
Math 154. Homework 7
1. A discrete valuation ring (dvr) is a Dedekind domain A with a unique maximal ideal. Any such A is a
PID by the weak approximation theorem (HW5, Exercise 5(ii)).

(i) Via Z/7Z ' Z(7)/7Z(7), find n ∈ Z so n mod 7Z goes to 2/3 mod 7Z(7). Express n − 2/3 as 7x with

x ∈ Z(7). For prime p, prove Z×(p) consists of q ∈ Q× with numerator and denominator not divisible by p.

(ii) A uniformizer of a dvr A is a generator of the maximal ideal m. Show the uniformizers of Z(p) are

precisely pu for u ∈ Z×(p). If π is a uniformizer of A, show every nonzero a ∈ A has the unique form uπn with

n ≥ 0 and u ∈ A×, in which case aA = mn. Conversely, if A is a domain with a nonzero nonunit π so that
each a ∈ A−{0} has the form uπn for some u ∈ A× and n ≥ 0 then show A is a dvr with maximal ideal πA.

(iii) If R is Dedekind and p is a maximal ideal, say r ∈ R− {0} is a uniformizer at p if r is a uniformizer
in Rp, and r is a unit at p if r ∈ R×p . Show r is a uniformizer (resp. unit) at p if and only if rR has p
appear exactly once (resp. not appearing) in its prime factorization, and that a uniformizer at p in R always
exists. In R = Z[

√
−5] show 2 is not a uniformizer at the unique prime p2 over 2 (i.e., p2 ∩Z = 2Z) and find

a uniformizer in R at p2. Also show 3 is a uniformizer at both primes p3 and p′3 over 3, and find another
r ∈ Z[

√
−5] which is a uniformizer at one of them and a unit at the other.

2. We now use localization to generalize Exercise 5, HW3 to any Dedekind domain A, with fraction field F .
(i) A monic f = Xn +an−1X

n−1 + · · ·+a0 ∈ A[X] with nonzero constant term is Eisenstein at a maximal
ideal m if ai ∈ m for all i and m appears exactly once in the prime factorization of (a0). Show it is equivalent
that f viewed in Am[X] is Eisenstein at mAm, and deduce that such an f is irreducible over F .

(ii) For any x ∈ F , define its ideal of denominators to be DA(x) = {a ∈ A | ax ∈ A}. Prove that this
is a nonzero ideal of A, equal to (1) if and only if x ∈ A. Show that DA(x) · S−1A = DS−1A(x) for any
multiplicative set S ⊆ A − {0}, and by taking S = A − m for maximal ideals m deduce that ∩mAm = A
inside of F (intersection over all m). As an application, prove Gauss’ Lemma over A (if f ∈ A[X] is monic
then its monic irreducible factors over F all lie in A[X]) by using the known PID case over each Am.

3. Let A be Dedekind, F = Frac(A), F ′/F finite separable, n = [F ′ : F ], A′ ⊆ F ′ the integral closure of A.
(i) Assume A is a dvr with π a uniformizer. Suppose α ∈ A′ is the root of a monic Eisenstein polynomial

over A and F ′ = F (α). For a0, . . . , an−1 ∈ A, show that a0+a1α+· · ·+an−1αn−1 ∈ πA′ if and only if ai ∈ πA
for all i. (Hint: if i is minimal such that ai 6∈ πA, which is to say ai ∈ A×, multiply through by αn−i−1 to
deduce that aiα

n−1 ∈ πA′. Now apply NF ′/F to get a contradiction, recalling that NF ′/F (A′) ⊆ A.)
(ii) Consider α ∈ A′ such that F ′ = F (α) and the minimal polynomial f of α over F is Eisenstein at a

maximal ideal m. Prove A′m = Am[α]. (Hint: if π ∈ A is a uniformizer at m, show A′m∩(1/π)Am[α] = Am[α].)
(iii) By (ii), if K = Q(α) with α the root of a p-Eisenstein polynomial f ∈ Z[X], the inclusion Z[α] ⊆ OK

becomes an equality after inverting S = Z − pZ. Prove p - [OK : Z[α]] (hint: if L ⊂ L′ is a finite-index
inclusion of lattices, so it becomes an equality after localizing at pZ if and only if p - [L′ : L]), and deduce
K = Q(21/n) with n ∈ {3, 4, 5} has OK = Z[21/n]. (Hint: 21/3 +1 and 21/5−2 respectively have 3-Eisenstein
and 5-Eisenstein minimal polynomials over Q. By the end of §2.7, disc(Xn + b) = (−1)n(n−1)/2nnbn−1.)

4. Let A be Dedekind such that Cl(A) is torsion; i.e., each maximal ideal has a power which is principal.
(We’ll later show Cl(OK) is even finite for number fields K.) Fix a finite set S of maximal ideals of A.

(i) The S-integers AS is {0} ∪ {x ∈ F× |Ax has no negative powers of m 6∈ S in its prime factorization};
for A = OK we write OK,S . Prove AS = ∩m 6∈SAm and OQ,{2,3} = Z[1/6] = Z[1/72].

(ii) If mhi
i = (ai) for each mi ∈ S with hi > 0, show AS = A[1/

∏
ai] inside F . For A = Z[

√
−5], write AS

as Z[
√
−5][1/a] for S = {p2}, {p3}, and {p2, p3}, where (2) = p22 and (3) = p3p

′
3. (Hint: p2 and p3 are not

principal, but p22 and p23 are; norm calculations help to find a generator.) Make your choice of p3 explicit.
(iii) Using (ii), prove the map Cl(A) → Cl(AS) induced by I 7→ I · AS for fractional ideals I of A is

surjective with kernel generated by [m] for m ∈ S. Deduce that Cl(AS) is finite if Cl(A) is finite.
(iv) For ai as in (ii), show that the ai’s multiplicatively generate a free abelian group Γ with rank #S in

A×S , and that A× × Γ→ A×S is injective with finite cokernel. In particular, if A× is finitely generated (to be

proved later for A = OK for any number field K) prove that A×S is as well, with rank(A×S ) = rank(A×)+#S.

Compute O×
Q(
√
−5),S for each of the three S’s as in (ii).
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