
Math 154. Homework 5

1. (i) Read §1.3 of the text, and using Corollary 2 there show that ϕ(n) >
√
n for all n > 6.

(ii) For a number field K, give a (crude) upper bound in terms of [K : Q] on n such that K contains a
primitive nth root of unity.

(iii) Explain why the torsion subgroup of O×K is the set of roots of unity in K, and prove it is finite.

2. Let A be a (commutative) ring, and M and N two A-modules. Define HomA(M,N) to be the set of
A-linear maps f : M → N , endowed with an A-module structure via (a.f)(m) = a · f(m).

(i) Show that the definition of the A-module structure makes sense. That is, prove a.f : M → N is
A-linear for all a ∈ A and that (a, f) 7→ a.f satisfies the axioms to be an A-module structure.

(ii) Show that this A-module structure depends “naturally” on M and N in the sense that if T : M ′ →M
and L : N ′ → N are A-linear maps then the two induced maps

ρT : HomA(M,N)→ HomA(M ′, N), λL : HomA(M,N ′)→ HomA(M,N)

(note the placements of M ′ and N ′!) respectively defined by f ′ 7→ f ′ ◦ T and f 7→ L ◦ f are A-linear and
satisfy ρT ′ ◦ ρT = ρT◦T ′ and λL ◦ λL′ = λL◦L′ for A-linear maps T ′ : M ′′ →M ′ and L′ : N ′′ → N ′.

(iii) If M ' An is free with finite rank, construct an A-linear isomorphism HomA(M,N) ' Nn.
(iv) If A is noetherian and M and N are finitely generated, prove that HomA(M,N) is finitely generated.

(Hint: Choose a surjection π : An →M and show that ρπ is injective. Then use (iii).)

3. This exercise uses Exercise 2 to interpret some ideal-theoretic operations in terms of module theory
(especially in the Dedekind case). We fix a noetherian domain A with fraction field F .

(i) A fractional ideal of A is a nonzero finitely generated A-submodule of F . Prove that a fractional ideal
of A is simply (1/a)a for some nonzero a ∈ A and some nonzero ideal a ⊆ A. Describe all fractional ideals
when A is a PID, and construct a Z-submodule of Q that is not finitely generated over Z.

(ii) Let I ⊆ F be a fractional ideal of A. Define Ĩ = {x ∈ F |xI ⊆ A}. Prove Ĩ 6= 0, and construct

an A-linear isomorphism Ĩ ' HomA(I, A). Deduce that Ĩ is a fractional ideal of A (in particular, finitely
generated over A).

(iii) Now assume that A is Dedekind. Let a be a nonzero ideal of A, with prime factorization a =
∏

pi.
Prove that

∏
p̃i ⊆ ã, and use that aã ⊆ A to prove that in fact

∏
p̃i = ã and aã = A. (cf. Exercise 4(ii))

(iv) If I and J are fractional ideals of a Dedekind domain A, prove that so is IJ and that ĨJ = Ĩ · J̃ .
Conclude that fractional ideals of A for a commutative group under multiplication (with identity element A

and inversion given by I 7→ Ĩ), and that as such it is a free Z-module with basis given by the maximal ideals
of A. In terms of the expression I =

∏
peii with pairwise distinct maximal ideals pi and (possibly negative)

exponents ei ∈ Z, show that I ⊆ A if and only if ei ≥ 0 for all i.

4. Let K = Q(
√

5) and let A be the index-2 order Z[
√

5] in OK = Z[(1 +
√

5)/2].

(i) Rigorously prove that the ideal p = (2, 1 +
√

5)A in A is maximal, with A/p = F2.
(ii) Prove that p2 = 2p and p̃ = (1/2)p, so pp̃ = p.
(iii) Although 2A ⊆ p, show that p - 2A in the sense of ideals; that is, 2A 6= pb for any ideal b of A. (Hint:

if 2A = pb for some b, show p̃ = (1/2)b and deduce that pp̃ = A, contradicting (ii).)

5. This exercise uses the Chinese Remainder Theorem from HW3, Exercise 2. Let A be Dedekind.
(i) For nonzero ideals a, b ⊆ A, prove that a+ b = A if and only if a and b have no common prime factor.

Then deduce in general that if a =
∏

peii and b =
∏

pfii with ei, fi ≥ 0 then a + b =
∏

p
min(ei,fi)
i . Give an

ideal-theoretic reason for why this deserves to be denoted gcd(a, b).
(ii) Use the Chinese Remainder Theorem in A to prove weak approximation: for maximal ideals p1, . . . , pn

and e1, . . . , en ≥ 0 there exists nonzero b ∈ A such that the prime factorization of (b) has pi appearing with
multiplicity exactly ei. (Hint: prove that pe/pe+1 in A/pe+1 is nonzero and principal for any e ≥ 0.)

(iii) Let a be a nonzero ideal of A. Construct a ∈ A− {0} such that (a) = ac with gcd(c, a) = (1). Then
construct a′ ∈ A−{0} such that (a′) = ac′ with gcd(c′, a) = (1) and gcd(c′, c) = (1). Deduce that a = (a, a′),
so a has two generators (so A “just barely” may fail to be a PID)! This is mainly of theoretical interest.
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