
Math 248B. Applications of base change for coherent cohomology

1. Motivation

Recall the following fundamental general theorem, the so-called “cohomology and base change” theorem:

Theorem 1.1 (Grothendieck). Let f : X → S be a proper morphism of schemes with S locally noetherian,
and let F be an S-flat coherent sheaf on X. For i ≥ 0 and s ∈ S, assume that the natural base change
morphism ϕi

s : Rif∗(F )s ⊗OS,s
k(s) → Hi(Xs,Fs) is surjective. Then ϕi

s′ is an isomorphism for s′ near s
and the following are equivalent:

(1) ϕi−1
s is surjective

(2) the finite OS,s-module Rif∗(F )s is free.

This result is proved in §12 of Chapter III of Hartshorne’s Algebraic Geometry under a projectivity
assumption on X → S. But this projectivity is hardly used in the proof: its only purpose is to guarantee
coherence of higher direct images, which is proved more generally for proper morphisms in EGA III1, 3.2.1
by a clever deduction from the projective case via Chow’s Lemma and spectral sequences.

A nice discussion of this theorem is given in §5 of Chapter II of Mumford’s “Abelian varieties” (granting
of course the coherence of higher direct images under a proper morphism). Vakil’s notes on this topic are
also illuminating.

In this handout, we wish to deduce some general consequences of the “cohomology and base change”
theorem (e.g., explain how it really says something about general base change, not just passage to fibers).
To give a feeling for the power of Grothendieck’s theorem, we now record some important consequences:

Corollary 1.2. If Hi(Xs,Fs) = 0 for some s ∈ S then (i) the same holds for all s′ near s, (ii) Rif∗(F )
vanishes near s, and (iii) ϕi−1

s′ is an isomorphism for s′ near s.
In the case i = 1, f∗F is locally free near s and ϕ0

s′ : f∗(F )s′ ⊗OS,s′ k(s′)→ H0(Xs′ ,Fs′) is an isomor-
phism for all s′ near s.

Proof. Obviously ϕi
s is surjective, so by Theorem 1.1 this map is an isomorphism. Hence, Rif∗(F )s vanishes

by Nakayama’s Lemma. It follows that Rif∗(F ) vanishes near s, so it is locally free (of rank 0). Thus, by
Theorem 1.1(2) , ϕi−1

s′ is surjective – and therefore an isomorphism – for all s′ near s. Also, since ϕi
s′ is an

isomorphism for s′ near s, we deduce the vanishing of Hi(Xs′ ,Fs′) for s′ near s.
Now suppose i = 1. In this case ϕ0

s′ is an isomorphism for s′ near s, but trivially ϕ−1
s′ is surjective for all

s′. Hence, by Theorem 1.1 with i = 0, the OS,s-module (f∗F )s is free. Thus, f∗F is locally free near s. �

The following result is especially useful.

Corollary 1.3. Let f : X → S be a proper surjective flat map whose geometric fibers are reduced and
connected. Then the natural map OS → f∗OX is an isomorphism.

Proof. For any s ∈ S, the k(s)-algebra of global functions H0(Xs,OXs
) is nonzero and finite-dimensional

over k(s) since Xs is proper and non-empty, and its formation commutes with any extension on k(s) (by
flatness of field extensions). Passing to a geometric fiber therefore gives the algebra of global functions on a
reduced connected proper scheme over an algebraically closed field K, which must coincide with K since it
is reduced and has no nontrivial idempotents (by connectedness). Thus, H0(Xs,OXs) is 1-dimensional over
k(s), so the natural injective map k(s)→ H0(Xs,OXs

) is an isomorphism.
Since X is S-flat, Theorem 1.1 can be applied with F = OX . Consider the base change morphism

ϕ0
s : f∗(OX)s ⊗OS,s

k(s)→ H0(Xs,OXs
) = k(s).

This is nonzero, since 1 7→ 1, so it is surjective. Thus, it is an isomorphism. But ϕ−1
s is trivially surjective,

so f∗(OX)s is free, necessarily of rank 1 since its fiber modulo ms is identified with k(s) via ϕ0
s. It follows

that the coherent OS-module f∗OX is locally free of rank 1, so the map OS → f∗OX of sheaves of algebras
must be an isomorphism because modulo ms it becomes the structural morphism k(s)→ f∗(OX)s⊗OS,s

k(s)
that we have seen is an isomorphism. �

1



2

Remark 1.4. A special case Theorem 1.1 is seen by taking i = d when f has all fibers of dimension ≤ d.
In this case ϕd+1

