By taking the Yi’s to be affine (as we may do), we thereby reduce to the case that Y = MaxSpec(A)
for a reduced finitely generated k-algebra A.

The given maps h and h′ correspond to respective k-algebra maps

h∗ : k[X1, . . . , Xn]→ A, h′
∗

: k[Xn+1, . . . , Xn+m]→ A.

These two together define an evident k-algebra map

ϕ : k[X1, . . . , Xn+m]→ A

via Xj 7→ h∗(Xj) for j ≤ n and Xi 7→ h′∗(Xi) for i > n. The morphism MaxSpec(ϕ) : Y → An+m

does the job (i.e., it is as expected on underlying sets) since MaxSpec is a contravariant functor
and the projections f and f ′ are obtained (!) from the respective k-algebra inclusions

k[X1, . . . , Xn], k[Xn+1, . . . , Xn+m]→ k[X1, . . . , Xn+m].

�

Now we can make products for general affine algebraic sets. Let A and B be reduced finitely
generated k-algebras. Picking k-algebra isomorphisms

k[X1, . . . , Xn]/I ' A, k[Y1, . . . , Ym]/J ' B
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for necessarily radical ideals I and J , consider the k-algebra

C = k[X1, . . . , Xn, Y1, . . . , Ym]/(I, J).

There are evident k-algebra maps A→ C and B → C, and provided that C is reduced we can then
make ringed space maps

MaxSpec(C) ⇒ MaxSpec(A),MaxSpec(B)

which we claim will do the job, and moreover we claim that the induced map of sets

MaxSpec(C)→ MaxSpec(A)×MaxSpec(B)

is bijective (so we naturally identify the underlying set with the product set).

Lemma 2.2. The ideal (I, J) is radical; i.e., C is reduced.

The statement of this lemma makes sense algebraically for general fields k, but it is false for
certain k that are not algebraically closed.

Proof. We need to prove that if f(X,Y ) ∈ k[X,Y ] vanishes wherever on An+m both I and J
vanish (i.e., f lies inside of all maximal ideals containing (I, J)) then f ∈ (I, J). This would imply
the radiciality of (I, J) due to the Nullstellensatz formula for the radical of an ideal in terms of
“geometric zeros,” and so here we will have used in an essential way that k is algebraically closed.

Recall that over any field K, all vector spaces V over K have bases and any basis of a subspace
extends to a basis of the entire space (this requires Zorn’s Lemma; the argument below could be
modified to avoid this, but it would lead to awkwardness in exposition). In particular, subspaces
always split off as direct summands. We will use this in a moment.

Using the k-algebra structure on A, it makes sense to consider the A-submodule JA ⊆ A[Y ]
generated by J . Note that this is an ideal in this polynomial ring over A (why?). There is a natural
k-algebra isomorphism

k[X,Y ]/(I, J) = A[Y ]/JA.

Choose a k-basis of k[Y ] extending a k-basis of J . This makes explicit that JA is a free A-module
and is a direct summand as such of A[Y ] (check!). It follows that if {ej} is the induced k-basis of
k[Y ]/J , then the ej ’s form a basis of the A-module A[Y ]/JA; in particular, this is a free A-module.
But if M is a free A-module on a basis {εα}, then by looking at coefficients of the basis it is clear
that an element m ∈M vanishes if and only if it vanishes in the the A/m = k-vector space M/mM
for every maximal ideal m of A (as this criterion on coefficients just says ∩m = 0, which is true
because A is reduced!). Applying this to the free A-module M = A[Y ]/JA, we see that an element
f ∈ M vanishes if and only if for all maximals m of A the image of f vanishes in M/mM . But
thinking about bases shows that as k-modules

M/mM ' (A/m)[Y ]/JA/m = k[Y ]/J = B,

where we have used that k → A → A/m = k is the identity map in order to know that the result
on the right really does involve forming the quotient by the original ideal J (i.e., its k-coefficients
map into A and then recover themselves upon passage to any A/m).

