Math 154. Homework 7

1. A discrete valuation ring (dvr) is a Dedekind domain A with a unique maximal ideal. Any such A is a PID by the weak approximation theorem (HW5, Exercise 5(ii)).
(i) Via $\mathbf{Z} / 7 \mathbf{Z} \simeq \mathbf{Z}_{(7)} / 7 \mathbf{Z}_{(7)}$, find $n \in \mathbf{Z}$ so $n \bmod 7 \mathbf{Z}$ goes to $2 / 3 \bmod 7 \mathbf{Z}_{(7)}$. Express $n-2 / 3$ as $7 x$ with $x \in \mathbf{Z}_{(7)}$. For prime p, prove $\mathbf{Z}_{(p)}^{\times}$consists of $q \in \mathbf{Q}^{\times}$with numerator and denominator not divisible by p.
(ii) A uniformizer of a dvr A is a generator of the maximal ideal \mathfrak{m}. Show the uniformizers of $\mathbf{Z}_{(p)}$ are precisely $p u$ for $u \in \mathbf{Z}_{(p)}^{\times}$. If π is a uniformizer of A, show every nonzero $a \in A$ has the unique form $u \pi^{n}$ with $n \geq 0$ and $u \in A^{\times}$, in which case $a A=\mathfrak{m}^{n}$. Conversely, if A is a domain with a nonzero nonunit π so that each $a \in A-\{0\}$ has the form $u \pi^{n}$ for some $u \in A^{\times}$and $n \geq 0$ then show A is a dvr with maximal ideal πA.
(iii) If R is Dedekind and \mathfrak{p} is a maximal ideal, say $r \in R-\{0\}$ is a uniformizer at \mathfrak{p} if r is a uniformizer in $R_{\mathfrak{p}}$, and r is a unit at \mathfrak{p} if $r \in R_{\mathfrak{p}}^{\times}$. Show r is a uniformizer (resp. unit) at \mathfrak{p} if and only if $r R$ has \mathfrak{p} appear exactly once (resp. not appearing) in its prime factorization, and that a uniformizer at \mathfrak{p} in R always exists. In $R=\mathbf{Z}[\sqrt{-5}]$ show 2 is not a uniformizer at the unique prime \mathfrak{p}_{2} over 2 (i.e., $\mathfrak{p}_{2} \cap \mathbf{Z}=2 \mathbf{Z}$) and find a uniformizer in R at \mathfrak{p}_{2}. Also show 3 is a uniformizer at both primes \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$ over 3 , and find another $r \in \mathbf{Z}[\sqrt{-5}]$ which is a uniformizer at one of them and a unit at the other.
2. We now use localization to generalize Exercise 5, HW3 to any Dedekind domain A, with fraction field F.
(i) A monic $f=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in A[X]$ with nonzero constant term is Eisenstein at a maximal ideal \mathfrak{m} if $a_{i} \in \mathfrak{m}$ for all i and \mathfrak{m} appears exactly once in the prime factorization of $\left(a_{0}\right)$. Show it is equivalent that f viewed in $A_{\mathfrak{m}}[X]$ is Eisenstein at $\mathfrak{m} A_{\mathfrak{m}}$, and deduce that such an f is irreducible over F.
(ii) For any $x \in F$, define its ideal of denominators to be $D_{A}(x)=\{a \in A \mid a x \in A\}$. Prove that this is a nonzero ideal of A, equal to (1) if and only if $x \in A$. Show that $D_{A}(x) \cdot S^{-1} A=D_{S^{-1} A}(x)$ for any multiplicative set $S \subseteq A-\{0\}$, and by taking $S=A-\mathfrak{m}$ for maximal ideals \mathfrak{m} deduce that $\cap_{\mathfrak{m}} A_{\mathfrak{m}}=A$ inside of F (intersection over all \mathfrak{m}). As an application, prove Gauss' Lemma over A (if $f \in A[X]$ is monic then its monic irreducible factors over F all lie in $A[X]$) by using the known PID case over each $A_{\mathfrak{m}}$.
3. Let A be Dedekind, $F=\operatorname{Frac}(A), F^{\prime} / F$ finite separable, $n=\left[F^{\prime}: F\right], A^{\prime} \subseteq F^{\prime}$ the integral closure of A.
(i) Assume A is a dvr with π a uniformizer. Suppose $\alpha \in A^{\prime}$ is the root of a monic Eisenstein polynomial over A and $F^{\prime}=F(\alpha)$. For $a_{0}, \ldots, a_{n-1} \in A$, show that $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1} \in \pi A^{\prime}$ if and only if $a_{i} \in \pi A$ for all i. (Hint: if i is minimal such that $a_{i} \notin \pi A$, which is to say $a_{i} \in A^{\times}$, multiply through by α^{n-i-1} to deduce that $a_{i} \alpha^{n-1} \in \pi A^{\prime}$. Now apply $\mathrm{N}_{F^{\prime} / F}$ to get a contradiction, recalling that $\mathrm{N}_{F^{\prime} / F}\left(A^{\prime}\right) \subseteq A$.)
