MATH 154. HOMEWORK 5

1. (i) Read §1.3 of the text, and using Corollary 2 there show that $\varphi(n) > \sqrt{n}$ for all n > 6.

(*ii*) For a number field K, give a (crude) upper bound in terms of $[K : \mathbf{Q}]$ on n such that K contains a primitive nth root of unity.

(*iii*) Explain why the torsion subgroup of \mathscr{O}_K^{\times} is the set of roots of unity in K, and prove it is finite.

2. Let A be a (commutative) ring, and M and N two A-modules. Define $\text{Hom}_A(M, N)$ to be the set of A-linear maps $f: M \to N$, endowed with an A-module structure via $(a.f)(m) = a \cdot f(m)$.

(i) Show that the definition of the A-module structure makes sense. That is, prove $a.f: M \to N$ is A-linear for all $a \in A$ and that $(a, f) \mapsto a.f$ satisfies the axioms to be an A-module structure.

(*ii*) Show that this A-module structure depends "naturally" on M and N in the sense that if $T: M' \to M$ and $L: N' \to N$ are A-linear maps then the two induced maps

 $\rho_T : \operatorname{Hom}_A(M, N) \to \operatorname{Hom}_A(M', N), \quad \lambda_L : \operatorname{Hom}_A(M, N') \to \operatorname{Hom}_A(M, N)$

(note the placements of M' and N'!) respectively defined by $f' \mapsto f' \circ T$ and $f \mapsto L \circ f$ are A-linear and satisfy $\rho_{T'} \circ \rho_T = \rho_{T \circ T'}$ and $\lambda_L \circ \lambda_{L'} = \lambda_{L \circ L'}$ for A-linear maps $T' : M'' \to M'$ and $L' : N'' \to N'$.

(*iii*) If $M \simeq A^n$ is free with finite rank, construct an A-linear isomorphism $\operatorname{Hom}_A(M, N) \simeq N^n$.

(*iv*) If A is noetherian and M and N are finitely generated, prove that $\text{Hom}_A(M, N)$ is finitely generated. (Hint: Choose a surjection $\pi : A^n \to M$ and show that ρ_{π} is injective. Then use (*iii*).)

3. This exercise uses Exercise 2 to interpret some ideal-theoretic operations in terms of module theory (especially in the Dedekind case). We fix a noetherian domain A with fraction field F.

(i) A fractional ideal of A is a nonzero finitely generated A-submodule of F. Prove that a fractional ideal of A is simply $(1/a)\mathfrak{a}$ for some nonzero $a \in A$ and some nonzero ideal $\mathfrak{a} \subseteq A$. Describe all fractional ideals when A is a PID, and construct a **Z**-submodule of **Q** that is not finitely generated over **Z**.

(ii) Let $I \subseteq F$ be a fractional ideal of A. Define $I = \{x \in F \mid xI \subseteq A\}$. Prove $I \neq 0$, and construct an A-linear isomorphism $\tilde{I} \simeq \operatorname{Hom}_A(I, A)$. Deduce that \tilde{I} is a fractional ideal of A (in particular, finitely generated over A).

(*iii*) Now assume that A is *Dedekind*. Let \mathfrak{a} be a nonzero ideal of A, with prime factorization $\mathfrak{a} = \prod \mathfrak{p}_i$. Prove that $\prod \tilde{\mathfrak{p}}_i \subseteq \tilde{\mathfrak{a}}$, and use that $\mathfrak{a}\tilde{\mathfrak{a}} \subseteq A$ to prove that in fact $\prod \tilde{\mathfrak{p}}_i = \tilde{\mathfrak{a}}$ and $\mathfrak{a}\tilde{\mathfrak{a}} = A$. (cf. Exercise 4(*ii*))

(*iv*) If I and J are fractional ideals of a Dedekind domain A, prove that so is IJ and that $IJ = I \cdot J$. Conclude that fractional ideals of A for a commutative group under multiplication (with identity element A and inversion given by $I \mapsto \tilde{I}$), and that as such it is a free **Z**-module with basis given by the maximal ideals of A. In terms of the expression $I = \prod \mathfrak{p}_i^{e_i}$ with pairwise distinct maximal ideals \mathfrak{p}_i and (possibly negative) exponents $e_i \in \mathbf{Z}$, show that $I \subseteq A$ if and only if $e_i \ge 0$ for all i.

4. Let $K = \mathbf{Q}(\sqrt{5})$ and let A be the index-2 order $\mathbf{Z}[\sqrt{5}]$ in $\mathcal{O}_K = \mathbf{Z}[(1+\sqrt{5})/2]$.

(i) Rigorously prove that the ideal $\mathbf{p} = (2, 1 + \sqrt{5})A$ in A is maximal, with $A/\mathbf{p} = \mathbf{F}_2$.

(*ii*) Prove that $\mathfrak{p}^2 = 2\mathfrak{p}$ and $\tilde{\mathfrak{p}} = (1/2)\mathfrak{p}$, so $\mathfrak{p}\tilde{\mathfrak{p}} = \mathfrak{p}$.

(*iii*) Although $2A \subseteq \mathfrak{p}$, show that $\mathfrak{p} \nmid 2A$ in the sense of ideals; that is, $2A \neq \mathfrak{pb}$ for any ideal \mathfrak{b} of A. (Hint: if $2A = \mathfrak{pb}$ for some \mathfrak{b} , show $\tilde{\mathfrak{p}} = (1/2)\mathfrak{b}$ and deduce that $\mathfrak{p}\tilde{\mathfrak{p}} = A$, contradicting (*ii*).)

5. This exercise uses the Chinese Remainder Theorem from HW3, Exercise 2. Let A be Dedekind.

(*i*) For nonzero ideals $\mathfrak{a}, \mathfrak{b} \subseteq A$, prove that $\mathfrak{a} + \mathfrak{b} = A$ if and only if \mathfrak{a} and \mathfrak{b} have no common prime factor. Then deduce in general that if $\mathfrak{a} = \prod \mathfrak{p}_i^{e_i}$ and $\mathfrak{b} = \prod \mathfrak{p}_i^{f_i}$ with $e_i, f_i \ge 0$ then $\mathfrak{a} + \mathfrak{b} = \prod \mathfrak{p}_i^{\min(e_i, f_i)}$. Give an ideal-theoretic reason for why this deserves to be denoted $\gcd(\mathfrak{a}, \mathfrak{b})$.

(*ii*) Use the Chinese Remainder Theorem in A to prove weak approximation: for maximal ideals $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ and $e_1, \ldots, e_n \ge 0$ there exists nonzero $b \in A$ such that the prime factorization of (b) has \mathfrak{p}_i appearing with multiplicity exactly e_i . (Hint: prove that $\mathfrak{p}^e/\mathfrak{p}^{e+1}$ in A/\mathfrak{p}^{e+1} is nonzero and principal for any $e \ge 0$.)

(*iii*) Let \mathfrak{a} be a nonzero ideal of A. Construct $a \in A - \{0\}$ such that $(a) = \mathfrak{a}\mathfrak{c}$ with $gcd(\mathfrak{c}, \mathfrak{a}) = (1)$. Then construct $a' \in A - \{0\}$ such that $(a') = \mathfrak{a}\mathfrak{c}'$ with $gcd(\mathfrak{c}', \mathfrak{a}) = (1)$ and $gcd(\mathfrak{c}', \mathfrak{c}) = (1)$. Deduce that $\mathfrak{a} = (a, a')$, so \mathfrak{a} has two generators (so A "just barely" may fail to be a PID)! This is mainly of theoretical interest.