In concrete terms, what this says is that an element f ∈ k[X,Y ]/(I, J) vanishes if and only if
for all x ∈ Z(I) = Max(A), f(x, Y ) ∈ k[Y ]/J = B vanishes. But now we use that B is reduced to
conclude this this vanishing (for fixed x) is equivalent to the vanishing of f(x, Y )|Y=y = f(x, y) for
all y ∈ Max(B). Thus, we conclude that if f ∈ k[X,Y ] vanishes at every geometric zero of (I, J)
in the product affine space, then f vanishes in the ring k[X,Y ]/(I, J); i.e., f ∈ (I, J). It follows
that (I, J) is radical. �
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Now we claim that MaxSpec(C) with its induced maps to MaxSpec(A) and MaxSpec(B) is a
product, with the product set as its underlying set in the natural way. To verify this, we work in
the more familiar language of closed sets of affine spaces, since the problems have all been solved
for affine spaces.

For the product set structure on underlying sets, we simply observe that by design

MaxSpec(C) = Z(I, J) ⊂ An+m = An ×Am,

and this closed subset is visibly the product set Z(I)×Z(J) which in turn is exactly MaxSpec(A)×
MaxSpec(B). The reader can verify that this composite bijection is exactly the desired map of inter-
est (ultimately because we know how the projections An+m ⇒ An,Am are expressed algebraically
in terms of the first n and last m variables).

But why does this construction have the expected universal mapping property? We will deduce
the result from the settled case of affine spaces. Consider ringed space maps Y ⇒ Z(I), Z(J).
Viewing these as maps into An and Am respectively, from the case of affine spaces we get that the
product map of sets

Y → An ×Am = An+m

is a morphism of ringed spaces over k. By construction this lands inside the subset Z(I)×Z(J) =
Z(I, J) = MaxSpec(C) with C the quotient of k[X,Y ] modulo the radical ideal (I, J). Hence,
by the universal property for closed subsets (even just in the affine target case, but with possibly
non-affine source Y ) especially in §1, the resulting set map Y → MaxSpec(C) really is a morphism
of ringed spaces over k! One readily checks (e.g., by composing with the inclusion into An+m and
using the settled case of affine spaces) that this morphism of ringed spaces is the desired map on
the underlying set Z(I, J) when identified in the natural way as the direct product set

Z(I)× Z(J) = MaxSpec(A)×MaxSpec(B).

This settles the case of products of affine algebraic sets in general (with source Y that is not
necessarily affine).

Before we construct general products V × V ′ by gluing, we verify a compatibility property of
products (when they exist!) with open subsets of the factors. This has some content, since the
actual product structure is generally not the product topology.

Lemma 2.3. Suppose V ×V ′ exists with underlying set identified with the product set via the given
projections f : V × V ′ → V and f ′ : V × V ′ → V ′. For open U ⊂ V and U ′ ⊂ V ′, the open subset
f−1(U) ∩ f ′−1(U ′) ⊂ V × V ′ is a categorical product of U and U ′, and its underlying set is U ×U ′
inside V × V ′.

The proof of this lemma is extremely formal, as the reader will see.

Proof. It is trivial to check that the underlying set is the product set: this is the set-theoretic
computation

(U × V ′) ∩ (V × U ′) = U × U ′.
In particular, this product set is open in V × V ′ since it is an intersection of open subsets f−1(U)

and f ′−1(U ′).
The problem is now entirely one of compatibility with structure sheaves. That is, if h : Y → U

and h′ : Y → U ′ are morphisms of ringed spaces over k (with Y an abstract algebraic set) then we
want the map to the product set (h, h′) : Y → U×U ′ to be a morphism of ringed spaces over k when
U × U ′ is equipped with the topology and structure sheaf it acquires as an open subset of V × V ′.
But in general, we claim that a map g of sets from a ringed space Y over k into an open subset
Ω of another ringed space Z over k is a morphism of ringed spaces (i.e., continuous on topological
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spaces, and compatible with structure sheaves) if and only if the same holds after composition with
the inclusion of Ω into Z. This holds because we equip Ω with the subspace topology as an open
subset of Z and moreover with structure sheaf given by restriction of the one on Z (evaluated only
on open subsets of Ω). Thus, to verify the desired properties for the product set map (h, h′) it
is harmless to first compose with the inclusion into V × V ′. This brings us to exactly the known
(by hypothesis) mapping property for this latter product relative to the composite maps of ringed
spaces over k

Y → U → V, Y → U ′ → V ′.

