
Math 210B. Quadratic integer rings

1. Computing the integral closure of Z

Let d ∈ Z − {0, 1} be squarefree, and K = Q(
√
d). In this handout, we aim to compute the

integral closure OK of Z in K (called the ring of integers of K). Clearly
√
d ∈ OK (it is a root

of X2 − d), so Z[
√
d] ⊂ OK . We’ll see that in many cases this inclusion is an equality, and that

otherwise it is an index-2 inclusion.
The key to controlling the possibilities for α ∈ OK is to use the fact that (writing z 7→ z to

denote the non-trivial automorphism of the Galois extension K/Q) both rational numbers

TrK/Q(α) = α+ α, NK/Q(α) = αα

are algebraic integers and thus belong to Z (as we know that any UFD, such as Z, is integrally closed
in its own fraction field, and so the only algebraic integers in Q are the elements of Z). Writing

α = a+ b
√
d for unique a, b ∈ Q, we have α = a− b

√
d, so TrK/Q(α) = 2a and NK/Q(α) = a2−db2.

Thus, we arrive at the necessary conditions 2a, a2 − db2 ∈ Z. This already imposes a severe
constraint on the denominator of a when written as a reduced-form fraction: it is either 1 or 2.

Theorem 1.1. If d ≡ 2, 3 mod 4 then OK = Z[
√
d], and if d ≡ 1 mod 4 then OK = Z[(1 +

√
d)/2].

Note that the case d ≡ 0 mod 4 cannot occur since d is square-free. Although K = Q(
√
d) is not

affected if we replace d with n2d for n ∈ Z+ (since n ∈ Q×), the rings Z[
√
d] and Z[

√
n2d] = Z[n

√
d]

are very different. Thus, the square-free hypothesis on d that is not so essential for describing K is
absolutely critical for the correctness of the description of OK in terms of d in the Theorem.

As illustrations, for K = Q(i),Q(
√
±2),Q(

√
3),Q(

√
−5) we have OK = Z[i], Z[

√
±2], Z[

√
3],

Z[
√
−5] respectively and for K = Q(

√
−3),Q(

√
5) we have OK = Z[ω],Z[(1 +

√
5)/2] (where ω =

(−1+
√
−3)/2 is a nontrivial cube root of 1, which is to say a root of (X3−1)/(X−1) = X2+X+1).

Proof. We have already noted that if a 6∈ Z then as a reduced-form fraction the denominator of a
has no other option than to be 2; i.e., in the latter case a = n/2 for an odd integer n.

Let’s see how the two possibilities (a ∈ Z, or a = n/2 for odd n ∈ Z) arising from the necessity
of integrality of the trace interact with the necessity of integrality of the norm. Since a2− db2 ∈ Z,
in case a ∈ Z we see that db2 ∈ Z. But d is square-free, so integrality of db2 rules out the possibility
of any prime p occurring in the denominator of b as a reduced-form fraction (since d cannot fully
cancel the denominator factor p2 for b2). Thus, when a ∈ Z we conclude that necessarily b ∈ Z, so

α = a+ b
√
d ∈ Z[

√
d]. Hence, the only way it could happen that OK is larger than Z[

√
d] is from

cases with a 6∈ Z (if these can somehow manage to occur for some α ∈ OK).
So suppose a = n/2 with odd n ∈ Z. Thus, a2 − db2 = n2/4− db2 is an integer. This forces db2

to have a denominator of 4 when written in reduced form, so necessarily b = m/2 for some odd
integer m and also d is odd (since if d is even then db2 = dm2/4 would have denominator at worst
2). This already settles the case of even d, which is to say d ≡ 2 mod 4. We can write

α = a+ b
√
d =

1 +
√
d

2
+

(
n− 1

2
+
m− 1

2
·
√
d

)
with (n− 1)/2, (m− 1)/2 ∈ Z. Hence, integrality of α is equivalent to that of (1 +

√
d)/2!

The trace and norm of (1 +
√
d)/2 down to Q are 1 and (1 − d)/4 respectively, so a necessary

condition for (1 +
√
d)/2 to be integral over Z is that d ≡ 1 mod 4. This is also sufficient, since its

minimal polynomial over Q is X2−X+ (1−d)/4. Thus, if d ≡ 3 mod 4 then OK = Z[
√
d] whereas

1



2

if d ≡ 1 mod 4 then OK is generated over Z[
√
d] by ρ := (1 +

√
d)/2. But in such cases we have

2ρ− 1 =
√
d and so Z[

√
d] ⊂ Z[ρ]. Thus, OK = Z[ρ] if d ≡ 1 mod 4. �

Remark 1.2. In case d ≡ 1 mod 4, elements of Z[(1 +
√
d)/2] have the form

n+m(1 +
√
d)/2 = ((m+ 2n) +m

√
d)/2

for n,m ∈ Z. This is (a0 +a1
√
d)/2 for a0, a1 ∈ Z having the same parity: either elements of Z[

√
d]

(for a0, a1 even) or q0 + q1
√

2 where each qj is half an odd integer (for a0, a1 odd).

2. Subtleties of integral closure

Already with quadratic integer rings one can begin to see some ring-theoretic subtleties emerge.
As a basic example, one might wonder: for a finite extension K of Q, is OK a PID (as Z is)? No!
Already in the quadratic case this breaks down, as the following examples show.

Example 2.1. Let K = Q(
√
−5), so OK = Z[

√
−5]. We claim that OK is not a PID; we will

show it is not even a UFD (so it cannot be a PID). First, we need to get a handle on the possible
units in OK (since the UFD condition involves unique factorization into irreducible elements up to
unit-scaling).

