
Math 154. Diophantine applications of class groups

1. Motivation

In this handout we wish to give two completely different classical applications of class groups to solving
concrete Diophantine problems. By way of motivation, recall that if p 6= 2 is a positive odd prime then
we saw via arithmetic in Z[i] that p = x2 + y2 for some x, y ∈ Z if and only if −1 ≡ � mod p (which in
turn is the same as the congruential condition p ≡ 1 mod 4 by quadratic reciprocity). If you think about it,
this is quite remarkable: the property of p being the value of an integral binary quadratic form (x2 + y2) is
equivalent to a congruential condition (p ≡ 1 mod 4) away from finitely many exceptions (such as p = 2).
Recall also that in Homework 2, Exercise 1(ii), you similarly used arithmetic in Z[

√
−2] to show that if

p 6= 2 is a positive odd prime then p = x2 + 2y2 if and only if 2 ≡ � mod p, which in turn is equivalent to
the congruential condition p ≡ ±1 mod 8 by quadratic reciprocity. A related method handles the analogous
problem for x2 + 3y2 by using the imaginary quadratic field Q(

√
−3); there is a mild complication due to

the fact that the ring of integers is not Z[
√
−3] but rather is Z[ζ3] = Z[(1 +

√
−3)/2], and in Exercise 2 of

Homework 2 you saw how to deal with that.
But how about the general problem of characterizing those positive primes p having the form p = x2+ny2

for a fixed non-square integer n > 2? As you might imagine, this is closely tied up with arithmetic questions
in the imaginary quadratic field Q(

√
−n), and the simplest cases to first consider are when n is squarefree

and n ≡ 1, 2 mod 4 (so Z[
√
−n] is the ring of integers). But our old method that worked well for n = 1, 2

can hit a new problem: what do we do if Z[
√
−n] is not a PID? In general there are serious problems due

to the intervention of non-trivial class groups, and a completely satisfactory answer can only be understood
using the full power of class field theory (and is also the motivating theme in the book Primes of the form
x2 + ny2 that I do not recommend). But for some small n we can overcome these class group obstructions
without needing techniques as advanced as class field theory, and in §?? we work out the first nontrivial case
n = 5 (for which the associated imaginary quadratic field Q(

√
−5) has class number 2, as will be proved in

a later lecture).
Another classical application of class groups to Diophantine problems is analyzing Z-solutions to equations

of the form y2 = x3 + k for various nonzero k ∈ Z. This equation can be rewritten as x3 = y2− k, so clearly
the case when k is a square is rather special (since if k = m2 then we have x3 = (y−m)(y+m) and we can
try to play off the two factorizations against each other). Similarly, if k is a cube then x3 + k factors and we
can again try to play elementary games by comparing factorizations. Hence, to make things as interesting
as possible let us suppose that k is a non-square and a non-cube. It is natural to work in the quadratic field
Q(
√
k) in which we have x3 = (y +

√
k)(y −

√
k). (One could instead try to work in the cubic field Q(k1/3)

over which x3 + k admits a linear factor, but that sure sounds worse than working in a quadratic field!)
In the special case k = −2 this is the old problem of Fermat which we settled at the beginning of the

course by using the fact that Z[
√
−2] has unique factorization and its only units are ±1, which are both

cubes. In general the possibility that Z[
√
k] may fail to be a UFD is a real problem. Another potential

problem is that this ring may have infinitely many units (especially non-cube units!). When k > 0 this
always happens (remember that k is a non-square now), due to the Dirichlet unit theorem for real quadratic
fields, as you considered in Homework 2, Exercise 4. The group of units for k > 0 will always be infinite
cyclic and hence modulo cubes of units the unit group collapses to a nontrivial finite group. Nonetheless,
there can still be difficulties (depending on peculiarities of a generator of the unit group up to signs).