�

Now, finally, we can build general products. The reader will see that this too is a largely formal
game. All of the real work was in the affine case. For abstract algebraic sets V and V ′, we have
open covers (e.g., by affine opens!) {Vi} and {V ′j } of V and V ′ such that the products Vi × V ′j are
known to exist as abstract algebraic sets and have underlying set identified with the product set
via the natural map. We will use this together with Lemma 2.3 to make V × V ′ via gluing. To
be precise, we will first choose i0 and use the products Vi0 × V ′j to build Vi0 × V ′. Then the exact

same argument applied to the products Vi × V ′ for varying i will build V ′ × V . This formalism
only works because we do not assume the Vi and V ′j are affine; rather, we just assume that they are

open subsets for which the relevant products exist (since when we apply this formalism to build
V × V ′ by gluing the products Vi× V ′ we cannot assume that V ′ is affine, even if all Vi are affine).

To summarize, it suffices (by symmetry in the two factors) to show that if {V ′j } is an open cover

of V for which the products Pj = V × V ′j exist with the product set as the underlying set (via the

natural map) then V × V ′ exists with the product set as the underlying set (via the natural map).
Let qj : Pj → V ′j be the projection, and for any j, j′, consider the subset

Pjj′ = q−1j (V ′j ∩ V ′j′).

This is open since qj is continuous, and its underlying set is the product set V × (Vj ∩ V ′j ). By
Lemma 2.3, the triple

(Pjj′ , Pjj′ → V, Pjj′ → V ′j ∩ V ′j )

is a product of V and V ′j ∩ V ′j′ . But Pj′j is also such a product! Are the resulting topologies and

structure sheaves on the product set V × (V ′j ∩ V ′j′) the same? Indeed they are, as we now explain.
By the universal property of a product applied twice, there are unique maps of ringed spaces

Pjj′ → Pj′j , Pj′j → Pjj′

which respect the projections to V and to V ′j ∩V ′j′ . But these projections are exactly the mechanism
by which we are identifying the underlying set of the categorical product with the product set, so it
follows that these “abstract” maps of ringed spaces are literally the identity map on the underlying
product set. Hence, the topologies coincide and the structure sheaves coincide.

We summarize our situation as follows. First, the product set P = V × V ′ is covered by the
subsets Pj which are each equipped with a structure of ringed space, and in this way the overlaps
Pj∩Pj′ are identified as open subsets of Pj and Pj′ with the same topology obtained as the subspace
topology from each. Hence, we can “glue topologies” to get a unique topology on the product set P
which makes each Pj open and gives as the subspace topology exactly the topology imposed upon
Pj from its given nature as a ringed space. The same exact formalism applies now to the structure
sheaves: if Oj denotes the structure sheaf on Pj then Oj |Pj∩Pj′ and Oj′ |Pj∩Pj′ coincide as sheaves

of k-algebras on Pj ∩Pj′ . Thus, we can likewise glue these to a sheaf of k-algebras O on P uniquely
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determined by the condition O|Pj = Oj for all j. Since each open subspace (Pj ,Oj) of (P,O) is an
abstract algebraic set, it follows that so is (P,O). It remains to prove:

Proposition 2.4. The natural set maps P ⇒ V, V ′ are morphisms of ringed spaces over k, and
have the universal property of a product in the category of abstract algebraic sets.

Proof. To check the continuity it suffices to work on the constituents of an open cover of P , and then
likewise for compatibility with the structure sheaves. Thus, we can restrict to each open Pj ⊂ P .
The map Pj → V is fine since Pj = Vj × V ′ as a categorical product of abstract algebraic sets,
and the map Pj → V ′ is fine since it factors as the projection Pj → V ′j arising from the mapping

property as a categorical product followed by the inclusion V ′j → V ′ as an open subspace (with the

restricted structure sheaf!). Thus, both maps P ⇒ V, V ′ are morphisms of ringed spaces over k.
It remains to show that if Y ⇒ V, V ′ are maps of abstract algebraic sets over k then the induced

map to the product set Y → P = V ×V ′ is a morphism of ringed spaces over k. As usual, it suffices
to check this on the constituents of an open cover of Y . Using the given map f ′ : Y → V ′ we get
the open preimages Yj ⊂ Y of the opens V ′j ⊂ V ′ that cover V ′, so the Yj ’s are an open cover of
Y . We may work on each Yj separately, so in other words we can assume that Y lands inside some
V ′j0 . By design Pj0 = V × V ′j0 is the preimage of V ′j0 under the projection morphism P → V ′, and
Pj0 has an open subspace topology from P as well as the restricted structure sheaf on this open
subset. Hence, our problem is entirely intrinsic to the triple (Pj0 , V, V

′
j0

)! But by hypothesis Pj0 is

a categorical product (as an abstract algebraic set) and it has the underlying product set via the
natural map, so we are done. �

We end this section by discussing how the formation of products interacts with open and closed
subspaces, and computing an important class of examples.

