As an application of the Conjugacy Theorem, we can describe the continuous class functions \(f : G \to \mathbb{C} \) on a connected compact Lie group \(G \) in terms of a choice of maximal torus \(T \subset G \). This will be an important “Step 0” in our later formulation of the Weyl character formula. If we consider \(G \) acting on itself through conjugation, the quotient \(\text{Conj}(G) \) by that action is the space of conjugacy classes. We give it the quotient topology from \(G \), so then the \(\mathbb{C} \)-algebra of continuous \(\mathbb{C} \)-valued class functions on \(G \) is the same as the \(\mathbb{C} \)-algebra \(C^0(\text{Conj}(G)) \) of continuous \(\mathbb{C} \)-valued class functions on \(\text{Conj}(G) \).

Let \(W = N_G(T)/T \) be the (finite) Weyl group, so \(W \) naturally acts on \(T \). The \(W \)-action on \(T \) is induced by the conjugation action of \(N_G(T) \) on \(G \), so we get an induced continuous map of quotient spaces \(T/W \to \text{Conj}(G) \).

Proposition 0.1. The natural continuous map \(T/W \to \text{Conj}(G) \) is bijective.

Proof. By the Conjugacy Theorem, every element of \(G \) belongs to a maximal torus, and such tori are \(G \)-conjugate to \(T \), so surjectivity is clear. For injectivity, consider \(t, t' \in T \) that are conjugate in \(G \). We want to show that they lie below to the same \(W \)-orbit in \(T \).

Pick \(g \in G \) so that \(t' = gtg^{-1} \). The two tori \(T, gTg^{-1} \) then contain \(t' \), so by connectedness and commutativity of tori we have \(T, gTg^{-1} \subset Z_G(t')^0 \). But these are maximal tori in \(Z_G(t')^0 \) since they’re even maximal in \(G \), and \(Z_G(t')^0 \) is a connected compact Lie group. Hence, by the Conjugacy Theorem applied to this group we can find \(z \in Z_G(t')^0 \) such that \(z(gTg^{-1})z^{-1} = T \). That is, \(zg \) conjugates \(T \) onto itself, or in other words \(zg \in N_G(T) \). Moreover,

\[
(zg)t(zg)^{-1} = z(gtg^{-1})z^{-1} = zt'z^{-1} = t',
\]

the final equality because \(z \in Z_G(t') \). Thus, the class of \(zg \) in \(W = N_G(T)/T \) carries \(t \) to \(t' \), as desired. \[\blacksquare \]

To fully exploit the preceding result, we need the continuous bijection \(T/W \to \text{Conj}(G) \) to be a homeomorphism. Both source and target are compact spaces, so to get the homeomorphism property we just need to check that each is Hausdorff. The Hausdorff property for these is a special case of:

Lemma 0.2. Let \(X \) be a locally compact Hausdorff topological space equipped with a continuous action by a compact topological group \(H \). The quotient space \(X/H \) with the quotient topology is Hausdorff.

Proof. This is an exercise in definitions and point-set topology. \[\blacksquare \]

Combining this lemma with the proposition, it follows that the \(\mathbb{C} \)-algebra \(C^0(\text{Conj}(G)) \) of continuous \(\mathbb{C} \)-valued class functions on \(G \) is naturally identified with \(C^0(T/W) \), and it is elementary (check!) to identify \(C^0(T/W) \) with the the \(\mathbb{C} \)-algebra \(C^0(T)^W \) of \(W \)-invariant continuous \(\mathbb{C} \)-valued functions on \(T \). Unraveling the definitions, the composite identification

\[
C^0(\text{Conj}(G)) \simeq C^0(T)^W
\]

of the \(\mathbb{C} \)-algebras of continuous \(\mathbb{C} \)-valued class functions on \(G \) and \(W \)-invariant continuous \(\mathbb{C} \)-valued functions on \(T \) is given by \(f \mapsto f|_T \).