For example, in the case k = 2 the ring of integers of Q(
√
k) is Z[

√
k] and this is a UFD with fundamental

unit u = 1 +
√

2, so to find all solutions to y2 = x3 + 2 with x, y ∈ Z (e.g., (−1,±1) are two such solutions)
we first observe that x must be odd (as 2 mod 8 is not a square) and hence infer from the factorization

x3 = (y +
√

2)(y −
√

2) that y +
√

2 = ±uj(a + b
√

2)3 with a, b ∈ Z. Absorbing powers of u3 and the sign

(if it occurs) into (a + b
√

2)3 brings us to three cases: y +
√

2 = uj(a + b
√

2)3 with j = 0,±1. But −1/u

is conjugate to u, so by applying the Galois conjugation if necessary (which swaps
√

2 and −
√

2 but has no

effect on x or y) we just have to treat the cases j = 0, 1. The case j = 0 is easy to rule out since the
√

2-part

of (a + b
√

2)3 = a(a2 + 6b2) + b(3a2 + 2b2)
√

2 has all monomials divisible by one of the unknowns a, b ∈ Z
1
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(forcing b = ±1, from which we can get a contradiction when trying to solve for a). However, analysis of the
case j = 1 runs into a problem because

(1 +
√

2)(a+ b
√

2)3 = (a3 + 6ab2 + 6a2b+ 4b3) + (a3 + 6ab2 + 3a2b+ 2b3)
√

2

and understanding integer solutions to the resulting cubic equation a3 + 6ab2 + 3a2b+ 2b3 = 1 is a decidedly
nontrivial matter (least of all because there are some integer points on this cubic, such as (±1, 0) corre-
sponding to (x, y) = (−1,±1)). Hence, when k > 0, if congruence arguments do not rule out the possibility
of solutions then the presence of nontrivial units can create serious algebraic difficulties. (In some cases one
gets lucky; e.g., for k = 6 a suitable analysis with units leads to a cubic equation in (a, b) for which there is
a congruential obstruction to an integral solution, and so y2 = x3 + 6 has no integer solution).

The possibility that Q(
√
k) has class number larger than 1 is also a serious problem. Below we explain

in the special case k = −51 how this potential problem can be bypassed whenever the class number is not
divisible by 3. So this teaches us a good lesson: even when the UFD property fails, we can sometimes use
algebraic number theory (and especially the divisibility properties of the class number) to infer that things
work out “as if” the UFD property held!

It should also be noted that the problem of understanding the structure of the set of Z-points and Q-points
on cubic curves like y2 = x3 + k for general k is really not best handled by the methods of algebraic number
theory alone, but rather by working within the general arithmetic theory of elliptic curves over number fields
(in which algebraic number theory plays a surprisingly decisive role!). But that is a saga for another course,
so here we will stick to some illustrative examples in special cases.

2. Primes of the form x2 + 5y2

Which primes p have the form x2 + 5y2? Let us assume p 6= 2, 5, so p is unramified in the corresponding
imaginary quadratic field Q(

√
−5) (with discriminant −20). A necessary condition is that −5 is square

modulo p. Indeed, if p is any prime whatsoever and p = x2 + 5y2 with x, y ∈ Z then p cannot divide y
(as otherwise p|x, so p2 divides x2 + 5y2 = p, a contradiction), so the congruence x2 ≡ −5y2 mod p can
be rewritten as −5 ≡ (xu)2 mod p where uy ≡ 1 mod p. Hence, indeed the condition −5 ≡ � mod p is a
necessary condition. But it is not sufficient! In fact, by quadratic reciprocity we see that for p 6= 2, 5,

−5 ≡ � mod p⇔ p ≡ 1, 3, 7, 9 mod 20,

and the primes 3, 7, 23 are of this type yet (by inspection) are not of the form x2 + 5y2.

Proposition 2.1. For a positive prime p 6= 2, 5,

−5 ≡ � mod p⇔ p = x2 + 5y2 for some x, y ∈ Z or 2p = x′
2

+ 5y′
2
for some x′, y′ ∈ Z,

and the two possibilities on the right cannot both occur for the same p.

There is a better result which can be deduced from this proposition: for p 6= 2, 5, we have p = x2 +5y2 for
some x, y ∈ Z if and only if −5 ≡ � mod p (i.e., p ≡ 1, 3, 7, 9 mod 20) and p ≡ 1 mod 4, so in other words a
necessary and sufficient condition is that p ≡ 1, 9 mod 20. Indeed, if p = x2 + 5y2 then p is a square modulo
5, hence p ≡ 1, 4 mod 5, so the proposition implies that p ≡ 1, 9 mod 20. Conversely, if p ≡ 1, 9 mod 20 (so
p ≡ 1, 4 mod 5 and (−5|p) = 1) then the proposition shows that if p does not have the form x2 + 5y2 then
2p has such a form and hence 2p is a square modulo 5. That forces p ≡ 2, 3 mod 5, which is a contradiction.

The key point to be learned from the proof below is that the cause of the more subtle nature of the
statement of the proposition (in contrast with what we have seen for x2 +ny2 for n = 1, 2, 3) is that Q(

√
−5)

has nontrivial class group. In fact, if the class group has size more than 2 then in general the condition that
p = x2 + ny2 cannot be characterized (with finitely many exceptions) by congruential conditions on p. (For
example, if p 6= 2, 23 then p = x2 + 23y2 if and only if p ≡ � mod 23 and t3− t− 1 ≡ 0 mod p has a solution;
this is related to the fact that Q(

√
−23) has class number 3.) But to explain why involves class field theory,

so rather beyond the level of this course.
Our proof of the proposition rests on the fact, to be proved in a later lecture, that the class group for

Q(
√
−5) is of order 2 and is generated by the unique prime ideal p2 over the ramified prime 2. We have
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(2) = p22, and explicitly p2 = (2, 1 +
√
−5) (though this explicit expression for p2 will not be used below).

Since x2 +5y2 = (x+y
√
−5)(x−y

√
−5) and Z[

√
−5] is the ring of integers of K = Q(

√
−5) with unit group

O×K = {±1}, we may rephrase the condition p = x2 + 5y2 as the condition on ideals that (p) = aa for a
principal ideal a of OK . (Here we use positivity of p and of the norm for imaginary quadratic fields to avoid
unit difficulties caused by passing from equality of principal ideals back to equality of elements.) How do we
tell when (p) admits such a factorization aa in principal ideals? The key point is to forget about principality
and to ask the weaker question of when (p) admits such a factorization in ideals at all!

Now the arithmetic of quadratic fields comes in. Since p 6= 2, 5, so it is unramified in K, we know that
it is either split or inert: either (p) = pp with a prime ideal p 6= p or (p) is prime. In the second case it
is impossible to write (p) = aa for an ideal a of OK (consider the consequences in terms of the prime ideal
factorization of a!), whereas in the first case we see by unique prime factorization for the hypothetical a that
the only possibilities are a = p or a = p. Since the conjugation action on ideals has no effect on whether or
not an ideal is principal, we see that (for p 6= 2, 5) p = x2 + 5y2 for x, y ∈ Z if and only if two properties
hold: p is split in K and the prime ideal factors p and p of pOK are principal. The condition that the
unramified prime p be split in K is exactly that disc(K/Q) = −20 is a square modulo p, or in other words
−5 ≡ � mod p. So now we have identified the real difficulty: given that this congruence condition holds,
how do we distinguish whether or not the prime ideal factors of pOK are actually principal? This is where
knowledge of the class group saves the day.

As we noted above (and will be proved in a later lecture), the class group of Q(
√
−5) has order 2 and is

generated by p2. Hence, exactly one of two possibilities happens when pOK = pp is split: either p is principal
(this is exactly when p = x2 + 5y2 with x, y ∈ Z, with p = (x ± y

√
−5)) or pp2 is principal. Consider the

consequences in this second case, as follows. In such cases we have

(2p) = p22pp = (pp2) · pp2
since p2 = p2 (as p2 is the unique prime ideal factor of (2)), and if x′+ y′

√
−5 is a generator of the principal

ideal pp2 then this says (2p) = (x′
2

+ 5y′
2
) as principal ideals of OK , so 2p = x′

2
+ 5y′

2
in Z! Observe that,

conversely, if p 6= 2 and 2p = x′
2

+ 5y′
2

for some x′, y′ ∈ Z then −5 is still a square modulo p (as y′ cannot

be divisible by p, since otherwise p would also have to divide x′ and hence p2 would divide x′
2

+ 5y′
2

= 2p,
a contradiction since p 6= 2).

The two cases p = x2 + 5y2 and 2p = x′
2

+ 5y′
2

cannot both occur for p 6= 2, 5. Indeed, if they did then
it would say that (p) = pp for a principal prime ideal p 6= p 6= p2 and likewise that the ideal (2p) = p22pp
would have to have the form aa for some principal ideal a. In such a situation, the only possibilities for the
prime ideal factorization of a are pp2 or pp2. But both of these possibilities lead to a contradiction, as the
non-principal fractional ideal p2 for OK would have to equal one of the two fractional ideals p−1a or p−1a
which are each principal by inspection (due to the principality of both p and a).