s is certainly surjective. But Rd+1f∗(F ) = 0 (and hence is locally free) because the
theorem on formal functions identifies the completed stalk at s ∈ S with the inverse limit of cohomologies
Hd+1(Xs,n,Fs,n) of the infinitesimal fibers, all of which vanish (because Xs,n is noetherian of dimension
≤ d). Hence, Theorem 1.1 gives that ϕd

s is surjective (and hence an isomorphism) for all s ∈ S. But this
surjectivity can be seen very directly by replacing S with Spec(OS,s) and identifying ϕd

s with the map induced
by applying Rdf∗ to the surjection F → Fs of coherent OX -modules (viewing Xs as a closed subscheme of
X). The point is that in this “localized” setting, Rdf∗ is right-exact on coherent sheaves precisely because
Rd+1f∗ vanishes on coherent sheaves (due to the argument with the theorem on formal functions as we just
explained).

For the reader who learned cohomology from Hartshorne’s textbook on algebraic geometry, there may be
some concern that the theorem on formal function was proved there using projective methods all over the
place. In fact, the theorem is true with proper morphisms in general, and the proof in EGA III1 is entirely
different: there is no reduction to the projective case via Chow’s Lemma, but rather a very clever argument
due to Serre which is ultimately more illuminating than the projective method in Hartshorne.

2. Base change

Now consider the general setup in Theorem 1.1: a proper map f : X → S to a locally noetherian scheme
S, and an S-flat coherent sheaf F on X. We want to use the fibral base change morphisms ϕi

s for s ∈ S to
study more general base change morphisms.

Proposition 2.1. Assume ϕi
s is an isomorphism for all s ∈ S, and that ϕi−1

s is also an isomorphism for
all s ∈ S (or equivalently, that Rif∗(F ) is locally free on S). Consider a locally noetherian S-scheme S′,
the resulting cartestian diagram

X ′
q //

f ′

��

X

f

��
S′ p

// S

and the S′-flat coherent sheaf F ′ = q∗F on X ′. The natural base change morphism p∗(Rif∗F )→ Rif ′∗(F
′)

is an isomorphism.

Note that when S′ is a point s : Spec(k) → S, the base change morphism recovers the isomorphism
property of ϕi

s that is the hypothesis in the proposition. This result is easiest to understand when S =
Spec(A) and S′ = Spec(A′) are affine, in which case the higher direct images are associated to the cohomology
modules Hi(X,F ) and Hi(X ′,F ′), and the base change morphism is the natural map

A′ ⊗A Hi(X,F )→ Hi(X ′,F ′)

arising from sheaf cohomology pullback relative to X ′ → X. The isomorphism property for this map is
especially powerful when A and A′ are both artin local rings.

Proof. For clarity, lets write ϕi
F ,s rather than ϕi

s. For s′ ∈ S′ over s ∈ S, the map ϕi
F ′,s′ has the form

Rif ′∗(F
′)s′ ⊗OS′,s′ k(s′)→ Hi(X ′s′ ,F ′s′).

We claim that this is surjective too.
The key point is that the formation of cohomology of coherent sheaves on proper schemes over a ring

commutes with flat scalar extension on the base ring (as one sees by identifying the pullback map in sheaf
cohomology with an explicit map in C̆ech cohomology relative to a finite affine open cover), a main example
being extension of the base field. Thus, the natural map

(2.1) k(s′)⊗k(s) Hi(Xs,Fs)→ Hi(X ′s′ ,F ′s′)

is an isomorphism. It follows that to prove the surjectivity of the k(s′)-linear ϕi
F ′,s′ , it suffices to show that

the image contains the k(s)-subspace Hi(Xs,Fs). But it is straightforward to verify the compatibility of ϕi
F ,s
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and ϕi
F ′,s′ with respect to the natural pullback map Rif∗(F )s → Rif ′∗(F

′)s′ (linear over OS,s → OS′,s′), so
the surjectivity of ϕi

F ,s implies the surjectivity of ϕi
F ′,s′ .

Since ϕi
F ′,s′ is surjective for all s′ ∈ S′, and similarly for i−1, by Theorem 1.1 we conclude that Rif ′∗(F

′)
is locally free on S′. Thus, on s′-stalks the base change morphism in the proposition goes between free
OS′,s′-modules of finite rank. It suffices to prove that such stalk maps are isomorphisms for all s′ ∈ S′, and
to prove this isomorphism property it suffices to do so modulo ms′ (by the module-freeness). But via the
isomorphisms ϕi

F ,s and ϕi
F ′,s′ (and the compatibility relating them), the induced map modulo ms′ is exactly

the map (2.1) that we have seen is an isomorphism. �

Example 2.2. Consider a genus-g S-curve X → S. Taking F = OX , the natural map ϕ1
s is surjective