We saw in class that if A is an integrally closed domain with fraction field F and F ′/F is a
finite separable extension in which the integral closure of A is denoted A′ then TrF ′/F carries A′

into A. The exact same argument applies to norm in place of trace, so we have the norm map
NF ′/F : A′ → A that is multiplicative and carries 1 to 1, so it carries A′× into A× (i.e., if u′, v′ ∈ A′
satisfy u′v′ = 1 then NF ′/F (u′),NF ′/F (v′) ∈ A have product equal to NF ′/F (u′v′) = NF ′/F (1) = 1,

so NF ′/F (u′) ∈ A×). We conclude that for any quadratic extension L/Q, NL/Q(O×L ) ⊂ Z× = {±1}.
Conversely, if α ∈ OL satisfies NL/Q(α) = ±1 then α is a unit: if z 7→ z denotes the nontrivial

automorphism of L then NL/Q(α) = αα, so if NL/Q(α) = ±1 then 1/α = ±α ∈ OL, so α ∈ O×L .

Coming back to K = Q(
√
−5), an element of OK has the form α = a+ b

√
−5 for a, b ∈ Z, so its

norm is a2 + 5b2. The only solutions to a2 + 5b2 = ±1 in Z are (a, b) = (±1, 0), so α = ±1. Thus,
O×K = {±1}. (The situation is very different for “real quadratic fields”; e.g., 1+

√
2 ∈ Z[

√
2]×, with

reciprocal −1 +
√

2; the general structure of unit groups of rings of integers of number fields is a
key part of classical algebraic number theory, beyond the scope of this course.) Now consider the
factorization

2 · 3 = 6 = (1 +
√
−5)(1−

√
−5).

These two factorizations of 6 are genuinely different in the sense that they are not obtained from
each other through unit-scaling (as O×K = {±1}).

To show that this contradicts the UFD property, we first claim that 2, 3 ∈ OK are irreducible.
Suppose 2 = xy with non-units x, y ∈ OK . Taking norm of both sides gives 4 = N(x)N(y) with
N(x),N(y) > 1 (as x, y are non-units), so the only possibility is N(x) = 2. But a2 + 5b2 = 2 has
no solutions in Z, so this is impossible and hence 2 is irreducible; the same argument works for 3.
Since 1 ±

√
−5 are non-units in OK (each has norm 6), and O×K = {±1}, the two factorizations

of 6 given above really are not related through unit scaling and so contradict the UFD property.
Hence, OK is not a UFD (and so is not a PID).

Example 2.2. A variant of the preceding calculations shows that the integral closure Z[
√
−6] of Z

in K = Q(
√
−6) is not a PID (nor even a UFD) due to the factorizations

2 · 5 = 10 = (2 +
√
−6)(2−

√
−6)

of 10.
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Later we will understand both of the preceding examples as instances of a common phenomenon
related to non-principal prime ideals in Dedekind domains: the ideals (2, 1 +

√
−5) ⊂ Z[

√
−5]

and (2,
√
−6) ⊂ Z[

√
−6] are each non-principal prime ideals (but the non-principlaity of each is

not obvious at this stage). We’ll come back to these examples later, to understand the sense in
which each expresses a relation among non-principal ideals analogous to elementary factorization
identities such as (ab)(cd) = (ac)(bd) in commutative rings.

Example 2.3. Consider a finite extension L/Q that is a compositum of two subfields K,K ′ ⊂ L
over Q with the property that the natural map K ⊗Q K ′ → L is an isomorphism (equivalently
[K : Q][K ′ : Q] = [L : Q] by Exercise 4 on HW2; such K and K ′ are called linearly disjoint over Q
inside L). One may wonder if the natural map

m : OK ⊗Z OK′ → OL

is an isomorphism. Let’s first express this in more concrete terms, and then bring up a counterex-
ample. We know that OK is a free Z-module of finite rank inside K, and Q ⊗Z OK = K (by
denominator-chasing: any x ∈ K is the root of a monic over Q, so Nx is the root of a monic over
Z for sufficiently divisible non-zero N ∈ Z, so x = (Nx)/N comes from (1/N) ⊗ (Nx)); we have
likewise for K ′ in place of K. Since OK is Z-free and OK′ is Z-free, their tensor product over Z is
also Z-free and hence the natural map

OK ⊗Z OK′ → Q⊗Z (OK ⊗Z OK′) = (Q⊗Z OK)⊗Q (Q⊗Z OK′) = K ⊗Q K ′ = L

is injective. The image of this lands inside OL, so the question of whether or notm is an isomorphism
is exactly the same as asking if OL coincides with the Z-subalgebra OKOK′ of L consisting of finite
sums

∑
i xix

′
i for xi ∈ OK and x′i ∈ OK′ .

It may be tempting to think that such equality somehow follows from the given equalityKK ′ = L,
but it generally fails! Here is a possible obstruction: since OK′ is a free Z-module of finite rank,
likewise OK ⊗Z OK′ is a free OK-module of finite rank. Thus, if OL is not free as an OK-module
then we have an obstruction to m being an isomorphism. Since OL is certainly a finitely generated
torsion-free OK-module (it is a domain containing OK as a subring, and is even finitely generated
as a Z-module), the only way it could possibly happen that it is not OK-free is if OK is not a PID.
Hence, to realize this obstruction we need to at least use some K for which OK is not a PID.

Consider L = Q(
√
−6,
√
−3) with K = Q(

√
−6), K ′ = Q(

√
−3). In this case OK′ = Z[ω]

turns out to be a PID (it is even Euclidean), but we saw above that OK = Z[
√
−6] is not a PID.

Using techniques from algebraic number theory it can be shown that OL is not a free module over
OK = Z[

√
−6], so in this case OK ⊗Z OK′ ( OL. A deeper understanding of this failure of equality

at the level of integral closures requires more concepts from commutative algebra that we will see
later in the course.


