MATH 154. HOMEWORK 7

1. A discrete valuation ring (dvr) is a Dedekind domain A with a unique maximal ideal. Any such A is a PID by the weak approximation theorem (HW5, Exercise 5(ii)).

(i) Via $\mathbf{Z}/7\mathbf{Z} \simeq \mathbf{Z}_{(7)}/7\mathbf{Z}_{(7)}$, find $n \in \mathbf{Z}$ so $n \mod 7\mathbf{Z}$ goes to $2/3 \mod 7\mathbf{Z}_{(7)}$. Express n - 2/3 as 7x with $x \in \mathbf{Z}_{(7)}$. For prime p, prove $\mathbf{Z}_{(p)}^{\times}$ consists of $q \in \mathbf{Q}^{\times}$ with numerator and denominator not divisible by p.

(ii) A uniformizer of a dvr A is a generator of the maximal ideal \mathfrak{m} . Show the uniformizers of $\mathbf{Z}_{(p)}$ are precisely pu for $u \in \mathbf{Z}_{(p)}^{\times}$. If π is a uniformizer of A, show every nonzero $a \in A$ has the unique form $u\pi^n$ with $n \geq 0$ and $u \in A^{\times}$, in which case $aA = \mathfrak{m}^n$. Conversely, if A is a domain with a nonzero nonunit π so that each $a \in A - \{0\}$ has the form $u\pi^n$ for some $u \in A^{\times}$ and $n \geq 0$ then show A is a dvr with maximal ideal πA .

(*iii*) If R is Dedekind and \mathfrak{p} is a maximal ideal, say $r \in R - \{0\}$ is a *uniformizer at* \mathfrak{p} if r is a uniformizer in $R_{\mathfrak{p}}$, and r is a *unit at* \mathfrak{p} if $r \in R_{\mathfrak{p}}^{\times}$. Show r is a uniformizer (resp. unit) at \mathfrak{p} if and only if rR has \mathfrak{p} appear exactly once (resp. not appearing) in its prime factorization, and that a uniformizer at \mathfrak{p} in R always exists. In $R = \mathbb{Z}[\sqrt{-5}]$ show 2 is not a uniformizer at the unique prime \mathfrak{p}_2 over 2 (i.e., $\mathfrak{p}_2 \cap \mathbb{Z} = 2\mathbb{Z}$) and find a uniformizer in R at \mathfrak{p}_2 . Also show 3 is a uniformizer at both primes \mathfrak{p}_3 and \mathfrak{p}'_3 over 3, and find another $r \in \mathbb{Z}[\sqrt{-5}]$ which is a uniformizer at one of them and a unit at the other.

2. We now use localization to generalize Exercise 5, HW3 to any Dedekind domain A, with fraction field F. (i) A monic $f = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$ with nonzero constant term is *Eisenstein* at a maximal ideal **m** if $a_i \in \mathbf{m}$ for all i and **m** appears exactly once in the prime factorization of (a_0) . Show it is equivalent that f viewed in $A_m[X]$ is Eisenstein at $\mathfrak{m}A_m$, and deduce that such an f is irreducible over F.

(ii) For any $x \in F$, define its ideal of denominators to be $D_A(x) = \{a \in A \mid ax \in A\}$. Prove that this is a nonzero ideal of A, equal to (1) if and only if $x \in A$. Show that $D_A(x) \cdot S^{-1}A = D_{S^{-1}A}(x)$ for any multiplicative set $S \subseteq A - \{0\}$, and by taking $S = A - \mathfrak{m}$ for maximal ideals \mathfrak{m} deduce that $\bigcap_{\mathfrak{m}} A_{\mathfrak{m}} = A$ inside of F (intersection over all \mathfrak{m}). As an application, prove Gauss' Lemma over A (if $f \in A[X]$ is monic then its monic irreducible factors over F all lie in A[X]) by using the known PID case over each $A_{\mathfrak{m}}$.

3. Let A be Dedekind, $F = \operatorname{Frac}(A)$, F'/F finite separable, n = [F':F], $A' \subseteq F'$ the integral closure of A. (i) Assume A is a dvr with π a uniformizer. Suppose $\alpha \in A'$ is the root of a monic Eisenstein polynomial over A and $F' = F(\alpha)$. For $a_0, \ldots, a_{n-1} \in A$, show that $a_0 + a_1\alpha + \cdots + a_{n-1}\alpha^{n-1} \in \pi A'$ if and only if $a_i \in \pi A$

over A and $F' = F(\alpha)$. For $a_0, \ldots, a_{n-1} \in A$, show that $a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1} \in \pi A'$ if and only if $a_i \in \pi A$ for all i. (Hint: if i is minimal such that $a_i \notin \pi A$, which is to say $a_i \in A^{\times}$, multiply through by α^{n-i-1} to deduce that $a_i \alpha^{n-1} \in \pi A'$. Now apply $N_{F'/F}$ to get a contradiction, recalling that $N_{F'/F}(A') \subseteq A$.)

(*ii*) Consider $\alpha \in A'$ such that $F' = F(\alpha)$ and the minimal polynomial f of α over F is Eisenstein at a maximal ideal \mathfrak{m} . Prove $A'_{\mathfrak{m}} = A_{\mathfrak{m}}[\alpha]$. (Hint: if $\pi \in A$ is a uniformizer at \mathfrak{m} , show $A'_{\mathfrak{m}} \cap (1/\pi)A_{\mathfrak{m}}[\alpha] = A_{\mathfrak{m}}[\alpha]$.)

(*iii*) By (*ii*), if $K = \mathbf{Q}(\alpha)$ with α the root of a *p*-Eisenstein polynomial $f \in \mathbf{Z}[X]$, the inclusion $\mathbf{Z}[\alpha] \subseteq \mathcal{O}_K$ becomes an equality after inverting $S = \mathbf{Z} - p\mathbf{Z}$. Prove $p \nmid [\mathcal{O}_K : \mathbf{Z}[\alpha]]$ (hint: if $L \subset L'$ is a finite-index inclusion of lattices, so it becomes an equality after localizing at $p\mathbf{Z}$ if and only if $p \nmid [L' : L]$), and deduce $K = \mathbf{Q}(2^{1/n})$ with $n \in \{3, 4, 5\}$ has $\mathcal{O}_K = \mathbf{Z}[2^{1/n}]$. (Hint: $2^{1/3} + 1$ and $2^{1/5} - 2$ respectively have 3-Eisenstein and 5-Eisenstein minimal polynomials over \mathbf{Q} . By the end of §2.7, disc $(X^n + b) = (-1)^{n(n-1)/2} n^n b^{n-1}$.)

4. Let A be Dedekind such that Cl(A) is torsion; i.e., each maximal ideal has a power which is principal. (We'll later show $Cl(\mathcal{O}_K)$ is even *finite* for number fields K.) Fix a finite set S of maximal ideals of A.

(i) The S-integers A_S is $\{0\} \cup \{x \in F^{\times} | Ax \text{ has no negative powers of } \mathfrak{m} \notin S \text{ in its prime factorization}\};$ for $A = \mathcal{O}_K$ we write $\mathcal{O}_{K,S}$. Prove $A_S = \bigcap_{\mathfrak{m} \notin S} A_\mathfrak{m}$ and $\mathcal{O}_{\mathbf{Q},\{2,3\}} = \mathbf{Z}[1/6] = \mathbf{Z}[1/72].$

(*ii*) If $\mathfrak{m}_i^{h_i} = (a_i)$ for each $\mathfrak{m}_i \in S$ with $h_i > 0$, show $A_S = A[1/\prod a_i]$ inside F. For $A = \mathbb{Z}[\sqrt{-5}]$, write A_S as $\mathbb{Z}[\sqrt{-5}][1/a]$ for $S = \{\mathfrak{p}_2\}, \{\mathfrak{p}_3\}$, and $\{\mathfrak{p}_2, \mathfrak{p}_3\}$, where $(2) = \mathfrak{p}_2^2$ and $(3) = \mathfrak{p}_3\mathfrak{p}_3'$. (Hint: \mathfrak{p}_2 and \mathfrak{p}_3 are not principal, but \mathfrak{p}_2^2 and \mathfrak{p}_3^2 are; norm calculations help to find a generator.) Make your choice of \mathfrak{p}_3 explicit.

(*iii*) Using (*ii*), prove the map $\operatorname{Cl}(A) \to \operatorname{Cl}(A_S)$ induced by $I \mapsto I \cdot A_S$ for fractional ideals I of A is surjective with kernel generated by $[\mathfrak{m}]$ for $\mathfrak{m} \in S$. Deduce that $\operatorname{Cl}(A_S)$ is finite if $\operatorname{Cl}(A)$ is finite.

(*iv*) For a_i as in (*ii*), show that the a_i 's multiplicatively generate a free abelian group Γ with rank #S in A_S^{\times} , and that $A^{\times} \times \Gamma \to A_S^{\times}$ is injective with finite cokernel. In particular, if A^{\times} is finitely generated (to be proved later for $A = \mathscr{O}_K$ for any number field K) prove that A_S^{\times} is as well, with rank $(A_S^{\times}) = \operatorname{rank}(A^{\times}) + \#S$. Compute $\mathscr{O}_{\mathbf{Q}(\sqrt{-5}),S}^{\times}$ for each of the three S's as in (*ii*).