Math 154. Homework 5

1. (i) Read $\S 1.3$ of the text, and using Corollary 2 there show that $\varphi(n)>\sqrt{n}$ for all $n>6$.
(ii) For a number field K, give a (crude) upper bound in terms of $[K: \mathbf{Q}]$ on n such that K contains a primitive nth root of unity.
(iii) Explain why the torsion subgroup of \mathscr{O}_{K}^{\times}is the set of roots of unity in K, and prove it is finite.
2. Let A be a (commutative) ring, and M and N two A-modules. Define $\operatorname{Hom}_{A}(M, N)$ to be the set of A-linear maps $f: M \rightarrow N$, endowed with an A-module structure via $(a . f)(m)=a \cdot f(m)$.
(i) Show that the definition of the A-module structure makes sense. That is, prove $a . f: M \rightarrow N$ is A-linear for all $a \in A$ and that $(a, f) \mapsto a$.f satisfies the axioms to be an A-module structure.
(ii) Show that this A-module structure depends "naturally" on M and N in the sense that if $T: M^{\prime} \rightarrow M$ and $L: N^{\prime} \rightarrow N$ are A-linear maps then the two induced maps

$$
\rho_{T}: \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(M^{\prime}, N\right), \quad \lambda_{L}: \operatorname{Hom}_{A}\left(M, N^{\prime}\right) \rightarrow \operatorname{Hom}_{A}(M, N)
$$

