Math 154. Homework 3

0. Read the proof of Proposition 2 in $\S 2.1$ of the text ("integrality of ring extensions is transitive").
(i) Deduce that if K^{\prime} / K is an extension of number fields then not only is $\mathscr{O}_{K^{\prime}}$ integral over \mathscr{O}_{K} (even over \mathbf{Z} !) but it is the integral closure of \mathscr{O}_{K} in K^{\prime}. This is important in the relative theory of number fields (viewing one number field as an extension of another). Taking $K^{\prime}=K$, this proves \mathscr{O}_{K} is integrally closed!
(ii) In the setup of (i), prove that the norm and trace maps $K^{\prime} \rightarrow K$ carry $\mathscr{O}_{K^{\prime}}$ into \mathscr{O}_{K}. (Hint: Compute the norm and trace in a Galois closure of K^{\prime} over K).

Remark. Whereas $\mathscr{O}_{K^{\prime}}$ is a finitely generated and free Z-module (so it is also a finitely generated $\mathscr{O}_{K^{-}}$ module, by using the same generating set as over \mathbf{Z}), it often happens that $\mathscr{O}_{K^{\prime}}$ is not a free \mathscr{O}_{K}-module (so in such cases \mathscr{O}_{K} is certainly not a PID). An example is $K=\mathbf{Q}(\sqrt{-6})$ and $K^{\prime}=\mathbf{Q}(\sqrt{2}, \sqrt{-3})$.

1. Let $K=\mathbf{Q}(\sqrt{3}, \sqrt{5})$ be a splitting field for $\left(X^{2}-3\right)\left(X^{2}-5\right)$ over \mathbf{Q}. Prove that $\alpha=\sqrt{3}+\sqrt{5}$ is a primitive element, and compute $D\left(1, \alpha, \alpha^{2}, \alpha^{3}\right)$ in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to "write down" the conjugates of α over \mathbf{Q}) use the formula $(-1)^{n(n-1) / 2} \prod_{\sigma \neq \tau}(\sigma(\alpha)-\tau(\alpha))$ (with $n=[K: \mathbf{Q}]=4$ here).
2. A pair of ideals I and J in a ring A are said to be coprime if $I+J=A$. For example, if I is a maximal ideal and J is not contained in I then I and J are coprime.
(i) If A is a PID, prove that nonzero ideals (a) and $\left(a^{\prime}\right)$ are coprime if and only if a and a^{\prime} share no common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: $A=k[X, Y]$ for a field k, which you may accept is UFD.)
(ii) If I and J are coprime, prove that the inclusion $I J \subseteq I \cap J$ is an equality.
(iii) If I_{1}, \ldots, I_{k} are ideals that are pairwise coprime with $k \geq 2$, prove that I_{1} and $\prod_{j=2}^{k} I_{j}$ are coprime, and deduce by induction on k and (ii) that $\cap I_{j}=\prod I_{j}$.
(iv) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I_{1}, \ldots, I_{k} are pairwise coprime (with $k \geq 2$) then the natural map of rings

$$
A /\left(\prod I_{j}\right) \rightarrow\left(A / I_{1}\right) \times \cdots \times\left(A / I_{k}\right)
$$

is an isomorphism, and so in particular the natural map $A \rightarrow \prod_{j}\left(A / I_{j}\right)$ is surjective. (Hint: induction)
3. Let $d \in \mathbf{Z}-\{0,1\}$ be squarefree. Let $K=\mathbf{Q}(\sqrt{d})$. Let $D=\operatorname{disc}(K / \mathbf{Q})($ so $D \equiv 0,1 \bmod 4$, and $2 \mid D$ if and only if $d \equiv 2,3 \bmod 4$).
(i) Construct an isomorphism of rings $\mathbf{Z}[X] /\left(X^{2}-D X+\left(D^{2}-D\right) / 4\right) \simeq \mathscr{O}_{K}$.
(ii) Passing to the quotient modulo p, describe $\mathscr{O}_{K} / p \mathscr{O}_{K}$ as a quotient of $\mathbf{F}_{p}[X]$, and for odd p (resp. $p=2$) deduce that $p \mathscr{O}_{K}$ is a prime ideal of \mathscr{O}_{K} (i.e., $\mathscr{O}_{K} / p \mathscr{O}_{K}$ is a domain) if and only if $p \nmid D$ and D is a nonsquare modulo $p($ resp. $D \equiv 5 \bmod 8)$, in which case $\mathscr{O}_{K} / p \mathscr{O}_{K}$ is a finite field with size p^{2}. Prove that if $p \mid D$ then $\mathscr{O}_{K} / p \mathscr{O}_{K} \simeq \mathbf{F}_{p}[t] /\left(t^{2}\right)$ and that if $p \nmid D$ but D is a square modulo p for odd $p($ resp. $D \equiv 1 \bmod 8$ for $p=2$) then $\mathscr{O}_{K} / p \mathscr{O}_{K} \simeq \mathbf{F}_{p} \times \mathbf{F}_{p}$ as rings.
4. (i Let R be a domain whose underlying set is finite. Prove that R is a field. (Hint: using counting to prove surjectivity of the multiplication map $R \rightarrow R$ against a nonzero element of R.)
(ii) Let F be a field and $F \rightarrow A$ a map of rings making A finite-dimensional as an F-vector space. Prove that A is a domain if and only if it is a field. (Hint: use F-dimension reasons to prove surjectivity of the multiplication map $A \rightarrow A$ against a nonzero element of A, a map you must check is F-linear.)
5. (i) Read $\S 2.2$ and then the statement and proof of Eisenstein's irreducibility criterion (for PID's) in $\S 2.9$. Prove that $X^{7}+6 X+12 \in \mathbf{Q}[X]$ is irreducible. Also prove that if $\Phi_{p}(X)=X^{p-1}+X^{p-2}+\cdots+X+1 \in \mathbf{Q}[X]$ for a prime p then $\Phi_{p}\left(X^{p^{e}}\right)$ is irreducible over \mathbf{Q} for any $e \geq 0$ (hint: replace X with $X+1$).
(ii) Let A be a PID with fraction field K. Gauss' Lemma says that if a monic $f \in A[X]$ is reducible over K then it admits a nontrivial monic factorization over A; see Wikipedia for a proof. Deduce that if $f \bmod \mathfrak{m} \in(A / \mathfrak{m})[X]$ is irreducible for some maximal ideal \mathfrak{m} of A then f is irreducible over K. Apply it to prove $X^{3}-X^{2}-2 X-8 \in \mathbf{Q}[X]$ is irreducible by working in $\mathbf{F}_{p}[X]$ for some small prime p.

