CHAPTER VI II

Transcendental Extensions

Both for their own sake and for applications to the case of finite exten-

sions of the rational numbers, one is led to deal with ground fields which are .

function fields, ie. finitely generated over some field k, possibly by elements
which are not algebraic. This chapter gives some basic properties of such
fields.

§1. TRANSCENDENCE BASES

Let K be an extension field of a field k. Let S be a subset of K. We
recall that S (or the elements of S) is said to be algebraically independent
over k, if whenever we have a relation

0=3 a,M,(S) = Y a,, HS x ¥

with coefficients a,,, € k, almost all ) = 0, then we must necessarily have ail
= 0.

We can introduce an ordering among algebraically independent subsets of
K, by ascending inclusion. These subsets are obviously inductively ordered,
and thus there exist maximal elements. If S is a subset of K which is
algebraically independent over k, and if the cardinality of S is greatest among
all such subsets, then we call this cardinality the transcendence degree or
dimension of K over k. Actually, we shall need to distinguish only between
finite transcendence degree or infinite transcendence degree. We observe that
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the notion of transcendence degree bears to the notion of algebraic indepen-
dence the same relation as the notion of dimension bears to the notion of
linear independence.

We frequently deal with families of elements of K, say a family {x;},.,,
and say that such a family is algebraically independent over k if its elements
are distinct (in other words, x; # x; if 1 # j) and if the set consisting of the
elements in this family is algebraically independent over k.

A subset § of K which is algebraically independent over k and is maximal
with respect to the inclusion ordering will be called a transcendence base of
K over k. From the maximality, it is clear that if § is a transcendence base
of K over k, then K is algebraic over k(S).

Theorem 1.1. Let K be an extension of a field k. Any two transcendence
bases of K over k have the same cardinality. If T is a set of generators of
K over k (ie. K=KT)) and S is a subset of T which is algebraically
independent over k, then there exists a transcendence base B of K over k
such that S« B <= T :

Proof. We shall prove that if there exists one finite transcendence base,
say {X;,..., Xu}, m = 1, then any other transcendence base must also have m
elements. For this it will suffice to prove: If w,,..., w, are elements of K
which are algebraically independent over k then n < m (for we can then use
symmetry). By assumption, there exists a non-zero polynomial f; in m + 1
variables with ceefficients in & such that

f:l(wlsxls---:xm) =0

Furthermore, by hypothesis, w; occurs in f;, and some x; also occurs in f,
say x;. Then x, is aigebraic over k(w,, x;, ..., x,,)- Suppose inductively that
after a suitable renumbering of x,, ..., x,, we havé found w,, .., w, (r < n)
such that K is algebraic over

k(W ooy Wy Xppgs eens X

Then there exists a non-zero polynomial f in m 4 1 variables with coefﬁ-
cients in k such that

f( +!.sw1s' -’wraxr+1!"'3xm)=0

and such that w,,, actually occurs in f. Since the w's are algcbralcally
independent over k, it follows that some x; (f=r+1,...,m) also occurs in
J. After renumbering we may assume j = r + 1. Then x,,, is algebraic over

(Wi, ooy Wopts Xpr2y - ons Xpp)-

Since a tower of algebraic extensions is algebraic, it follows that K is
algebraic over k(wy,..., W1, Xp12,..., X,,). We can repeat the procedure,
and if n 2 m we can replace all the x’s by w’s; to see that K is algebraic over
k(wi, ..., w,). This shows that n = m implies n = m, as desired.