Proposition 2.5. Let X and X ′ be abstract algebraic sets, and let Y ⊂ X and Y ′ ⊂ X ′ be subsets.
If these subsets are open then Y × Y ′ → X × X ′ is an open subspace (open subset with subspace
topology and restricted structure sheaf), and if they are closed then Y × Y ′ → X ×X ′ is a closed
subspace (closed subset equipped with its natural structure of abstract algebraic set via §1).

Proof. The open case is Lemma 2.3. The closed case will be largely a game of formalism using the
open case repeatedly in order to eventually reduce to the case of affine X and X ′ for which we can
see everything by inspection.

Let {Xi} and {X ′j} be respective open covers of X and X ′, so {Xi × X ′j} is an open cover of

X × X ′ (with the subspace topology as well as restricted structure sheaf!). Letting Yi = Y ∩ Xi

(open in Y , closed in Xi) and Y ′j = Y ∩X ′j , clearly the open subset Xi×X ′j in X×X ′ meets Y ×Y ′
in the subset Yi × Y ′j that is open in Y × Y ′. We equip Yi × Y ′j with the open subspace structure

from Y × Y ′.
Our problem is to show two things: Y × Y ′ → X ×X ′ is a homeomorphism onto a closed subset

of X ×X ′, and as such its structure sheaf coincides with the one provided by Theorem 1.1. Since
closedness of a subset of a topological space is a local property (i.e., it suffices to check it after
intersecting with each of the constituents of an open cover), for the closedness of the image of
Y × Y ′ in X ×X ′ it suffices to work with each open subset Xi ×X ′j and its preimage Yi × Y ′j in

Y ×Y ′. But these preimages are open in Y ×Y ′, so even for the homeomorphism property of Y ×Y ′
onto a closed image it is enough to check that the maps Yi × Y ′j → Xi ×X ′j are homeomorphisms

onto closed images. Moreover, once that is verified, to check that the structure sheaf on Y × Y ′
in its nature as a product abstract algebraic set coincides with the closed subspace structure from
X×X ′, the problem is of local nature on Y ×Y ′ (as for checking equality of sheaves of functions in
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general!). That is, we will only need to compare the restricted sheaves on the open subsets Yi×Y ′j .

Hence, it will suffice to show that this is a closed subspace of Xi ×X ′j when the latter is equipped

with its open subspace structure from X ×X ′ as a ringed space.
To summarize, for everything we need to prove it is enough to treat each of the maps Yi× Y ′j →

Xi×X ′j separately. In this sense, our entire problem is local on X and X ′. We can take the Xi and

X ′j to all be affine, in which case each Yi and Y ′j is also affine with its closed subspace structure

(due to Theorem 1.1). Hence, we have reduced to the affine case. That is, now

X = MaxSpec(A), Y = MaxSpec(A/J), X ′ = MaxSpec(A′), Y ′ = MaxSpec(A′/J ′)

for radical ideals J ⊂ A and J ′ ⊂ A′. The question is whether the product affine algebraic set
Y ×Y ′ is a closed subspace (as a ringed space) in the affine X ×X ′ via the natural map. Choosing
k-algebra isomorphisms

k[t1, . . . , tn]/I ' A, k[tn+1, . . . , tn+m]/I ′ ' A′,

so J and J ′ respectively correspond to radical ideals J̃ ⊇ I and J̃ ′ ⊇ I ′. In particular, we have
compatible k-algebra isomorphisms

k[t1, . . . , tn]/J̃ ' A/J, k[tn+1, . . . , tn+m]/J̃ ′ ' A′/J ′.

By construction of affine products, inside of An+m we have as closed subspaces

X ×X ′ = Z(I, I ′), Y × Y ′ = Z(J, J ′).

In other words, X ×X ′ = MaxSpec(C) and Y × Y ′ = MaxSpec(C/K) where

C = k[t1, . . . , tn+m]/(I, I ′), K = (J, J ′)/(I, I ′) ⊂ C,

and the natural set map Y ×Y ′ → X×X ′ is indeed induced by the natural surjective map C � C/K
(check!). Hence, Y × Y ′ → X ×X ′ is a closed subspace. �

Example 2.6. Consider P1 ×P1 → P3 defined by ([x0, x1], [y0, y1]) 7→ [x0y0, x0y1, x1y0, x1y1]. This
is a well-defined morphism (see HW9) and if we denote the homogenous “coordinates” on P3 as
Zij then the image lands in the zero locus of the homogeneous polynomial Z11Z00 − Z10Z01. In
fact it is an isomorphism onto this quadric surface (viewed as a closed subspace of P3). This is a
special case of the following general considerations.

For any n ≥ 1,m ≥ 1 consider the natural map S : Pn ×Pm → P(n+1)(m+1)−1 defined by

([x0, . . . , xn], [y0, . . . , ym]) 7→ [x0y0, x0y1, . . . , xiyj , . . . , xnym].

This is easily seen to be a well-defined morphism; it is called the Segre morphism. We now show
that S is an isomorphism onto the closed subset of the target defined by the quadric relations
Zi′j′Zij = Zi′jZij′ for 0 ≤ i, i′ ≤ n and 0 ≤ j, j′ ≤ m (called the Plücker relations); in particular,
Pn ×Pm is a projective variety! Classically S was used to define the algebro-geometric structure
on Pn×Pm, without emphasis on the actual mapping property of a product (which is cumbersome
to express in terms of the image of the S)! This might look ad hoc (and be hard to use) if we
hadn’t recognized that S(Pn×Pm) does indeed have the universal mapping property of a product.

It is clear that the image of S satisfies the Plücker relations, so we have to show that all points
[zij ] satisfying the Plücker relations are in the image of S, and moreover that S is an isomorphism
onto this closed set with its closed subspace structure. Any point [zij ] has some zi0j0 6= 0. Thus,
for xi = zij0/zi0j0 and yj = zi0j/zi0j0 we see via the Plücker relations that

S([xi], [yj ]) = [zij/zi0j0 ] = [zij ].
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Hence, S has the asserted closed image. Moreover, if S([xi], [yj ]) lands in the open set Zi0j0 6= 0
then necessarily xi0 , yj0 6= 0, so

xi/xi0 = (xiyj0)/(xi0yj0) = zij0/zi0j0 , yj/yj0 = (xi0yj)/(xi0yj0) = zi0j/zi0j0 .

This shows that S is bijective onto its closed image.
To prove that S induces an isomorphism onto the closed subspace structure on its image, the

problem is two-fold: homeomorphism on topological spaces, and then compatibility of structure
sheaves. These problems are both local on the target: it suffices to work over the affine open set
{Zi0j0 6= 0} in the target and its (affine!) open preimage {Xi0 6= 0} × {Yj0 6= 0} in the source,
showing that the map induced by S between these corresponds to a surjection between coordinate
rings. This map between coordinate rings is

S∗ : k[Zij/Zi0j0 ]→ k[X0/Xi0 , . . . , Xn/Xi0 , Y0/Yj0 , . . . , Ym/Yj0 ]

defined by Zij/Zi0j0 7→ (Xi/Xi0)(Yj/Yj0) for all (i, j) 6= (i0, j0), though we do allow i = i0 when
j 6= j0 and j = j0 when i 6= i0! In particular, Zi0j/Zi0j0 7→ Yj/Yj0 and Zij0/Zi0j0 7→ Xi/Xi0 . The
surjectivity is thereby proved.

3. Product maps, diagonal, and separatedness

For any maps f1 : Y → X1 and f2 : Y → X2 between abstract algebraic sets, the universal
property of the product provides a unique morphism of abstract algebraic sets

(f1, f2) : Y → X1 ×X2

whose composition with the respective projections to X1 and X2 are f1 and f2. In other words,
this map on underlying sets is y 7→ (f1(y), f2(y)). The point of the preceding general business is
to ensure that this natural-looking map of sets really is a morphism relative to a suitable abstract
algebraic set structure on the product set X1 ×X2.

In the special case Y = X1 = X2 = X and f1 = f2 = idX , we get the diagonal morphism

∆X : X → X ×X
defined by x 7→ (x, x) for any abstract algebraic set X. Keep in mind that X ×X generally does
not have the product topology. In ordinary topology, when using product topologies there is the
familiar exercise that a topological space T is Hausdorff if and only if the diagonal T ⊂ T × T is
closed relative to the product topology. In algebraic geometry this notion is still important, but it
takes on a different meaning unrelated to the Hausdorff condition since the Zariski topology on a
product is generally not the product topology!

Definition 3.1. An abstract algebraic set X is separated if the diagonal ∆X(X) is closed in the
Zariski topology on X ×X.

For example, if X = An then X is separated: the diagonal is the locus t1 = tn+1, . . . , tn = t2n
in An × An = A2n. To make a non-separated example, one carries out the algebro-geometric
analogue of the standard non-Hausdorff topological space (line with double origin) by gluing A1 to
itself along A1−{0} using the identity map. The fact that this gluing really is non-separated (which
is an entirely different assertion than the non-Hausdorff property in the ordinary topological setting
since we are not using product topologies) follows from the criterion in Proposition 3.3 below, due
to the fact that the punctured diagonal in A2 (with (0, 0) removed) is not a Zariski-closed subset.

Proposition 3.2. Every open and closed subspace of a separated abstract algebraic set is separated.
In particular, any affine abstract algebraic set is separated, as is an open subspace of an affine
abstract algebraic set.
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Proof. Let X be a separated abstract algebraic set. For any injective map of abstract algebraic
sets f : Y → X, consider the product map f × f : Y → Y → X which arises from the mapping
property of products applied to the two composite maps

Y × Y ⇒ Y
f→ X.

On underlying sets this is (y, y′) 7→ (f(y), f(y′)), so by injectivity of f we see (f × f)−1(∆X(X)) =
∆Y (Y ). Since f × f is continuous and ∆X(X) is closed in X ×X, ∆Y (Y ) is closed in Y × Y . �

For spaces built by gluing, we have the following useful separatedness criterion.

Proposition 3.3. Let X be an abstract algebraic set and {Xi} an open cover. Let Xij = Xi ∩Xj.
Then X is separated if and only if each Xi is separated and for i 6= j the subset subset ∆(Xij) ⊂
Xi ×Xj is closed.

Proof. The product X×X has an open cover given by the products Xi×Xj . Thus, ∆(X) is closed
in X ×X if and only if it meets each open subset Xi ×Xj in a closed subset. For i = j we have
∆(X)∩ (Xi×Xi) = ∆(Xi), so its closedness in Xi×Xi is the separatedness of each Xi. For i 6= j,

∆(X) ∩ (Xi ×Xj) = image(∆(Xij)→ Xi ×Xj).

�

Corollary 3.4. Every projective space Pn is separated.

Proof. We apply Proposition 3.3 to the open cover of Pn given by the affine opens Ui = {xi 6= 0}.
Each of these is separated, so the problem is to show that if i 6= j then Ui ∩ Uj has Zariski-closed
image under its diagonal embedding into Ui × Uj .

Denote the coordinate ring of Ui as k[thi] as usual (with 0 ≤ h ≤ n and tii understood to mean 1),
so the open subset Ui ∩Uj ⊂ Ui is {tji 6= 0} and likewise the open subset Ui ∩Uj ⊂ Uj is {tij 6= 0}.
The diagonal image of this overlap in Ui × Uj corresponds to the locus of points (u, u′) ∈ Ui × Uj
in which tji(u) 6= 0, tij(u

′) 6= 0 and u corresponds to u′ under the transition isomorphism

{ξ ∈ Ui | tji(ξ) 6= 0} ' {ξ′ ∈ Uj | tij(ξ′) 6= 0}.
This isomorphism is given by the formula (thi)h6=i 7→ (thi/tji)h6=i′ where as usual trr = 1 for any r.
In other words, we are interested in the closedness of the subset

{(u, u′) ∈ Ui × Uj | tji(u) 6= 0, tij(u
′) 6= 0, thj(u

′) = thi(u)/tji(u) for all h 6= j}.
The case h = j can certainly be permitted (as it asserts the tautology 1 = tji(u)/tji(u)). The
case h = i says tij(u

