MATH 154. HOMEWORK 3

0. Read the proof of Proposition 2 in §2.1 of the text ("integrality of ring extensions is transitive").

(i) Deduce that if K'/K is an extension of number fields then not only is $\mathcal{O}_{K'}$ integral over \mathcal{O}_K (even over \mathbb{Z} !) but it is the *integral closure* of \mathcal{O}_K in K'. This is important in the relative theory of number fields (viewing one number field as an extension of another). Taking K' = K, this proves \mathcal{O}_K is *integrally closed*!

(*ii*) In the setup of (*i*), prove that the norm and trace maps $K' \to K$ carry $\mathscr{O}_{K'}$ into \mathscr{O}_K . (Hint: Compute the norm and trace in a Galois closure of K' over K).

Remark. Whereas $\mathscr{O}_{K'}$ is a finitely generated and free **Z**-module (so it is also a finitely generated \mathscr{O}_{K} -module, by using the same generating set as over **Z**), it often happens that $\mathscr{O}_{K'}$ is not a free \mathscr{O}_{K} -module (so in such cases \mathscr{O}_{K} is certainly not a PID). An example is $K = \mathbf{Q}(\sqrt{-6})$ and $K' = \mathbf{Q}(\sqrt{2}, \sqrt{-3})$.

1. Let $K = \mathbf{Q}(\sqrt{3}, \sqrt{5})$ be a splitting field for $(X^2 - 3)(X^2 - 5)$ over \mathbf{Q} . Prove that $\alpha = \sqrt{3} + \sqrt{5}$ is a primitive element, and compute $D(1, \alpha, \alpha^2, \alpha^3)$ in two different ways: use the definition as a determinant of traces, and alternatively (since it is easy to "write down" the conjugates of α over \mathbf{Q}) use the formula $(-1)^{n(n-1)/2} \prod_{\sigma \neq \tau} (\sigma(\alpha) - \tau(\alpha))$ (with $n = [K : \mathbf{Q}] = 4$ here).

2. A pair of ideals I and J in a ring A are said to be *coprime* if I + J = A. For example, if I is a maximal ideal and J is not contained in I then I and J are coprime.

(i) If A is a PID, prove that nonzero ideals (a) and (a') are coprime if and only if a and a' share no common irreducible factor. Give a counterexample in a UFD that is not a PID. (Hint: A = k[X, Y] for a field k, which you may accept is UFD.)

(ii) If I and J are coprime, prove that the inclusion $IJ \subseteq I \cap J$ is an equality.

(*iii*) If I_1, \ldots, I_k are ideals that are pairwise coprime with $k \ge 2$, prove that I_1 and $\prod_{j=2}^k I_j$ are coprime, and deduce by induction on k and (*ii*) that $\cap I_j = \prod I_j$.

(iv) Prove the Chinese Remainder Theorem for pairwise coprime ideals: if I_1, \ldots, I_k are pairwise coprime (with $k \ge 2$) then the natural map of rings

$$A/(\prod I_j) \to (A/I_1) \times \cdots \times (A/I_k)$$

is an isomorphism, and so in particular the natural map $A \to \prod_i (A/I_j)$ is surjective. (Hint: induction)

3. Let $d \in \mathbb{Z} - \{0, 1\}$ be squarefree. Let $K = \mathbb{Q}(\sqrt{d})$. Let $D = \operatorname{disc}(K/\mathbb{Q})$ (so $D \equiv 0, 1 \mod 4$, and 2|D if and only if $d \equiv 2, 3 \mod 4$).

(i) Construct an isomorphism of rings $\mathbf{Z}[X]/(X^2 - DX + (D^2 - D)/4) \simeq \mathcal{O}_K$.

(ii) Passing to the quotient modulo p, describe $\mathcal{O}_K/p\mathcal{O}_K$ as a quotient of $\mathbf{F}_p[X]$, and for odd p (resp. p = 2) deduce that $p\mathcal{O}_K$ is a prime ideal of \mathcal{O}_K (i.e., $\mathcal{O}_K/p\mathcal{O}_K$ is a domain) if and only if $p \nmid D$ and D is a nonsquare modulo p (resp. $D \equiv 5 \mod 8$), in which case $\mathcal{O}_K/p\mathcal{O}_K$ is a finite field with size p^2 . Prove that if p|D then $\mathcal{O}_K/p\mathcal{O}_K \simeq \mathbf{F}_p[t]/(t^2)$ and that if $p \nmid D$ but D is a square modulo p for odd p (resp. $D \equiv 1 \mod 8$ for p = 2) then $\mathcal{O}_K/p\mathcal{O}_K \simeq \mathbf{F}_p \times \mathbf{F}_p$ as rings.

4. (i) Let R be a domain whose underlying set is finite. Prove that R is a field. (Hint: using counting to prove surjectivity of the multiplication map $R \to R$ against a nonzero element of R.)

(*ii*) Let F be a field and $F \to A$ a map of rings making A finite-dimensional as an F-vector space. Prove that A is a domain if and only if it is a field. (Hint: use F-dimension reasons to prove surjectivity of the multiplication map $A \to A$ against a nonzero element of A, a map you must check is F-linear.)

5. (i) Read §2.2 and then the statement and proof of Eisenstein's irreducibility criterion (for PID's) in §2.9. Prove that $X^7 + 6X + 12 \in \mathbf{Q}[X]$ is irreducible. Also prove that if $\Phi_p(X) = X^{p-1} + X^{p-2} + \cdots + X + 1 \in \mathbf{Q}[X]$ for a prime p then $\Phi_p(X^{p^e})$ is irreducible over **Q** for any $e \ge 0$ (hint: replace X with X + 1).

(ii) Let A be a PID with fraction field K. Gauss' Lemma says that if a monic $f \in A[X]$ is reducible over K then it admits a nontrivial monic factorization over A; see Wikipedia for a proof. Deduce that if $f \mod \mathfrak{m} \in (A/\mathfrak{m})[X]$ is irreducible for some maximal ideal \mathfrak{m} of A then f is irreducible over K. Apply it to prove $X^3 - X^2 - 2X - 8 \in \mathbb{Q}[X]$ is irreducible by working in $\mathbb{F}_p[X]$ for some small prime p.