(Remark 1.4), and ϕ0
s is also surjective (as we saw in the proof of Corollary 1.3). Thus, Theorem 1.1 and

Proposition 2.1 imply that R1f∗OX is a locally free sheaf on S whose formation commutes with any (locally
noetherian) base change on S. In particular, the rank is g, due to ϕ1

s being an isomorphism for all s ∈ S.
Note that Ω1

X/S is an S-flat coherent sheaf, as it is locally free as an OX -module and X is S-flat. Thus,
we can try to apply the base change formalism to study the higher direct images of Ω1

X/S . We are especially
interested in ωX/S = f∗Ω1

X/S . We claim that this is a locally free sheaf of rank g whose formation commutes
with any base change. By Proposition 2.1 with i = 0, it suffices to prove that ϕ0

Ω1
X/S

,s
is surjective for all

s ∈ S. By Theorem 1.1 and Remark 1.4, it is equivalent to prove that R1f∗(Ω1
X/S) is locally free.

There are a couple of methods for proving local freeness of R1f∗(Ω1
X/S), neither of which is “elementary”

(and I do not know any elementary proof); this result will not be used in what follows. One method
is to use an hydrogen bomb: relative Grothendieck–Serre duality provides a canonical trace isomorphism
R1f∗(Ω1

X/S) ' OS . Another method is to use an atom bomb: by the theorem on formal functions and
Proposition 2.1 (applied over artin local base schemes) we can reduce to the case when the base is artin
local, and then by using the main results from SGA1 on algebraization of formal deformation of curves we
can reduce to the case when the base is a regular local ring (exercising care to check that this deformation and
algebraization process does not lose the connectedness property for the geometric fibers). In that case the
base is reduced, so we can apply Grauert’s base change theorem (see Chapter II, §5, Corollary 2 of Mumford’s
“Abelian Varieties”): since the fibral cohomologies H1(X)s,Ω1

Xs/k(s)) all have the same dimension (in fact,
1), reducedness of the base implies that R1f∗(Ω1

X/S) is locally free.

Example 2.3. Let (E, e) be an elliptic curve over S, and for n ≥ 1 define O(ne) = I −n for the invertible
ideal sheaf I of the section e. We claim that f∗(O(ne)) is a locally free sheaf of rank n whose formation
commutes with any base change, and that the natural map OS → f∗(O(e)) is an isomorphism.

Since the genus is 1, by Riemann–Roch and Serre duality the fibral cohomologies H1(Es,O(ne(s))) all
vanish (n ≥ 1) and H0(Es,O(ne(s))) are n-dimensional. Thus, by Corollary 1.2 we get that f∗(O(ne)) is
locally free and its formation commutes with base change. The base change to fibers then implies that its
rank is n everywhere.

To check that the natural map OS → f∗(O(e)) between invertible sheaves is an isomorphism, it suffices to
check after passing to stalks and reducing modulo the maximal ideal. But by the base change compatibility,
the resulting map is identified with the natural map k(s)→ H0(Es,O(e(s))), and by the classical theory on
fibers (or even geometric fibers) this is an isomorphism: it says that the only rational functions on Es with
at worst a simple pole at the origin are the constant functions.

3. Projectivity of curves

It is a classical fact that a smooth geometrically connected proper curve over a field is projective. We
would like to prove a relative version of this fact. In the case of genus 1, when there is a section we proved
in class that the curve is given in P2 by a Weierstrass cubic Zariski-locally on the base. For a genus-1 curve
without a section, it is generally hopeless to prove a projectivity result, since one has no evident way to
create an ample line bundle. However, for all other genera we can use the relative 1-forms to do the job:
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Proposition 3.1. Let f : X → S be a smooth proper map whose fibers are geometrically connected of
dimension 1 and genus g 6= 1. Zariski-locally on the base, there is a projective embedding.

Proof. If g = 0 then let L = (Ω1
X/S)∨ and if g > 1 then let L = (Ω1

X/S)⊗3. By Riemann-Roch, Serre
duality, and fibral degree considerations, we have H1(Xs,Ls) = 0 for all s ∈ S. Hence, by Corollary 1.2 and
Proposition 2.1 the sheaf f∗(L ) is locally free on S and its formation commutes with any base change. But
deg(Ls) is large enough so that by the classical theory on fibers, Ls is generated by its global section over
Xs. Those global sections in turn are generated by the stalk f∗(L )s due to the surjectivity of ϕ0

L ,s, so it
follows that over an open affine U in S the module H0(XU ,L ) of U -sections of f∗L generate all stalks of L
over XU . In other words, the natural map f∗(f∗L )→ L is surjective, and hence (by the universal property
of projective space) defines an S-morphism

ι : X → ProjS(f∗L ).