′) = 1/tji(u), or equivalently tij(u
′)tji(u) = 1. This latter equation forces

tij(u
′), tji(u) 6= 0, so we arrive at the description

{(u, u′) ∈ Ui × Uj | thj(u′)tji(u) = thi(u) for all h}.
This is visibly Zariski-closed in Ui × Uj . (In the special case n = 1 and i = 0, j = 1 this is the
Zariski-closed hyperbola xy = 1 in U0 × U1 = A2.) �

4. Rational maps

Our interest in separatedness is that it rescues a very important application of the Hausdorff
property from ordinary topology, now within the context of the Zariski topology in algebraic ge-
ometry (where the spaces are typically very non-Hausdorff):

Proposition 4.1. Let X and Y be abstract algebraic sets. If two morphisms f, g : X ⇒ Y coincide
on a dense subset and Y is separated then f = g.
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The conclusion fails without separatedness; the two natural inclusions of the affine line into the
non-separated “line with a double origin” coincide on A1 − {0} but are not the same map (they
send 0 to different places in the target).

Proof. Consider the morphism (f, g) : X → Y ×Y given on underlying sets by x 7→ (f(x), g(x)). To
show f = g is to say that this factors through the diagonal ∆ = ∆Y (Y ) ⊂ Y × Y , or equivalently
that the preimage (f, g)−1(∆) coincides with X. By hypothesis this preimage contains a dense
subset of X, yet it is also closed since ∆ is closed in Y × Y (due to the separatedness hypothesis!).
Thus, this preimage must indeed equal X. �

We will be interested in working with locally closed subsets of projective spaces, so the preceding
proposition becomes very important to ensure that morphisms defined on a dense open subset of
the source have at most one extension to the entire space. Here is the key fact which we need:

Corollary 4.2. Let X,Y be abstract algebraic sets with Y separated. Let {Ui} be a collection of
dense open subsets of X and fi : Ui → Y morphisms such that fi and fj coincide on a dense subset
of Ui ∩ Uj for all i and j. Then fi and fj coincide on the entirety of Ui ∩ Uj for all (i, j) and the
fi uniquely “glue” to define a morphism ∪iUi → Y which recovers fi on Ui for all i.

Proof. The preceding proposition applied to the restrictions of fi and fj to Ui ∩ Uj . implies the
equality on this entire overlap. Then we can glue the maps topologically as continuous maps, and
check that this glued map is a morphism of ringed spaces since such a property for a continuous
map is local on the source (e.g., it suffices to check it on each Ui separately). �

Example 4.3. Let f : U → Y be a morphism defined on a dense open subset U of an abstract
algebraic set X, and assume Y is separated. It is natural to seek a “maximal domain of definition”
for f . That is, we consider open subsets U ′ ⊂ X containing U (so U ′ is dense in X) such that f
extends to a morphism f ′ : U ′ → Y (necessarily uniquely determined if it exists, since U is dense
in U ′ and Y is separated).

The key point is that there is exactly one “maximal” such U ′ in the sense that it contains all
others. Indeed, if we let (Ui, fi) be the set of all open subsets of X containing U such that f
extends to a morphism fi : Ui → Y then by the preceding corollary these fi’s glue to a morphism
f ′ : U ′ = ∪iUi → Y . Hence, (U ′, f ′) is also in the collection, yet (Ui, fi) was taken to be the set of
all such pairs. Hence, (U ′, f ′) is indeed the unique maximal pair as claimed.

In general, a rational map from an abstract algebraic set X to a separated abstract algebraic
set Y is an equivalence class of pairs (U, f) where U ⊂ X is dense open and f : U → Y is a
morphism, with (U, f) ∼ (V, g) precisely when f and g agree on a dense open subset of U ∩ V .
This formulation makes it easy to check that this really is an equivalence relation (the point being
transitivity, for which we use that an intersection of dense open subsets is dense open, so there is
no need to keep track of “triple overlap compatibility”!). The preceding example shows that within
any such equivalence class there is a unique member (U, f) for which U is as big as possible, and
we then call U the domain of definition of the rational map.

