MATH 210B. QUADRATIC INTEGER RINGS

1. COMPUTING THE INTEGRAL CLOSURE OF Z

Let d € Z — {0,1} be squarefree, and K = Q(+v/d). In this handout, we aim to compute the
integral closure O of Z in K (called the ring of integers of K). Clearly vd € O (it is a root
of X2 —d), so Z[Vd] C Ox. We'll see that in many cases this inclusion is an equality, and that
otherwise it is an index-2 inclusion.

The key to controlling the possibilities for a € O is to use the fact that (writing z — Z to
denote the non-trivial automorphism of the Galois extension K/Q) both rational numbers

TI‘K/Q(CE) = o+ q, NK/Q(a) = ax

are algebraic integers and thus belong to Z (as we know that any UFD, such as Z, is integrally closed
in its own fraction field, and so the only algebraic integers in Q are the elements of Z). Writing
a = a+ bv/d for unique a,b € Q, we have @ = a — bv/d, so Trg/q(a) = 2a and Ng/q(a) = a? —dbv.
Thus, we arrive at the necessary conditions 2a,a®? — db®> € Z. This already imposes a severe
constraint on the denominator of a when written as a reduced-form fraction: it is either 1 or 2.

Theorem 1.1. If d = 2,3 mod 4 then Ok = Z[\/d], and if d = 1 mod 4 then O = Z[(1++/d)/2].

Note that the case d = 0 mod 4 cannot occur since d is square-free. Although K = Q(+/d) is not
affected if we replace d with n2d for n € Z* (since n € Q*), the rings Z[v/d] and Z[v'n2d] = Z[n/d]
are very different. Thus, the square-free hypothesis on d that is not so essential for describing K is
absolutely critical for the correctness of the description of Ok in terms of d in the Theorem.

As illustrations, for K = Q(i), Q(v%£2), Q(v3), Q(v/—=5) we have O = Z[i], Z[vVE2], Z[V3],
Z[/—5] respectively and for K = Q(v/=3), Q(v/5) we have O = Z[w], Z[(1 + /5)/2] (where w =
(—14+/=3)/2 is a nontrivial cube root of 1, which is to say a root of (X3—1)/(X —1) = X2+ X +1).

Proof. We have already noted that if a ¢ Z then as a reduced-form fraction the denominator of a
has no other option than to be 2; i.e., in the latter case a = n/2 for an odd integer n.

Let’s see how the two possibilities (a € Z, or a = n/2 for odd n € Z) arising from the necessity
of integrality of the trace interact with the necessity of integrality of the norm. Since a® — db? € Z,
in case a € Z we see that db? € Z. But d is square-free, so integrality of db? rules out the possibility
of any prime p occurring in the denominator of b as a reduced-form fraction (since d cannot fully
cancel the denominator factor p? for b%). Thus, when a € Z we conclude that necessarily b € Z, so
o = a+bVd € Z[V/d]. Hence, the only way it could happen that O is larger than Z[/d] is from
cases with a € Z (if these can somehow manage to occur for some o € Of).

So suppose a = n/2 with odd n € Z. Thus, a®> — db* = n?/4 — db? is an integer. This forces db?
to have a denominator of 4 when written in reduced form, so necessarily b = m/2 for some odd
integer m and also d is odd (since if d is even then db* = dm?/4 would have denominator at worst
2). This already settles the case of even d, which is to say d = 2 mod 4. We can write

1 —1 —1
= arbVi= +2\/&+<n2 5 .\/g>

with (n —1)/2, (m — 1)/2 € Z. Hence, integrality of « is equivalent to that of (14 v/d)/2!
The trace and norm of (1 + v/d)/2 down to Q are 1 and (1 — d)/4 respectively, so a necessary
condition for (1 ++/d)/2 to be integral over Z is that d = 1 mod 4. This is also sufficient, since its

minimal polynomial over Q is X2 — X 4 (1 —d)/4. Thus, if d = 3 mod 4 then O = Z[V/d] whereas
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if d = 1 mod 4 then O is generated over Z[v/d] by p := (1 + +/d)/2. But in such cases we have
2p — 1 =+/d and so Z[Vd] C Z[p]. Thus, O = Z[p] if d = 1 mod 4. [ |

Remark 1.2. In case d = 1 mod 4, elements of Z[(1 4+ v/d)/2] have the form
n+m(l+Vd)/2 = ((m+2n) +mVd)/2

for n,m € Z. This is (ag+ a1v/d)/2 for ag, a; € Z having the same parity: either elements of Z[v/d]
(for ag, a; even) or g + ¢1v/2 where each g; is half an odd integer (for ag,a; odd).

2. SUBTLETIES OF INTEGRAL CLOSURE

Already with quadratic integer rings one can begin to see some ring-theoretic subtleties emerge.
As a basic example, one might wonder: for a finite extension K of Q, is Ok a PID (as Z is)? No!
Already in the quadratic case this breaks down, as the following examples show.

Ezample 2.1. Let K = Q(v/=5), so Ok = Z[\/=5]. We claim that Ok is not a PID; we will
show it is not even a UFD (so it cannot be a PID). First, we need to get a handle on the possible
units in O (since the UFD condition involves unique factorization into irreducible elements up to
unit-scaling).

We saw in class that if A is an integrally closed domain with fraction field F' and F'/F is a
finite separable extension in which the integral closure of A is denoted A’ then Trp /F carries A
into A. The exact same argument applies to norm in place of trace, so we have the norm map
Npiyp: A" — A that is multiplicative and carries 1 to 1, so it carries A" into A% (i.e., if u/,v" € A’
satisfy u'v’ = 1 then Np//p(u'), Np//p(v') € A have product equal to Np/p(u'v') = Npr/p(1) = 1,
so Np//p(u') € A*). We conclude that for any quadratic extension L/Q, Ny q(0[) C Z* = {£1}.
Conversely, if a € O, satisfies Ny )q(a) = £1 then « is a unit: if 2z +— Z denotes the nontrivial
automorphism of L then Ny q(a) = a@, so if Ny jq(a) = 1 then 1/a = +a € 0p,s0 a € OF.

Coming back to K = Q(v/=5), an element of Ok has the form a = a + by/—5 for a,b € Z, so its
norm is a? 4+ 5b?. The only solutions to a? + 5b* = +1 in Z are (a,b) = (£1,0), so a = +1. Thus,
07 = {£1}. (The situation is very different for “real quadratic fields”; e.g., 14++v/2 € Z[v/2]X, with
reciprocal —1 + 1/2; the general structure of unit groups of rings of integers of number fields is a
key part of classical algebraic number theory, beyond the scope of this course.) Now consider the

factorization

2:3=6=(1+vV-5)(1—-+v-5).
These two factorizations of 6 are genuinely different in the sense that they are not obtained from
each other through unit-scaling (as 0 = {£1}).

To show that this contradicts the UFD property, we first claim that 2,3 € Ok are irreducible.
Suppose 2 = xy with non-units =,y € 0. Taking norm of both sides gives 4 = N(z)N(y) with
N(z),N(y) > 1 (as x,y are non-units), so the only possibility is N(x) = 2. But a? + 5> = 2 has
no solutions in Z, so this is impossible and hence 2 is irreducible; the same argument works for 3.
Since 1 + /=5 are non-units in Ok (each has norm 6), and & = {£1}, the two factorizations

of 6 given above really are not related through unit scaling and so contradict the UFD property.
Hence, Ok is not a UFD (and so is not a PID).

Ezample 2.2. A variant of the preceding calculations shows that the integral closure Z[v/—6] of Z
in K = Q(+/—6) is not a PID (nor even a UFD) due to the factorizations

2:5=10=(2+v—6)(2 — vV—6)
of 10.
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Later we will understand both of the preceding examples as instances of a common phenomenon
related to non-principal prime ideals in Dedekind domains: the ideals (2,1 + /=5) C Z[v/-5]
and (2,v/—6) C Z[y/—6] are each non-principal prime ideals (but the non-principlaity of each is
not obvious at this stage). We’ll come back to these examples later, to understand the sense in
which each expresses a relation among non-principal ideals analogous to elementary factorization
identities such as (ab)(cd) = (ac)(bd) in commutative rings.

Ezample 2.3. Consider a finite extension L/Q that is a compositum of two subfields K, K’ C L
over Q with the property that the natural map K ®q K’ — L is an isomorphism (equivalently
[K : QK" : Q] =[L: Q] by Exercise 4 on HW2; such K and K’ are called linearly disjoint over Q
inside L). One may wonder if the natural map

m: Ok Qg O — O,

is an isomorphism. Let’s first express this in more concrete terms, and then bring up a counterex-
ample. We know that O is a free Z-module of finite rank inside K, and Q ®z O = K (by
denominator-chasing: any x € K is the root of a monic over Q, so Nz is the root of a monic over
Z for sufficiently divisible non-zero N € Z, so x = (Nz)/N comes from (1/N) ® (Nz)); we have
likewise for K’ in place of K. Since O is Z-free and O is Z-free, their tensor product over Z is
also Z-free and hence the natural map

Ok ®7 Ok — Q®z (Ok @7 Orr) = (Q®z Ok) ®q (Q®z Og) =K ®q K' =L

is injective. The image of this lands inside &7, so the question of whether or not m is an isomorphism
is exactly the same as asking if 07, coincides with the Z-subalgebra Ox Ok of L consisting of finite
sums » ., z;x, for x; € Ok and 2}, € O

It may be tempting to think that such equality somehow follows from the given equality KK’ = L,
but it generally fails! Here is a possible obstruction: since Ok is a free Z-module of finite rank,
likewise O Qg Ok is a free Og-module of finite rank. Thus, if &, is not free as an Ok-module
then we have an obstruction to m being an isomorphism. Since 7, is certainly a finitely generated
torsion-free Ox-module (it is a domain containing Ok as a subring, and is even finitely generated
as a Z-module), the only way it could possibly happen that it is not &k-free is if Ok is not a PID.
Hence, to realize this obstruction we need to at least use some K for which Ok is not a PID.

Consider L = Q(v/—6,v/=3) with K = Q(v/—6), K’ = Q(v/-3). In this case Ox = Zw]
turns out to be a PID (it is even Euclidean), but we saw above that Oy = Z[\/—6] is not a PID.
Using techniques from algebraic number theory it can be shown that & is not a free module over
Ok = Z[/—6], so in this case O ®z O C Op. A deeper understanding of this failure of equality
at the level of integral closures requires more concepts from commutative algebra that we will see
later in the course.