If we can show that ι is a closed immersion, we will be done.
The construction of ι commutes with any base change on S (check!), and on geometric fibers it recovers

exactly the anti-canonical embedding of a genus-0 curve as a conic in the plane when g = 0 and the
tricanonical embedding of a curve of genus g when g > 1. Thus, the induced map ιs on s-fibers is a
closed immersion for all s ∈ S. It follows that the proper S-map ι is quasi-finite, hence finite. The closed
immersion property on s-fibers therefore enables us to infer via Nakayama’s Lemma that ι is a closed
immersion (why?). �

4. Rigidity

We conclude with a result which is an answer to many prayers for converting equalities of maps on fibers
into equality of maps over a base. This will not involve the formalism of base change for cohomology, except
that it uses a condition whose only natural means of verification is via that formalism. The basic setup is
as follows.

Consider a pair of S-maps f1, f2 : X ⇒ Y between two S-schemes, where p : X → S is proper and
OS = p∗OX . (By Corollary 1.3, we have criteria to verify this final condition!) Loosely speaking, X → S
is akin to a family of compact connected complex manifolds. If (f1)s = (f2)s for all s ∈ S, when can we
conclude that f1 = f2 as scheme morphisms? We stress that this is a nontrivial problem when S is an
artin local ring, and the question is only interesting when X is non-reduced (as otherwise we can replace Y
with Yred and then everything is obvious since by assumption f1 and f2 coincide topologically). A natural
context for this kind of question is when relativizing results such as “every map between abelian varieties
that respect the identity sections is a homomorphism” to the theory over a base scheme.

Let’s focus on the case that Y = G is an S-group. In this case we can form the map f1 ·(f2)−1 and thereby
reduce the problem that of asking whether f : X → G is the constant map through the identity section (i.e.,
f = eG ◦ p) if it is so on fibers. Certainly some additional hypothesis is needed, as otherwise we could take
f = g ◦ p for a nontrivial section g ∈ G(S) that is topologically supported at the identity. (For example, if
S = Spec(k[ε]) then g could correspond to a nonzero tangent vector at the identity.) So the “best possible”
result would be that f = g ◦ p for some g ∈ G(S). If that were the case, and if there exists some x ∈ X(S)
such that f ◦ x = e in G(S) then we would win: e = f ◦ x = g ◦ p ◦ x = g ◦ 1S = g. In other words, if f
induces the identity map on fibers and carries some x ∈ X(S) over to e ∈ G(S) then we would get f = e ◦ p
as desired. Thus, the following result is what we want:

Proposition 4.1 (Rigidity). Let S be a scheme and f : X → Y an S-map where p : X → S is closed and
OS ' p∗OX . If for every geometric point s of S the fiber map fs : Xs → Ys factors through a k(s)-point of
Ys then f = y ◦ p for a unique y ∈ Y (S).

Proof. First we check uniqueness. Since p(X) ⊆ S is a closed set, p must be surjective because restricting
over S − p(X) would bring us to the case when X is empty and OS = p∗OX , forcing S to be empty. Thus,
the condition y ◦ p = f determines y topologically. To prove that the map y] : OY → y∗OS is uniquely
determined, we note that inserting the isomorphism p] : OS ' p∗OX converts the unknown y] into the map
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OY → f∗OX that is exactly (y ◦p)] = f ] (check!). Hence, y is uniquely determined as a map of ringed spaces
if it exists.

Now we run the argument in reverse to prove existence. By the (geometric) fibral hypothesis, f factors
set-theoretically through p (i.e., f(x) depends only on p(x) ∈ S). But p is a surjective closed map, hence
a topological quotient map, so the resulting set-theoretic factorization y : S → Y satisfying y ◦ p = f
(topologically) has y actually continuous. To promote y to a morphism of ringed spaces, we define y] to be
the composite map

OY → f∗OX = y∗(p∗OX) ' y∗OS

where the first step is f ] and the last step is the inverse to y∗(p]). Now f = y ◦ p as maps of ringed spaces,
and it remains to check that y is locally ringed (so y is really a morphism of schemes). That is, for s ∈ S we
want OY,y(s) → OS,s to be a local map. Choosing x ∈ p−1(s) (so f(x) = y(p(x)) = y(s)), composing with
the local map OS,s → OX,x induced by p] yields the local map OY,f(x) → OX,x induced by f ] (check!). But
it is easy to check that a ring homomorphism R → R′ between local rings is a local map provided that its
composition with a local map R′ → R′′ is local. �


