MATH 210B. FROBENIUS-SCHUR INDICATOR

1. INTRODUCTION

Let G be a finite group, and V a finite-dimensional representation of G over C. If F' C C is a subfield
we say V is defined over F if V ~ Vj ®p C for some F[G]-module Vj. Any such V obviously inherits
irreducibility (over F') from that of V' (over C) and xv, = xv, so necessarily xy is F-valued. Moreover, such
a Vp is therefore unique up to isomorphism if it exists since its character is uniquely determined (namely,
Xxv with values in F'). However, this uniqueness for V} is non-canonical; i.e., it is not “unique up to unique
isomorphism” and so any attempt to use Galois-descent techniques to try to prove the sufficiency of the
necessary condition xy (G) C F for V to be defined over F' is doomed to fail, even when V is irreducible

Now assume V is irreducible. Although we know from HW9 Exercise 2 that V' is defined over some finite
extension F' of Q, and necessarily F' D Q(xv), it is a very subtle problem in number theory in general to
understand when the descent to a given F' D Q(xv) actually exists. Moreover, when Q(xy) fails to work
(i.e., V is not defined over Q(xyv)) there is generally no unigue minimal extension of Q(xyv) that works;
rather, there are infinitely many extensions of Q(xy ) that work and share the same minimal degree. This
phenomenon can only be understood via the main theorems of global class field theory for number fields, so
we don’t say anything more about it here.

In some special cases there is no obstruction. For example, the representation theory of symmetric
groups is an extremely well-understood subject (relevant to many topics, ranging from cohomology rings
of Grassmannians to the combinatorics of symmetric functions and Young tableaux and beyond), and in
that setting it is known that all characters are Q-valued and that all V' can be directly constructed over Q
(via “Specht modules”). By deeper methods, for G = GL,,(F,) there are again no obstructions: V always
descends to the smallest possible field Q(xyv) (which is often larger than Q) but giving a useful description
of all irreducible representations is much harder than for symmetric groups. However, for G = SLa(F,)
obstructions to definability over Q(xy ) arise in a variety of ways.

In this handout we take up the most classical instance of this definiability question: when is an irreducible
V' defined over R? The obvious necessary condition that x := xy be R-valued says exactly that x =%, and
since Y(g) = x5 this is the same as the condition V ~ V as C[G]-modules.

Ezample 1.1. Consider the quaternion group @ = {+1, +i, +5, +k} C H*. (Read the handout on quaternions
to learn about the 4-dimensional division algebra H over R.) By viewing H as a 2-dimensional C-vector
space V through right multiplication on H by the commutative R-subalgebra C = R @& Ri C H, the left
multiplication action by @ on H is C-linear (left multiplication commutes with right multiplication in any
associative ring!) and thereby defines a faithful representation p : Q) < GLo(C). This has R-valued character
x equal to £2 on +1 € @ and vanishing elsewhere, and it is irreducible: either because (x, x)g = 1 or because
Q acting on H through left multiplications spans H over R (and obviously the division algebra H has no
nonzero proper H-submodule).

The representation p cannot be defined over R. Indeed, the evident inclusion H°P? C Endgq) (V) via
right multiplication of H on itself is an equality (as R[Q] generates H inside Endg (V) yet the centralizer of
the left action of the division algebra H on itself is clearly the right action that is the 4-dimensional H°PP)
whereas for any finite group G and C[G]-module W of the form Wy ®g C for an R[G]-module Wy we see that
W has underlying R[G]-module Wy @ W} that is reducible and hence Endgjg(W) = Mats(Endgg)(Wo)) is
not a division algebra.

There are three cases that can arise: (i) x is not R-valued, (ii) x is R-valued with V is defined over R,
and (iii) x is R-valued with V not defined over R. We shall give several ways to characterize which of the
three cases we are in. The most concrete way is to calculate a certain quantity in terms of y:

Definition 1.2. The Frobenius-Schur indicator of V' is the number ey = (1/#G) 3  cq xv (g%).

We will show that ey is equal to either 0, 1, or —1, and that these respectively correspond to cases (i),
(ii), and (iii). In Example 1.1 one easily checks ey, = —1.
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2. MAIN RESULT AND PRELIMINARY CALCULATIONS

Here is the result we aim to prove, providing ways to characterize whether we are in case (i), (ii), or (iii).

Theorem 2.1. Fach of the following lists of conditions below consist of equivalent properties:

(i) x is not R-valued, EndR[G](V) = C, ey = 0, there does not exist a nonzero G-equivariant bilinear
form B:V xV = C;
(ii) x is R-valued with V' defined over R, Endrjg)(V) = Matz(R), ev = 1, there exists a symmetric
non-degenerate G-equivariant bilinear form B : V xV — C;
(iii) x is R-valued with V not defined over R, Endrg)(V) = H, ey = —1, there exists a skew-symmetric
non-degenerate G-equivariant bilinear form B:V xV — C.

In cases (ii) and (iii), up to C*-scaling B is the unique nonzero G-equivariant bilinear form B : V xV — C.

Since C C Endgj¢(V') through the given C-linear structure on V', in view of the description of Endgg (V)
in all three cases we see that (iii) is exactly when the G-equivariant C-linear structure on V' can be enhanced
to a G-equivariant left H-module structure (via some inclusion of C as an R-subalgebra of H). For this
reason, case (iil) is usually referred to as quaternionic (of which Example 1.1 is an example).

As a first step towards proving Theorem 2.1, we relate the conditions on €y to the conditions involving
equivariant bilinear forms on V. By linear algebra, a bilinear form B : V x V — C is functorially the same
as a linear map T : V. — V*, so B is G-equivariant if and only if the corresponding T is G-equivariant
(this is also part of HWS8, Exercise 3(ii)). But V and V* are irreducible, so by Schur’s Lemma a nonzero
equivariant 7" must be an isomorphism, and hence a nonzero equivariant B must be a non-degenerate
pairing. Thus, a nonzero B exists if and only if V ~ V* which in turn is equivalent to xy = xy+. But
xv+(9) = x(971) = x(g), so we conclude that x is R-valued if and only if a nonzero G-equivariant B exists;
that is, we have proved the equivalence of the first and last conditions in part (i) of the Theorem.

Let us probe more deeply for properties of a nonzero equivariant B when it exists. The space of bilinear
forms on Vis (V@ V)* ~ V* @ V* and by functoriality of this isomorphism it must be G-equivariant (you
can also check that by hand, but it is better to argue by functoriality considerations alone). We also have
the functorial decomposition

V@ V* ~ Sym?(V*) @ A2(V*),
and by functoriality (or by hand, but you really should argue by functoriality) this is a G-equivariant
isomorphism. The two summands on the right are exactly the spaces of symmetric bilinear forms and skew-
symmetric bilinear forms respectively: although Sym”™ and A™ are defined as quotients of the nth tensor
power, in characteristic 0 these are canonically identified with analogous subspaces too. Thus,

(Ve V)= (Sym*(V) e (\3(V))°.
But we have seen above that when ((V ® V)*)¢ is nonzero it is 1-dimensional (i.e., a nonzero equivariant
B is unique up to C*-scaling if it exists), so when the left side is nonzero we conclude that ezactly one of the
two summands on the right side is 1-dimensional and the other vanishes. That is, if there exists a nonzero
equivariant B then it is either symmetric or alternating and there is no nonzero B’ of the other type. To
relate these conditions to yy, we need to compute the characters of Sym? and A2:

Lemma 2.2. For any G-representation (W, p), xsym2w)(9) = (1/2)(xw (9)* + xw (%)) and xp2(w(9) =
(1/2)(xw (9)? = xw (9°))-

Proof. Consider an upper-triangular form for p(g), say with eigenvalues Ay, ..., A, with multiplicity. Thus,
X = xw satisfies x(g) = >_; A; and x(g?) = > )\?. Computing the symmetric and exterior squares relative
to the same bases, it is easy to see that we again get an upper triangular form for the action of g, and more
specifically that (listing with multiplicity) its eigenvalues on Sym?*(W) are {\;\;}i<; and its eigenvalues on
A2(W) are {\;\;}ic;. Thus, the asserted identities say exactly

? ?
SN =@/ NP+ A, Do = 1/2(O NP =D N,
i<y J J i<y J J

both of which are trivial to verify. |



The dimension of the space of G-invariants in a representation space with character ¢ is (¢¥,1)¢ =
(1/#G) dead)(g). Thus, by using the Lemma for W = V*  averaging over all ¢ € G, and applying
complex conjugation to the two resulting averaged formulas, we conclude that the case when no nonzero
equivariant B exists is exactly when

1 1

2 2 2 2
= =0, a_ := — =0,
at = 5a > (x(9)* + x(g) o= 5og > (x(9)* = x(g)
9geG geG
whereas if a nonzero B exists then it is non-degenerate symmetric precisely when a4 =1 and a_ = 0, and
it is non-degenrate skew-symmetric precisely when ay = 0 and a_ = 1. Since ey = a4 — a_, we see by

checking each case that the final asserted equivalences in (i), (ii), and (iii) are established (and that no other
values for ey are possible).

We have already shown that the first and last conditions in (i) are equivalent, so to complete the proof
of the equivalences in (i) we have to relate the condition Endgg (V) = C to the rest. The C-structure on
V' defines an inclusion C C Endgjg)(V), so we are exploring when this is an equality, and that is just a
dimenson condition over R. Such a dimension can be calculated after scalar extension to C, and (as in the
hint to Exercise 5(ii) in HWS)

C®r EndR[G] (V) = EndC[G] (C QR V)
As C[G]-modules we have
CrV=CRgr(C®cV)=(CorC)®cV,

and the map C®g C ~ C ® C via a ® b — (ab, ab) is an isomorphism of C-algebras when using the C-
structure on the left tensor factor whereas it transports the C-structure from the right tensor factor over to
the one on C x C that is the usual one on the first factor and the action through conjugation on the second
factor. Thus,
CorV~VeV
as C[G]-modules, so
Endgg (CerV)= Endcjqg VeV

In case V 2 V (i.e., Y is not R-valued), this collapses to Endcig) (V) x Endgig (V) = C x C by Schur’s
Lemma. This is 2-dimensional over C. In case V >~V (i.e., x is R-valued), this becomes

Endc[G] (V &) V) - Matg (Endc [G](V)) = MatQ(C)

by Schur’s Lemma and so we get a 4-dimensional endomorphism algebra. In particular, when EndR[G](V)
is not 4-dimensional we must be in case (i). This completes the proof of the equivalences in (i), and shows
that Endgjg)(V) is 4-dimensional over R if and only if x is R-valued.

3. THE R-VALUED CASE

In view of what has already been done, it remains to focus on the cases with R-valued x (so Endgq (V)
is 4-dimensional over R) and to prove that each of the first two conditions in (ii) and (iii) is equivalent to
the third and fourth conditions (whose equivalence has already been shown).

First assume V is defined over R, say V = V ®g C for some R[G]-module V. Thus, the inclusion
R C Endgjg)(Vo) is an equality because it becomes an equality after scalar extension to C (thanks to
Schur’s Lemma), and as an R[G]-module we have V =V, & V}, so

EndR[G](V) = EndR[G](VO & ‘/b) = Matg (EHdR[G](Vb)) = Matg (R)

It follows that the first condition in (ii) implies the second.

Conversely, the second condition in (ii) implies the first. Indeed, if Endgg)(V) = Mata(R) then this is
not a division algebra and hence V' cannot be irreducible as an R[G]-module. Thus, we can pick a nonzero
proper R[G]-submodule V;; C V. Using the G-equivariant C-linear structure on V', we thereby get a canonical
nonzero map of C[G]-modules

T:CerV—V,



so this must be surjective since V is irreducible. As an R[G]-module the left side is Vj & Vg, so we conclude
that its quotient R[G]-module V must be Vj-isotypic with multiplicity at most 2. But dimg V) < dimg V, so
the multiplicity must be exactly 2 and so T' must be an isomorphism. This shows that Vj is an R[G]-module
descent of V; i.e., V is defined over R.

To summarize, the first two conditions in (ii) are equivalent and the last two conditions in (ii) are equiv-
alent. We shall now show that the first condition in (ii) implies the fourth. Pick any positive-definite inner
product (-,-) on Vp, and then average it to achieve G-equivariance:

(= (1/#6) S g(), ().
geG
This average is still positive-definite and hence also non-degenerate. It is also symmetric, so extending scalars
to C then gives B as in the fourth condition of (ii). Thus, to finish the proof of the equivalences in (ii) it
suffices to show that the fourth condition implies the first. This involves a more serious argument in linear
algebra over R, and we refer to the final paragraph of the proof of Theorem 31 in §13.2 of Serre’s book
Linear representations of finite groups for this argument (due to Frobenius and Schur).

With the proof of the equivalences in (ii) finished, the equivalences in (iii) essentially follow immediately
by exhaustion of possibilities as follows. We already know the third and fourth conditions are equivalent, and
that the fourth condition in (iii) accounts for exactly those situations when the fourth conditions in (i) and
(ii) fail. Consequently, it also accounts for exactly those situations when the first conditions in (i) and (ii)
fail, as well as exactly those situations when the second conditions in (i) and (ii) fail. But the complement
of the union of the first conditions in (i) and (ii) is exaclty the first condition in (iii), so the equivalence of
the fourth (and hence third) condition in (iii) with the first is established.

When Endg¢) (V) = H we cannot be in any of the situations covered by the equivalent conditions in (i),
nor in (ii), so by tracking the fourth conditions (or the third, or the first) throughout we see that the fourth
condition in (iii) must hold (or likewise for the third or first conditions in (iii)). Hence, it remains to show
that when the equivalent first, third, and fourth conditions hold in (iii) then necessarily Endgq (V) ~ H.
The analysis of case (ii) actually showed that if V' is reducible as an R[G]-module then we must be in case
(ii) (and more specifically, that the first condition in (ii) holds). Thus, we know that V must be irreducible
as an R[G]-module, so Endgjg)(V) is a division algebra. We have also seen that this endomorphism algebra
must be 4-dimensional over R (using that x is R-valued). Now to conclude we have to bring in a theorem
of Frobenius: the only finite-dimensional division algebras over R are: R, C, and H. In particular, the only
4-dimensional one is H!

[Frobenius’ theorem is proved in many textbooks via a variety of elementary methods; also see the
Wikipedia page for “Frobenius theorem (real division algebras)” for such a proof. Those elementary proofs
tend to be somewhat gritty, and ultimately not so illuminating. There is a short conceptual proof in terms of
general principles in group cohomology applicable to all fields, the special features of R being that Gal(C/R)
is cyclic and the norm map N¢/r : C* — R* from the multiplicative group of its algebraic closure C has
image of index 2 in R*. This conceptual argument rests on the double-periodicity of Tate cohomology of
cyclic groups.]