(ii) Consider $\alpha \in A^{\prime}$ such that $F^{\prime}=F(\alpha)$ and the minimal polynomial f of α over F is Eisenstein at a maximal ideal \mathfrak{m}. Prove $A_{\mathfrak{m}}^{\prime}=A_{\mathfrak{m}}[\alpha]$. (Hint: if $\pi \in A$ is a uniformizer at \mathfrak{m}, show $A_{\mathfrak{m}}^{\prime} \cap(1 / \pi) A_{\mathfrak{m}}[\alpha]=A_{\mathfrak{m}}[\alpha]$.)
(iii) By $(i i)$, if $K=\mathbf{Q}(\alpha)$ with α the root of a p-Eisenstein polynomial $f \in \mathbf{Z}[X]$, the inclusion $\mathbf{Z}[\alpha] \subseteq \mathscr{O}_{K}$ becomes an equality after inverting $S=\mathbf{Z}-p \mathbf{Z}$. Prove $p \nmid\left[\mathscr{O}_{K}: \mathbf{Z}[\alpha]\right]$ (hint: if $L \subset L^{\prime}$ is a finite-index inclusion of lattices, so it becomes an equality after localizing at $p \mathbf{Z}$ if and only if $p \nmid\left[L^{\prime}: L\right]$), and deduce $K=\mathbf{Q}\left(2^{1 / n}\right)$ with $n \in\{3,4,5\}$ has $\mathscr{O}_{K}=\mathbf{Z}\left[2^{1 / n}\right]$. (Hint: $2^{1 / 3}+1$ and $2^{1 / 5}-2$ respectively have 3-Eisenstein and 5 -Eisenstein minimal polynomials over \mathbf{Q}. By the end of $\S 2.7$, $\operatorname{disc}\left(X^{n}+b\right)=(-1)^{n(n-1) / 2} n^{n} b^{n-1}$.)
4. Let A be Dedekind such that $\mathrm{Cl}(A)$ is torsion; i.e., each maximal ideal has a power which is principal. (We'll later show $\mathrm{Cl}\left(\mathscr{O}_{K}\right)$ is even finite for number fields K.) Fix a finite set S of maximal ideals of A.
(i) The S-integers A_{S} is $\{0\} \cup\left\{x \in F^{\times} \mid A x\right.$ has no negative powers of $\mathfrak{m} \notin S$ in its prime factorization $\}$; for $A=\mathscr{O}_{K}$ we write $\mathscr{O}_{K, S}$. Prove $A_{S}=\cap_{\mathfrak{m} \notin S} A_{\mathfrak{m}}$ and $\mathscr{O}_{\mathbf{Q},\{2,3\}}=\mathbf{Z}[1 / 6]=\mathbf{Z}[1 / 72]$.
(ii) If $\mathfrak{m}_{i}^{h_{i}}=\left(a_{i}\right)$ for each $\mathfrak{m}_{i} \in S$ with $h_{i}>0$, show $A_{S}=A\left[1 / \prod a_{i}\right]$ inside F. For $A=\mathbf{Z}[\sqrt{-5}]$, write A_{S} as $\mathbf{Z}[\sqrt{-5}][1 / a]$ for $S=\left\{\mathfrak{p}_{2}\right\},\left\{\mathfrak{p}_{3}\right\}$, and $\left\{\mathfrak{p}_{2}, \mathfrak{p}_{3}\right\}$, where $(2)=\mathfrak{p}_{2}^{2}$ and $(3)=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$. (Hint: \mathfrak{p}_{2} and \mathfrak{p}_{3} are not principal, but \mathfrak{p}_{2}^{2} and \mathfrak{p}_{3}^{2} are; norm calculations help to find a generator.) Make your choice of \mathfrak{p}_{3} explicit.
(iii) Using (ii), prove the map $\mathrm{Cl}(A) \rightarrow \mathrm{Cl}\left(A_{S}\right)$ induced by $I \mapsto I \cdot A_{S}$ for fractional ideals I of A is surjective with kernel generated by $[\mathfrak{m}]$ for $\mathfrak{m} \in S$. Deduce that $\mathrm{Cl}\left(A_{S}\right)$ is finite if $\mathrm{Cl}(A)$ is finite.
(iv) For a_{i} as in (ii), show that the a_{i} 's multiplicatively generate a free abelian group Γ with rank $\# S$ in A_{S}^{\times}, and that $A^{\times} \times \Gamma \rightarrow A_{S}^{\times}$is injective with finite cokernel. In particular, if A^{\times}is finitely generated (to be proved later for $A=\mathscr{O}_{K}$ for any number field K) prove that A_{S}^{\times}is as well, with $\operatorname{rank}\left(A_{S}^{\times}\right)=\operatorname{rank}\left(A^{\times}\right)+\# S$. Compute $\mathscr{O}_{\mathbf{Q}(\sqrt{-5}), S}^{\times}$for each of the three S 's as in $(i i)$.