3. The cubic curve y2 = x3 − 51

We now prove that the equation y2 = x3 − 51 has no Z-solutions. This is interesting for two reasons: (i)
it has a Q-solution, such as (1375/9, 50986/27) (and infinitely many more), and (ii) it has solutions modulo
m for all m > 1. Point (ii) shows that this problem cannot be fruitfully analyzed by congruential methods
alone, and point (i) shows that we must make essential use of integrality in our analysis.

To argue by contradiction, suppose that there exist x, y ∈ Z such that y2 = x3− 51 = x2− 3 · 17. We first
make some elementary congruential observations. Necessarily x is odd, as otherwise −51 would be a square
modulo 8, which it is not (as −51 ≡ 5 mod 8). Likewise, gcd(y, 51) = 1 since otherwise y would be divisible
by 3 or 17 and hence likewise for x3 = y2 + 51, so x3 and y2 are both divisible by p2 with p ∈ {3, 17},
contradicting that 51 = x3 − y2 is not divisible by p2 (as 51 is even squarefree).

For α = (1 +
√
−51)/2 (which has minimal polynomial t2 − t+ 13 over Q) we have

x3 = y2 + 51 = (y −
√
−51)(y +

√
−51) = (y − (2α− 1))(y + (2α− 1))

in the ring of integers Z[α] of K = Q(
√
−51). I claim that the principal ideals (y +

√
−51) and (y −

√
−51)

in Z[α] = OK are relatively prime. Suppose to the contrary, so they share a common prime factor p. That
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is, there is a maximal ideal p of OK which contains y +
√
−51 and y −

√
−51, so it contains their difference

2
√
−51. Hence, p|(2)(

√
−51), so either p|(2) or p|(

√
−51). But in OK = Z[α] ' Z[t]/(t2 − t + 13) the ideal

(2) is prime (as t2 − t + 13 mod 2 is irreducible in F2[t]), so the possibility p|(2) says exactly that p = (2),
but this is not possible since the ideal p contains (y +

√
−51)(y −

√
−51) = y2 + 51 = x3 with x3 ∈ Z

an odd integer (so the containment 2 ∈ p would force p to contain gcdZ(x3, 2) = 1, a contradiction). The
other possibility is that p|(

√
−51), but in that case we’d have

√
−51 ∈ p (so 51 ∈ p), yet y +

√
−51 ∈ p so

necessarily y ∈ p. This is again an absurdity because gcdZ(y, 51) = 1 and 1 6∈ p.
Now that we have proved that (y +

√
−51) and (y −

√
−51) are share no common prime ideal factors in

OK = Z[α], the condition that their product is the cube ideal (x)3 forces each of these two given principal
ideals to have their prime factors all occurring with multiplicity divisible by 3. (Here we use uniqueness of
prime factorization in ideals!) Hence, we’d have (y +

√
−51) = a3 and (y −

√
−51) = b3 for some nonzero

ideals a, b ∈ OK . Are these ideals principal? Here is where class numbers save the day: one can show (as you
will on Homework 9) that Q(

√
−51) has class number 2. Hence, the class group for Q(

√
−51) is a 2-torsion

group, so any fractional ideal whose mth power is principal with an odd m must itself be principal! (We
are applying to the class group the general fact that if an element of a finite group is killed by an integer
coprime to the order of the group then it must be the trivial element.) Taking m = 3, we deduce the crucial
fact that a = (a) and b = (b), or in other words y +

√
−51 = ua3 and y −

√
−51 = vb3 for some u, v ∈ O×K

and some a, b ∈ OK . It is “as if” OK were a UFD!
The unit group O×K is {±1} since K is imaginary quadratic distinct from Q(i) and Q(ζ3) = Q(

√
−3), so

units are cubes and hence y +
√
−51 is itself a cube in OK = Z[α]. Thus, there exist integers r, s such that

(y − 1) + 2α = y +
√
−51 = (r + sα)3 = (r3 − 39rs2 − 13s3) + 3s(r2 + rs− 4s2)α

(using the relation α2 − α + 13 = 0). The key point is not the explicit formula on the right side, but just
that the coefficient of α lies in 3Z. Since the α-coefficient on the left side is 2, we have a contradiction