(note the placements of M^{\prime} and $N^{\prime}!$) respectively defined by $f^{\prime} \mapsto f^{\prime} \circ T$ and $f \mapsto L \circ f$ are A-linear and satisfy $\rho_{T^{\prime}} \circ \rho_{T}=\rho_{T \circ T^{\prime}}$ and $\lambda_{L} \circ \lambda_{L^{\prime}}=\lambda_{L \circ L^{\prime}}$ for A-linear maps $T^{\prime}: M^{\prime \prime} \rightarrow M^{\prime}$ and $L^{\prime}: N^{\prime \prime} \rightarrow N^{\prime}$.
(iii) If $M \simeq A^{n}$ is free with finite rank, construct an A-linear isomorphism $\operatorname{Hom}_{A}(M, N) \simeq N^{n}$.
(iv) If A is noetherian and M and N are finitely generated, prove that $\operatorname{Hom}_{A}(M, N)$ is finitely generated. (Hint: Choose a surjection $\pi: A^{n} \rightarrow M$ and show that ρ_{π} is injective. Then use (iii).)
3. This exercise uses Exercise 2 to interpret some ideal-theoretic operations in terms of module theory (especially in the Dedekind case). We fix a noetherian domain A with fraction field F.
(i) A fractional ideal of A is a nonzero finitely generated A-submodule of F. Prove that a fractional ideal of A is simply $(1 / a) \mathfrak{a}$ for some nonzero $a \in A$ and some nonzero ideal $\mathfrak{a} \subseteq A$. Describe all fractional ideals when A is a PID, and construct a \mathbf{Z}-submodule of \mathbf{Q} that is not finitely generated over \mathbf{Z}.
(ii) Let $I \subseteq F$ be a fractional ideal of A. Define $\widetilde{I}=\{x \in F \mid x I \subseteq A\}$. Prove $\widetilde{I} \neq 0$, and construct an A-linear isomorphism $\widetilde{I} \simeq \operatorname{Hom}_{A}(I, A)$. Deduce that \widetilde{I} is a fractional ideal of A (in particular, finitely generated over A).
(iii) Now assume that A is Dedekind. Let \mathfrak{a} be a nonzero ideal of A, with prime factorization $\mathfrak{a}=\prod \mathfrak{p}_{i}$. Prove that $\prod \widetilde{\mathfrak{p}}_{i} \subseteq \widetilde{\mathfrak{a}}$, and use that $\mathfrak{a} \widetilde{\mathfrak{a}} \subseteq A$ to prove that in fact $\prod \widetilde{\mathfrak{p}}_{i}=\widetilde{\mathfrak{a}}$ and $\mathfrak{a} \widetilde{\mathfrak{a}}=A$. (cf. Exercise $\left.4(i i)\right)$
(iv) If I and J are fractional ideals of a Dedekind domain A, prove that so is $I J$ and that $\widetilde{I J}=\widetilde{I} \cdot \widetilde{J}$. Conclude that fractional ideals of A for a commutative group under multiplication (with identity element A and inversion given by $I \mapsto \widetilde{I}$), and that as such it is a free \mathbf{Z}-module with basis given by the maximal ideals of A. In terms of the expression $I=\prod \mathfrak{p}_{i}^{e_{i}}$ with pairwise distinct maximal ideals \mathfrak{p}_{i} and (possibly negative) exponents $e_{i} \in \mathbf{Z}$, show that $I \subseteq A$ if and only if $e_{i} \geq 0$ for all i.
4. Let $K=\mathbf{Q}(\sqrt{5})$ and let A be the index- 2 order $\mathbf{Z}[\sqrt{5}]$ in $\mathscr{O}_{K}=\mathbf{Z}[(1+\sqrt{5}) / 2]$.
(i) Rigorously prove that the ideal $\mathfrak{p}=(2,1+\sqrt{5}) A$ in A is maximal, with $A / \mathfrak{p}=\mathbf{F}_{2}$.
(ii) Prove that $\mathfrak{p}^{2}=2 \mathfrak{p}$ and $\widetilde{\mathfrak{p}}=(1 / 2) \mathfrak{p}$, so $\mathfrak{p} \widetilde{\mathfrak{p}}=\mathfrak{p}$.
(iii) Although $2 A \subseteq \mathfrak{p}$, show that $\mathfrak{p} \nmid 2 A$ in the sense of ideals; that is, $2 A \neq \mathfrak{p b}$ for any ideal \mathfrak{b} of A. (Hint: if $2 A=\mathfrak{p b}$ for some \mathfrak{b}, show $\widetilde{\mathfrak{p}}=(1 / 2) \mathfrak{b}$ and deduce that $\mathfrak{p p}=A$, contradicting (ii).)
5. This exercise uses the Chinese Remainder Theorem from HW3, Exercise 2. Let A be Dedekind.
(i) For nonzero ideals $\mathfrak{a}, \mathfrak{b} \subseteq A$, prove that $\mathfrak{a}+\mathfrak{b}=A$ if and only if \mathfrak{a} and \mathfrak{b} have no common prime factor. Then deduce in general that if $\mathfrak{a}=\prod \mathfrak{p}_{i}^{e_{i}}$ and $\mathfrak{b}=\prod \mathfrak{p}_{i}^{f_{i}}$ with $e_{i}, f_{i} \geq 0$ then $\mathfrak{a}+\mathfrak{b}=\prod \mathfrak{p}_{i}^{\min \left(e_{i}, f_{i}\right)}$. Give an ideal-theoretic reason for why this deserves to be denoted $\operatorname{gcd}(\mathfrak{a}, \mathfrak{b})$.
(ii) Use the Chinese Remainder Theorem in A to prove weak approximation: for maximal ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$ and $e_{1}, \ldots, e_{n} \geq 0$ there exists nonzero $b \in A$ such that the prime factorization of (b) has \mathfrak{p}_{i} appearing with multiplicity exactly e_{i}. (Hint: prove that $\mathfrak{p}^{e} / \mathfrak{p}^{e+1}$ in A / \mathfrak{p}^{e+1} is nonzero and principal for any $e \geq 0$.)
(iii) Let \mathfrak{a} be a nonzero ideal of A. Construct $a \in A-\{0\}$ such that $(a)=\mathfrak{a c}$ with $\operatorname{gcd}(\mathfrak{c}, \mathfrak{a})=(1)$. Then construct $a^{\prime} \in A-\{0\}$ such that $\left(a^{\prime}\right)=\mathfrak{a c}^{\prime}$ with $\operatorname{gcd}\left(\mathfrak{c}^{\prime}, \mathfrak{a}\right)=(1)$ and $\operatorname{gcd}\left(\mathfrak{c}^{\prime}, \mathfrak{c}\right)=(1)$. Deduce that $\mathfrak{a}=\left(a, a^{\prime}\right)$, so \mathfrak{a} has two generators (so A "just barely" may fail to be a PID)! This is mainly of theoretical interest.