For example, if X is irreducible then a rational map (U, f) to the affine line is nothing more or
less than an element f ∈ OX(U) for a non-empty open subset U (check!), in which case the domain
of definition is exactly the domain of definition of this regular function in the sense of Exercise 1 in
HW3 (which treated the affine case). In class we will see how to interpret rational maps in terms
of function fields, which makes it very easy to construct lots of rational maps. The hard part in
practice is to nail down exactly the domain of definition of a rational map (e.g., see Exercise 3(iii)
in HW4). We illustrate the subtleties with an interesting class of examples:
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Choose homogenous f0, . . . , fm ∈ k[T0, . . . , Tn] not all zero such that the nonzero fj all have the
same degree, and let ϕf be the rational map from Pn

k to Pm
k given by [f0, . . . , fm]. (with n,m ≥ 1).

The common zero locus Z(f) of the fj ’s is a proper closed subset of Pn
k , so the domain of definition

of ϕf contains the non-empty open set Pn
k − Z(f) (as we saw in class).

The question is: what is the domain of definition of ϕf? There are hidden subtleties because
if the fj ’s all have a common non-constant factor h (necessarily homogenous, by Proposition 1.1
in the handout on Bezout’s Theorem), say fj = hgj , then [g0, . . . , gm] is another expression for
the same rational map (since scaling by h(x) 6= 0 is harmless on points in Pm

k !) yet the open set
Pn
k − Z(g) is generally larger than Pn

k − Z(f) (as we don’t need to remove the entire zero locus of
h). By stripping away the homogenous greatest common factor of the fj ’s in this way, we bring
ourselves to the situation in which the GCD is 1. It is natural to wonder if this GCD obstruction
is the only one to being in the domain of definition of this map. The answer is affirmative:

Theorem 4.4. If the greatest common divisor of the fj’s is 1, then the rational map ϕf has domain
of definition exactly Pn

k − Z(f).

This result fails completely for more general projective varieties in place of Pn.

Proof. Choose x ∈ Pn
k at which all of the fj ’s vanish (if there is no such x, there’s nothing to

show). In particular, each nonzero fj has a common positive degree (though some fj ’s might be
0). Assume that ϕf can be defined at x. We seek a contradiction.

For clarity of notation, let {U (n)
i } denote the standard open affine spaces covering Pn and {U (m)

j }
the same for Pm. By a projective linear change of coordinates, we may assume x = [1, 0, . . . , 0]

and ϕf (x) = [1, 0, . . . , 0], with ϕf ((U
(n)
0 )b) ⊆ U

(m)
0 , where b ∈ k[Ti/T0] is non-vanishing at 0 (the

point corresponding to x in U
(n)
0 ' An

k). Note in particular that f0 6= 0, for otherwise the rational
map ϕf would take some non-empty open (not necessarily containing x!) into the hyperplane locus
H = {T0 = 0} ⊆ Pm

k , in which case the entire domain of definition of ϕf would have to map under
ϕf into H (as the preimage of H would be a dense closed subset of the domain of definition),
contradicting that ϕf (x) = [1, 0, . . . , 0].

Identifying U
(n)
0 , U

(m)
0 with An

k , Am
k as usual, the map ϕf : (U

(n)
0 )b → U

(m)
0 is given by an

m-tuple of elements aj/b
N with aj ∈ k[Ti/T0]. Replace b by bN without loss of generality. Since

f0 6= 0, the ratios fj/f0 ∈ k(Ti/T0) make sense and define ϕf from some non-empty open in U
(n)
0

into U
(m)
0 .

We conclude that for each 1 ≤ j ≤ m, the rational functions aj/b and fj/f0 on U
(n)
0 ' An

k coincide
on a non-empty open, whence coincide as elements in the function field. That is, aj/b = fj/f0 inside
of the fraction field of k[Ti/T0]. If we let Aj and B denote T0-homogenizations of aj and b (with
the same common degree), then aj/b = Aj/B, so upon injecting the fraction field of k[Ti/T0] into
the fraction field of k[T0, . . . , Tn] in the natural way, we have Aj/B = fj/f0, so f0|Bfj for all
j > 0. But we chose the f ’s to have no common non-constant factor, so every irreducible factor of
the non-zero positive degree homogenous f0 must divide B. But f0(x) = 0, so we conclude that
B(x) = 0. But B was constructed as a T0-homogenization of b, with b(0) 6= 0, while x = [1, 0, . . . , 0]
forces b(0) = B(x). Since B(x) = 0, we have a contradiction. �


