
Math 248B. GL2(Z)-action and modular forms

1. Motivation

In class we saw that the Weierstrass elliptic curve E → C−R equipped with its associated H1-trivialization
Ψ : Z2× (C−R) ' H1(E /(C−R)) is universal for pairs (E,ψ) consisting of an elliptic curve f : (E, e)→M
over a (varying) complex manifold M and an H1-trivilaization ψ : Z2 ×M ' H1(E/M) := R1f∗(Z)∨.

To make this universality more precise, we defined the contravariant functor F from the category of
complex manifolds to the category of sets by assigning to each complex manifold M the set F (M) of
isomorphism classes of pairs (E,ψ) over M , with the functoriality F (h) : F (M) → F (M ′) for h : M ′ → M
defined via base change along h. We proved in class that C − R represents the functor F via the object
(E ,Ψ) ∈ F (C − R). That is, the natural transformation Hom(·,C − R) → F defined by the object
(E ,Ψ) ∈ F (C−R) is an isomorphism of functors. In more concrete terms, given any M and any (E,ψ) over
M , there is a unique cartesian diagram of elliptic curves

E //

��

E

��
M

h
// C−R

such that the top horizontal map carries ψ over to Ψ. (We also saw in class that, due to the rigidity of H1-
trivializations of elliptic curves over complex manifolds, in this cartesian diagram the top horizontal arrow
is uniquely determined by the bottom arrow h and the compatibility requirement with ψ and Ψ. In this
sense, we can often focus attention primarily on h, but it is nonetheless important not to forget about the
top horizontal map.)

In this handout, we use F to interpret certain classical constructions involving the representing object
(E ,Ψ) for F . In particular, the classical action of GL2(Z) on C − R will be related to an action of this
group on the functor F , and upon working out this effect on the universal elliptic curve E (not just on the
base space C−R!) we will see how the automorphy factor arising for weight-k modular forms is encoded in
terms of our interpretation of the Weierstrass family (equipped with Ψ!) as a representing object for F . In
the final section we explain Deligne’s generalization to the case of GL2(R) acting on C−R.

The importance of interpreting classical explicit formulas and group actions more conceptually in terms of
the functor F and variants on it is that this will pave the way for proofs of consistency between the analytic
and algebraic approaches to the theory of modular forms.

2. The GL2(Z)-action

Define an action of Γ := GL2(Z) on F as follows. For any complex manifold M , the action of Γ on F (M) is
defined to be γ.(E,ψ) = (E,ψ◦γt), where (E, e)→M is an elliptic curve over M and ψ : Z2×M ' H1(E/M)
is an isomorphism of M -groups. The intervention of matrix-transpose in this definition makes it a left action
of Γ on F (M), and it is easy to check that for any h : M ′ →M the base change map F (h) : F (M)→ F (M ′)
is Γ-equivariant. Thus, we have defined a left action of Γ on the functor F .

Using the isomorphism Hom(·,C −R) ' F defined by the object (E ,Ψ) over C −R, Yoneda’s Lemma
yields a left action of Γ on C −R as well as a lift of this to a left action on E over the action on C −R.
To be precise, for any γ ∈ Γ the pair (E ,Ψ ◦ γt) over C−R fits into a unique cartesian diagram of elliptic
curves

E
[γ]E //

f

��

E

f

��
C−R

[γ]
// C−R

1



2

in the sense that the map [γ]E over [γ] carries Ψ ◦ γt on the source over to Ψ on the target. For γ = 1
we must have the identity on the top and bottom by uniqueness, and in general the action property on F
implies that both [γ] and [γ]E are multiplicative in γ. Hence, both are isomorphisms (with [γ−1] inverse to
[γ], and similarly on E ).

To make this explicit, [γ] is a holomorphic automorphism of C−R such that for all τ ∈ C−R the fibral
map

[γ]E ,τ : C/Λτ = Eτ → E[γ](τ) = C/Λ[γ](τ)

induced by [γ]E carries the ordered basis of Λτ corresponding to Ψτ ◦γt over to the ordered basis ([γ](τ), 1) of
Λ[γ](τ) corresponding to Ψ[γ](τ). We compute [γ] and [γ]E from these properties as follows. Writing γ = ( a bc d ),
the first member of the ordered basis of Λτ ⊂ C corresponding to Ψτ ◦ γt is the complex number

(Ψτ ◦ γt)( 1
0 ) = Ψτ ( ab ) = aΨτ ( 1

0 ) + bΨτ ( 0
1 ) = aτ + b,

and similarly the second member of the ordered basis is cτ +d. In other words, the point [γ](τ) ∈ C−R has
the property that there is an isomorphism [γ]E ,τ : C/Λτ ' C/Λ[γ](τ) whose effect on the homology lattices
carries aτ + b to [γ](τ) and carries cτ + d to 1.

An isomorphism of elliptic curves C/L ' C/L′ is necessarily induced by multiplication by some λ ∈ C×

such that λ(L) = L′. Thus, [γ]E ,τ is induced by multiplication by a complex number λτ such that

λτ · (aτ + b) = [γ](τ), λτ · (cτ + d) = 1.

This says that λτ = (cτ + d)−1 and [γ](τ) = (aτ + b)/(cτ + d). Summarizing these calculations, we have
proved:

Proposition 2.1. Choose γ = ( a bc d ) ∈ Γ. The automorphism [γ] of C −R is τ 7→ (aτ + b)/(cτ + d), and
the automorphism [γ]E of E = (C × (C − R))/Λ over [γ] is induced by the line bundle automorphism of
C× (C−R) over [γ] defined by (z, τ) 7→ (z/(cτ + d), (aτ + b)/(cτ + d)).

Example 2.2. Consider the element γ = −1 ∈ Γ. The automorphism [γ] of C−R is the identity. This can
be seen from the explicit formula for [γ], but it also follows conceptually from the fact that for any (E,ψ)
over any M , we have ψ ◦ γt = −ψ and the pair (E,ψ ◦ γt) = (E,−ψ) is isomorphic to (E,ψ) via negation on
E (so the effect on the functor F of isomorphism classes is trivial, and hence likewise on the moduli space
C−R). But observe that the automorphism [γ]E of E (over the identity on C−R) is not the identity map:
it is negation. Indeed, this can be seen from the explicit formula, and we also just saw it via considerations
with the functor F .

The upshot of this example is that although the Γ-action “upstairs” at the level of H1-trivialized elliptic
curves is determined by its effect “downstairs” on the base of the family of such elliptic curves, triviality
of an action on the base does not imply triviality upstairs when the desired effect on ψ is nontrivial. This
reminds us not to forget that a moduli space is always equipped with a universal structure over it. Any
explicit calculation with a moduli space that involve its universal property must use the chosen universal
structure that defines the “moduli space” property.

The reader will observe that the explicit formula for [γ] recovers the classical action of GL2(Z) on C−R
(inducing the classical action on SL2(Z) on each connected component h±i of C − R), and the explicit
formula for [γ]E over [γ] on universal elliptic curve encodes scaling by 1/(cτ +d). The latter is reminiscent of
the automorphy factor in the definition of a modular form. In the next section we will use relative 1-forms
to make the link with automorphy factors more substantial.

3. Relative 1-forms and automorphy factors

Consider an elliptic curve f : (E, e)→M over a complex manifold M . (We will ultimately be interested
in the universal family E over C −R, but at the outset it is clearer not to focus on this special case.) In
HW3, Exercise 3, it is shown that the OM -module ωE/M := f∗(Ω1

E/M ) is an invertible sheaf whose formation
naturally commutes with any base change. In particular, if we work locally on M to arrange that this
invertible sheaf admits a trivializing global section ω ∈ Γ(M,ωE/M ) = Γ(E,Ω1

E/M ) (as we saw always occurs
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when there is a global Weierstrass model), then the specialization ωm ∈ Γ(Em,Ω1
Em

) on each fibral elliptic
curve is a nonzero 1-form. Loosely speaking, such an ω amounts to a holomorphically varying choice of
nonzero holomorphic 1-form on the fibers Em (at least locally on M).

As a special case, for the Weierstrass family E → C−R, in Exercise 3 of HW3 we exhibited an explicit
such global section of Ω1

E /(C−R) (inducing a nonzero holomorphic 1-form on every fiber): the descent of
the global relative 1-form dz on the covering space C × (C − R) over E . Adopting a standard abuse of
notation, we will denote this descent in Γ(E ,Ω1

E /(C−R)) = Γ(C−R, ωE /(C−R)) as dz also when the context
makes the intended meaning clear. Viewing (dz)⊗k as a trivializing section of (Ω1

E /(C−R))
⊗k, we have

(Ω1
E /(C−R))

⊗k = OE (dz)⊗k and so

f∗((Ω1
E /(C−R))

⊗k) = f∗(OE )(dz)⊗k = OM (dz)⊗k.

This tensor-power notation is consistent with viewing (dz)⊗k as a trivializing section of ω⊗kE /(C−R), via the
following result.

Lemma 3.1. For any k ≥ 1 and elliptic curve E → M , the natural map of line bundles ω⊗kE/M →
f∗((Ω1

E/M )⊗k) is an isomorphism. In particular, there is an open covering {Ui} of M such that for Ei =
E|Ui

the line bundle (Ω1
Ei/Ui

)⊗k has a trivialization section of the form ω⊗k where ω ∈ Γ(Ui, ωE/M ) =
Γ(Ei,Ω1

E/M ).

The natural map in this lemma is a higher version of the natural map f∗(F )⊗OM
f∗(G )→ f∗(F ⊗OX

G )
for any morphism of ringed spaces f : X →M and any OX -modules F and G . (This natural map relating
tensor products and pushforwards is usually not an isomorphism; the elliptic curve case with Ω1’s is quite
special in this respect.)

Proof. The problem is intrinsic to the abstract OE-module Ω1
E/M , and by working locally on M (to trivialize

ωE/M ) we can reduce to the case when Ω1
E/M is globally free on E. That is, Ω1

E/M ' OE . We may then
express our problem in terms of OE : we seek to prove that the natural map (f∗OE)⊗k → f∗(O⊗kE ) is an
isomorphism. But the natural map OM → f∗(OE) is an isomorphism (since f is a proper submersion
with connected fibers), and O⊗kE ' OE via multiplication, so the problem becomes that of showing the
multiplication map O⊗kM → f∗(OE) is an isomorphism. This is easy to verify, due to the natural isomorphism
OM ' f∗(OE). �

Now consider the action of Γ = GL2(Z) on the universal elliptic curve E → C−R. That is, for each γ ∈ Γ
we have an automorphism [γ] of C−R over which we have an automorphism [γ]E of E , with both actions
defined in terms of the functor F which is represented by the object (E ,Ψ) ∈ F (C−R). This was all made
explicit in Proposition 2.1. Pullback of relative 1-forms along the action [γ]E over [γ] defines an isomorphism
Ω1

E /(C−R) → [γ]∗(Ω1
E /(C−R)), so by passing to kth tensor powers (for k ≥ 1) and pushing forward to C−R

we may apply Lemma 3.1 to get an isomorphism

(3.1) ω⊗kE /(C−R) ' [γ]∗(ω⊗kE /(C−R)).

But ω⊗kE /(C−R) is trivialized by (dz)⊗k, so it makes sense to ask for an explicit description of the line bundle
isomorphism (3.1) over the moduli space C−R in terms of holomorphic coefficient functions relative to the
global frame (dz)⊗k. This yields something familiar:

Proposition 3.2. For any open set U ⊂ C − R, the isomorphism ω⊗kE /(C−R)(U) ' ω⊗kE /(C−R)([γ]−1(U))
induced by (3.1) on U -sections is

f · (dz)⊗k 7→ (f |kγ) · (dz)⊗k

where (f |kγ) : τ 7→ (cτ + d)−kf((aτ + b)/(cτ + d)) = j(γ, τ)−kf([γ](τ)) for ( a bc d ) = γ and j(γ, τ) := cτ + d.
In particular, when the line bundle ω⊗kE /(C−R) on C−R is globally trivialized by (dz)⊗k, the effect of [γ]E

on global sections is the classical operator f 7→ f |kγ on global holomorphic functions on C−R.
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Note that since this proposition concerns the pullback action on (tensor powers of) relative 1-forms in a
family of elliptic curves (not 1-forms on the base of the family!), and such pullback is contravariant with
respect to composition, it follows by pure thought (along with the fact that [γ]E defines a left action of Γ on
E ) that the induced operations in this proposition must be right actions. Of course, the right-action property
of f 7→ f |kγ can easily be verified by direct computation with the explicit formula, as is done classically, but
it is satisfying that we can also see this property of the action by thinking without explicitly computing.

This proposition is an essential ingredient in the “geometrization” of the classical theory of modular forms,
as we will see later. After reading the proof below, the interested reader may wish to reflect on how the
result is related to “explanations” (in the books by Koblitz, Lang, Silverman, et al.) for the source of the
(·)|kγ operation in terms of “moduli” of elliptic curves.

Proof. We simply compute on fibers. For u ∈ U , the u-fiber of f · (dz)⊗k ∈ Γ(U, ω⊗kE /(C−R)) corresponds to
f(u)(dz)⊗k ∈ Γ(Eu, (Ω1

Eu
)⊗k) via the u-fiber of the isomorphism in Lemma 3.1 applied to E → C−R. For

any τ ∈ C−R (such as τ ∈ [γ]−1(U)), the fibral map

[γ]E ,τ : C/Λτ → C/Λ[γ](τ)

is induced by multiplication by (cτ + d)−1 on C, so the pullback on global 1-forms on these fibral elliptic
curves is determined by carrying (the descent of) dz back to (the descent of) (cτ +d)−1dz. Hence, on global
sections of the tensor power (Ω1)⊗k on these fibral elliptic curves, (dz)⊗k is pulled back to (cτ +d)−k(dz)⊗k.

Choose τ0 ∈ [γ]−1(U). Since [γ]E sits over [γ] in a cartesian square, the [γ]E -pullback of f · (dz)⊗k has
τ0-fiber equal to the pullback under [γ]E ,τ0 of the [γ](τ0)-fiber

f([γ](τ0))(dz)⊗k ∈ Γ(E[γ](τ0), (Ω
1)⊗k)

of f · (dz)⊗k. Taking τ = τ0 above, this pullback is (cτ0 + d)−kf([γ](τ0))(dz)⊗k. �

4. The GL2(R)-action via variations of complex structure

Classically, the holomorphic left action of GL2(Z) on C −R is induced by a real-analytic left action of
GL2(R). In this final section, we give a moduli-theoretic interpretation for this GL2(R)-action on C−R as
well as for the “weight-k” operator (·)|kg. (Restricting to SL2(R) will give similar results over each connected
component h±i of C−R.)

The viewpoint we will take, due to Deligne, is to think of the injections Λτ ↪→ C not as varying lattices
in a fixed complex line but rather as varying complex structures on a fixed R-vector space R2 = R⊗Z Z2.
The viewpoint of variations of complex structure arises naturally in many higher-dimensional problems.

Definition 4.1. LetM be a complex manifold, andW0 a finite-dimensional R-vector space of even dimension
2d > 0. A (holomorphic) variation of complex structure on W0 parameterized by M is a pair (V, ϕ) consisting
of a rank-d holomorphic vector bundle V and an isomorphism ϕ : W0×M ' V of real-analytic vector bundles
carrying the set W0 of constant sections into the set V (M) of holomorphic sections.

An isomorphism between such variations (V, ϕ) and (V ′, ϕ′) is a holomorphic vector bundle isomorphism
V ' V ′ that carries ϕ to ϕ′ (i.e., V (M) ' V ′(M) restricts to the identity map on W0).

As in the case of H1-trivialized elliptic curves, it is easy to check that if two pairs (V, ϕ) and (V ′, ϕ′) are
isomorphic then the isomorphism between them is uniquely determined.

The reason for the name is that for each m ∈ M the m-fiber W0 thereby acquires a specified C-vector
space structure that generally varies as we change m. This C-linear structure on the fibers makes the real-
analytic R-vector bundle W0×M →M into a holomorphic vector bundle over the complex manifold M , and
if two variations of complex structure (V, ϕ) and (V ′, ϕ′) on W0 are isomorphic then the resulting C-vector
space structures on the m-fiber W0 coincide for each m ∈M . The converse is false:

Example 4.2. Choose i ∈
√
−1 and consider a real-analytic map f : M → C −R. Define ϕf : R2 ×M →

V := C×M via (a, b,m) 7→ (f(m)(a+ bi),m). This is a variation of complex structure on R2 parameterized
by M such that each fiber R2 acquires the C-linear structure via the basis {1, i} of C (which has nothing to
do with f). If (V, ϕf ) is isomorphic to (V, ϕ1) then the resulting holomorphic automorphism of V carrying
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ϕ1 to ϕf must be multiplication by f(m) on the m-fibers and hence f must be holomorphic. Thus, by choose
non-holomorphic f we get the desired counterexample.

Here are some basic examples of interest.

Example 4.3. A variation of complex structure on R2d is a pair (V, (s1, . . . , s2d)) where V → M is a rank-
d holomorphic vector bundles and s1, . . . , s2d ∈ V (M) are holomorphic sections such that {sj(m)} is an
R-basis of Vm for all m ∈M .

Example 4.4. Let j : Z2d ×M ↪→ V be a relative lattice in a rank-d holomorphic vector bundle V over
M . Then R2d ×M ' V as real-analytic vector bundles of rank 2d, so this defines a variation of complex
structure on R2d parameterized by M . In particular, any H1-trivialized elliptic curve E → M defines a
variation of complex structure on R2 parameterized by M . (Explicitly, Tan0(Em) is a C-line structure on
H1(Em,R) = R2.) The Weierstrass construction over M = C−R is an example of this.

It is easy to check that isomorphism pairs (E,ψ) and (E′, ψ′) over M define isomorphic variations of
complex structure on R2 parameterized by M .

Example 4.5. An isomorphism class of variations of complex structure on R2 parameterized by M is an
O×(M)-homothety class of holomorphic line bundle structures on the rank-2 real-analytic vector bundle
R2 ×M . The resulting fibral complex structures define a collection of R-algebra maps C → EndR(R2) =
Mat2(R) parameterized by the points m ∈M .

In the special case of the Weierstrass construction over M = C−R, for τ ∈ C−R the resulting complex
structure on R2 as the τ -fiber corresponds to the unique complex structure for which τ(0, 1) = (1, 0).
Explicitly, if X2 + αX + β ∈ R[X] is the minimal polynomial of τ over R then

τ(1, 0) = τ2(0, 1) = (−ατ − β)(0, 1) = (−α,−β),

so the R-algebra map R[τ ] = C → EndR(R2) = Mat2(R) is characterized by τ 7→ (−α 1
−β 0 ). Hence, writing

τ = a+ bi (so α = −2a and β = a2 + b2), the complex structure associated to τ = a+ bi is characterized by

i = (1/b)(τ − a) 7→
(

a/b 1/b
−b(1 + (a/b)2) −a/b

)
.

In particular,
(0, 1) ∧ i(0, 1) = (0, 1) ∧ (1/b,−a/b) = −(1/b) · (1, 0) ∧ (0, 1),

so i-orientation of R2 relative to the complex structure associated to τ ∈ C−R is the standard orientation
if and only if the imaginary part b of τ relative to i (i.e., b := (τ − τ)/2i) is negative. (More generally, for
any nonzero v = (x, y) ∈ R2, v∧ iv = −(1/b)((bx)2 + (y+ax)2)(1, 0)∧ (0, 1) with (bx)2 + (y+ax)2 > 0 since
b 6= 0 and v 6= 0, confirming explicitly that the orientation class of v ∧ iv is independent of v, as we know it
must be.)

Definition 4.6. For any complex manifold M , let F ′(M) denote the set of isomorphism classes of complex
structures on R2 parameterized by M . This is a contravariant functor on M via pullback of holomorphic
line bundles along holomorphic maps M ′ →M .

We have explained above that there is a natural transformation F → F ′ assigning to any (E,ψ) over M
the resulting variation of complex structure on R2 = R⊗Z Z2 parameterized by M .

Proposition 4.7. The natural transformation F → F ′ is an isomorphism, so the variation of complex
structure on R2 parameterized by C−R arising from the Weierstrass construction (E ,Ψ) over C−R is the
universal variation.

Proof. Since a lattice inclusion of Z2 into a C-line L amounts to an R-linear isomorphism R2 ' L, a variation
of complex structure on R2 parameterized by M is the same as an isomorphism class of pairs consisting of
a holomorphic line bundle V →M equipped with an M -lattice Z2×M → V . But this latter data in turn is
the same as the resulting isomorphism class of the H1-trivialized pair (V/(Z2×M), ψ). Every H1-trivialized
pair (E,ψ) over M admits such a form due to the relative uniformization of elliptic curves over complex
manifolds (which is covariantly functorial in E and compatible with base change on M). �
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The bijection Hom(M,C − R) = F (M) ' F ′(M) in the case of a one-point M identifies the set C −
R with the set of C-vector space structures on R2 taken up to C-linear isomorphism. Here is a more
illuminating explanation of this fact. Observe that a complex structure on R2d is an element of the set
IsomR(R2d,Cd)/GLd(C). Setting d = 1, if we use (0, 1) as a C-basis for the C-line structure on R2 then
forming the ratio (1, 0)/(0, 1) relative this C-linear structure identifies IsomR(R2,C)/C× with C−R. This
recovers the above identification of the underlying set of C−R with the set of variations of complex structure
on R2 parameterized by a one-point M (i.e., the set of complex structures on the R-vector space R2, taken
up to C-linear isomorphism).

Remark 4.8. In terms of the identification of C − R with the moduli space M for complex structures on
R2, such a complex structure corresponds to a point in the connected component of C −R containing the
unique i =

√
−1 for which the common orientation class of v ∧ iv for any nonzero v ∈ R2 is the opposite of

the standard orientation of R2. More concretely, as we saw via the calculations in Example 4.5, a complex
structure lies in the connected component of C−R containing the unique i such that the matrix in GL2(R)
for the i-action has positive upper-right entry. (This entry is nonzero, since the i-action is a zero of the
irreducible X2 + 1 ∈ R[X] and hence cannot have any eigenvector on R2.)

In more intrinsic terms, two complex structures on R2 lie in the same connected component of M precisely
when the common orientation class of v∧ iv for any nonzero v ∈ R2 is the same for both complex structures.
(This condition is independent of the choice of i.)

Upon identifying IsomR(R2,C) with the set Latt(Z2,C) of lattice inclusions of Z2 into C, the set
Latt(Z2,C)/C× of homothety classes of such inclusions is likewise identified with C − R by forming the
ratio (1, 0)/(0, 1) relative to the lattice inclusion into C. Hence, if we define an action by g ∈ G := GL2(R)
on F ′(M) by carrying a complex structure on R2 ×M back to another one via precomposition with the
gt-action on R2 then this is a left action of G on the functor F ′ and and via F ' F ′ it recovers the action
of Γ := GL2(Z) on F defined earlier. This G-action does not have a direct description in terms of elliptic
curves, which is why we need to introduce the viewpoint of the functor F ′ to define it.

In this way we get a left action of G on C −R that restricts to the Γ-action as defined earlier; denote
this as [g] for g ∈ G. Arguments similar to those used for the Γ-action on C−R show that the G-action on
C−R is the classical one: [g](τ) = (aτ + b)/(cτ + d) for g = ( a bc d ) ∈ G. Thus, by inspection the action map
G× (C−R) → (C−R) is real-analytic. This real-analyticity (and in particular, continuity) of the action
can be seen by pure thought as well, but this requires an additional concept, as we now explain.

Definition 4.9. A (real-analytic) variation of complex structure on R2d parameterized by a real-analytic
manifold M exactly as in the holomorphic case: it is a pair consisting of a rank-d real-analytic complex
vector bundle V → M and an isomorphism ϕ : R2d ×M ' V of real-analytic vector bundles. The notion
of isomorphism between such pairs (V, ϕ) is defined in the evident manner (an isomorphism V ' V ′ that
carries ϕ to ϕ′).

The difficulty as in Example 4.2 doesn’t arise in the real-analytic case: two such pairs are isomorphic
if and only if for each m ∈ M the resulting C-linear structures on the m-fiber R2d coincide. Thus, an
isomorphism class of real-analytic variations of complex structure on R2d parameterized by M is nothing
more or less than a specified C-linear structure on the fibers of R2d×M →M making it into a real-analytic
complex vector bundle. (More concretely, if {v1, . . . , vd} in R2d is a basis relative to the C-linear structure
on the fibral R2d at some point of M then they are also a basis for the C-linear structure on the fibral R2d

at all nearby points in M .) The same goes through if we replace “real-analyic” with C∞ everywhere.
As in the holomorphic case, we can define “pullback” for such variations over real-analytic manifolds, and

so can make sense of the functor F ′R of isomorphism classes of real-analytic variations of complex structure
on R2d. The link with the earlier notion of “holomorphic variation of complex structure” is given by the
next result.

Proposition 4.10. Consider the universal holomorphic variation of complex structure (L → M, ϕ) on
R2. The underlying real-analytic variation of complex structure on the underlying real-analytic objects is
universal in the real-analytic category. The same holds in the C∞ sense.
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Proof. The construction of the universal object over C−R in the holomorphic case works verbatim in the
real-analytic case, upon replacing “holomorphic” with “real-analytic” (or C∞) everywhere. �

Returning to the issue of verifying the real-analyticity of the action of G = GL2(R) on M by pure thought,
the preceding proposition shows that this action can be described entirely within the real-analytic category
(which is where G lives!) by the same functorial recipe ϕ 7→ ϕ ◦ gt as in the holomorphic case. But the
real-analytic Lie group G represents the group-valued functor AutR2 assigning to any real-analytic manifold
M the group of automorphisms of the trivial rank-2 vector bundle R2×M , so the action map G×M→M
represents the natural transformation AutR2 × F ′R → F ′R and so it is real-analytic.

Example 4.11. Here is an interpretation of the weight-k operation f 7→ f |kg for g ∈ G (and holomorphic
functions f on C−R) in terms of moduli of variations of complex structure; here, by definition, f |kg : τ 7→
(cτ + d)−kf([g](τ)) for g = ( a bc d ). Our argument will be an adaptation of what we have already seen for
Γ using moduli of elliptic curves. Consider the universal variation over C −R: a pair (L , ϕ), where L is
a holomorphic line bundle over C −R and ϕ : R2 × (C −R) ' L is a real-analytic isomorphism of real
vector bundles such that ϕ(1, 0), ϕ(0, 1) ∈ L (C − R). For any g ∈ G, (L , ϕ ◦ gt) is another variation of
complex structures on R2 parameterized by C−R, so by universality there is a unique cartesian square of
holomorphic maps

L
[g]L //

��

L

��
C−R

[g]
// C−R

in which the top side is compatible with ϕ◦gt on the source and ϕ on the target. This expresses the G-action
on (L , ϕ) obtained via its universality for the functor F ′.

We now have holomorphic line bundle isomorphisms [g]L : L ' [g]∗(L ) over C −R carrying ϕ ◦ gt to
[g]∗(ϕ). Dualizing yields isomorphisms [g]∗(L ∨) ' L ∨, or equivalently L ∨ ' [g]∗(L ∨). Relative to the
holomorphic trivialization of L ∨ by the dual basis to ϕ(0, 1), this becomes an isomorphism O ' [g]∗(O).
Arguments as in the proof of Proposition 3.2 show this to be f 7→ f |1g. Hence, passing to kth tensor powers
for k ≥ 1 and using the dual to ϕ(0, 1)⊗k as the trivializing frame for (L ∨)⊗k yields the action f 7→ f |kg.

The preceding example is consistent with the use of the Weierstrass family to represent F ′ and our earlier
calculations with ω⊗kE /(C−R) in the sense that there is a similarity in the explicit formulas, now using G

instead of the discrete group Γ. This consistency can be explained without direct inspection of formulas, by
identifying ωE /(C−R) with L ∨ via the following result applied to E → C−R:

Proposition 4.12. For uniformized elliptic curves f : E = V/Λ → M , the dual V ∨ of the line bundle
V is naturally identified with ωE/M in a manner compatible with base change on M . More specifically,
there is a unique way to define such an isomorphism so that in the classical case it is the isomorphism
Cot0(E) ' Γ(E,Ω1

E) defined by translation-invariance.

Proof. The requirements on the isomorphism specify it on fibers, so the uniqueness is immediate (given
existence) and our task is to prove that the classical isomorphism on fibers induces an isomorphism at the level
of holomorphic line bundles in the relative setting (i.e., the classical isomorphism “varies holomorphically”
in analytic families of elliptic curves). The key point is that the natural map of line bundles

φ : ωE/M = f∗Ω1
E/M → e∗Ω1

E/M

defined over an open set U ⊂M by carrying ω ∈ Ω1
E/M (f−1(U)) to e∗(ω) ∈ (e∗Ω1

E/M )(U) is an isomorphism.
To verify this isomorphism result, first note that the formation of φ naturally commutes with base change
on M (upon reviewing the sense in which the formation of ωE/M commutes with such base change). In
the classical case φ is the map Γ(E,Ω1

E) ' Cot0(E) defined by ω 7→ ω(0), which is an isomorphism due
to translation-invariance (and is inverse to the classical isomorphism in the statement of the proposition).
Thus, in the relative case φ is an isomorphism on fibers over M and so it is an isomorphism.
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In view of the description of φ on fibers, it suffices to prove that V is naturally identified with e∗((Ω1
E/M )∨)

in a manner that recovers the classical isomorphism Vm ' Tan0(Vm/Λm) on fibers (and then we dualize to
get an isomorphism V ∨ ' e∗(Ω1

E/M ) ' ωE/M which satisfies the properties we seek). Note that the classical
isomorphism Vm ' Tan0(Vm/Λm) is built in two steps: we first identify the vector space Vm with its own
tangent space Tan0(Vm) at the origin, and then we use that the analytic covering map Vm → Vm/Λm respects
the origins and hence induces an isomorphism between the tangent spaces at the respective origins. Adapting
this to the relative setting, since the analytic covering map π : V → E is an analytic isomorphism between
open neighborhoods of the zero section 0 of V and the identity section of E (this applies equally well with
suitable open neighborhoods around any holomorphic sections s ∈ V (M) and π ◦ s ∈ E(M)), via π we get
an isomorphism between 0∗(Ω1

V/M ) and e∗(Ω1
V/M ).

Now we can now ignore E and focus entirely on V : we seek to show that for any vector bundle V → M
(such as a line bundle above), there is an isomorphism V ∨ ' 0∗(Ω1

V/M ) as vector bundles over M such
that on fibers its dual recovers the classical isomorphism Vm ' Tan0(Vm) (defined via directional derivative
operators); such an isomorphism is certainly unique if it exists since we are specifying it on fibers, and it
is compatible with base change on M and functorial in V over M due to the fibral specification (and the
functoriality of the classical isomorphism on fibers). The advantage of this formulation of the problem is
that the intervention of Λ has been removed, so we can make use of the linear structure on the fibers. In
view of the uniqueness (granting existence), we may work locally on M for existence and so may assume
that M is open in some Cn and V admits a trivialization.

Now our setup is a restriction of the special case M = Cn and V = Cr × Cn = Cr ×M (as a rank-r
vector bundle p2 : V → M), so we may focus on this special case and use global coordinates. Letting
z1, . . . , zr+n denote the standard coordinates on V viewed as a complex manifold, Ω1

V/M := Ω1
V /p

∗
2(Ω1

M )
admits the global frame given by dz1, . . . ,dzr and V admits the global frame e1, . . . , er corresponding to
ej(m) = (0, . . . , 1, . . . , 0,m) (with a 1 in the jth slot and 0’s elsewhere among the first r components). Using
the dual frame {e∨j } to trivialize V ∨, the map V ∨ ' 0∗(Ω1

V/M ) defined by e∨j 7→ 0∗(dzj) is a vector bundle
isomorphism whose effect on fibers as readily checked to be as desired (dual to the classical description of
the tangent space at any point of a vector space). �

We conclude our discussion of the moduli-theoretic interpretation of the GL2(R)-action by using it to
give a conceptual proof of the transitivity of its action on the moduli space M of complex structures on
R2 without reference to the identification of M with C−R or the resulting explicit linear fractional trans-
formation formulas for the GL2(R)-action on C − R. In particular, we deduce by pure thought (without
linear fractional transformation calculations) that M has exactly two connected components and recover the
classical description of these components as coset spaces for SL2(R) modulo a maximal compact subgroup.

The effect of g ∈ GL2(R) on a complex structure on R2 is precomposition of the C-action with the
gt-action on R2. These complex structures correspond to R-algebra embeddings C ↪→ Mat2(R), in terms of
which the g-action becomes composition with the conjugation x 7→ (gt)−1xgt on Mat2(R). By the Skolem-
Noether theorem, or direct arguments in our case (e.g., using rational canonical form), any two embeddings
C ↪→ Mat2(R) are related through conjugation by some g ∈ GL2(R). This proves conceptually that the
GL2(R)-action on M is transitive. Also, under this action the subgroup R× acts trivially since it is central
in GL2(R).

The GL2(R)-stabilizer of a point in M is the centralizer of C× in GL2(R) under the embedding. The
centralizer is the embedded C× = C−{0} since a maximal commutative subfield of a central simple algebra
is its own centralizer. The determinant on Mat2(R) goes over to the norm NC/R on C (by the definition of
the field-theoretic norm), so the embedded C× is R× ×K where the embedded circle group K ⊂ SL2(R)
is a maximal compact subgroup. (To see this maximality, use considerations with inner products to first
prove the more classical fact that On(R) is a maximal compact subgroup of GLn(R) with every compact
subgroup contained in one of its conjugates, and then set n = 2.) We now recall the following general fact
(see §1.6–§1.7 in Chapter III of Bourbaki’s “Lie groups and Lie algebras” for a proof, or Theorem 1.2.1 in
Miyake’s “Modular Forms” for an analogous result in the topological case):
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Proposition 4.13. Let X be a (paracompact) Hausdorff real-analytic manifold equipped with an analytic
action H × X → X by an analytic real Lie group H. For any x ∈ X, let Hx denote the stabilizer at x.
This is a real-analytic closed Lie subgroup of H and the natural map H/Hx → X defined by h 7→ h.x is a
real-analytic isomorphism. The same holds in the complex-analytic and C∞ categories.

Proof. See §1.6–§1.7 in Chapter III of Bourbaki’s “Lie groups and Lie algebras” for the proof in the real-
analytic and complex-analytic cases. The same argument works in the C∞ case. (See Theorem 1.2.1 in
Miyake’s “Modular Forms” for a proof of an analogous result with locally compact separable Hausdorff
spaces.) �

By choosing a base point in M, we get a real-analytic isomorphism

M ' GL2(R)/(R×K) = ({〈±1〉}n SL2(R))/K

where 〈a〉 = ( a 0
0 1 ). Since SL2(R) is connected (why?) and its maximal compact subgroup K is also

connected, we conclude from this description of M as a Lie group coset space that M has exactly two
connected components (related to the fact that GL2(R) has two connected components) and that SL2(R)
acts transitively on each connected component with stabilizer at any point equal to a maximal compact
subgroup. (This is seen very explicitly in the classical theory in terms of the action of SL2(R) on hi via
linear fractional transformations. The conceptual method just used has the virtue of adapting to higher-
dimensional settings where explicit formulas can be unwieldy.)

We recall that a left action of a group Γ on a Hausdorff topological space X is called discontinuous if each
x ∈ X has finite stabilizer Γx and admits an open neighborhood U such that γ(U) ∩ U 6= ∅ if and only if
γ ∈ Γx. If the action is moreover free (i.e., Γx = 1 for all x ∈ X) then it is called properly discontinuous.
Note that in such cases the topological quotient map X → Γ\X (using the quotient topology) is a covering
space. Moreover:

Example 4.14. Suppose X is a complex manifold and Γ acts properly discontinuously on X through holo-
morphic automorphisms. Then we claim that there is a unique complex manifold structure on Γ\X making
X → Γ\X a local analytic isomorphism, and this is initial among Γ-invariant holomorphic maps from X to
complex manifolds. (The same holds in the real-analytic and C∞ categories, by similar arguments.) In view
of the uniqueness assertion, the problem is local on Γ-stable opens in X. By proper discontinuity we thereby
reduce to the case when X has a disjoint covering by connected open sets {Uγ} transitively permuted by Γ
via holomorphic isomorphisms. In other words, by selecting one connected component we get a holomorphic
Γ-equivariant identification X = Γ × U , and then the topological quotient is identified with the projection
p2 : X → U . The desired results are then clear.

In an important special case, discontinuity of the action is automatic:

Proposition 4.15. Let G be a locally compact and separable Hausdorff topological group, Γ a discrete
subgroup, and K a compact subgroup. The left action by Γ on G/K is discontinuous, and it is properly
discontinuous if and only if Γ meets every conjugate of K trivially. In case G is a Lie group with finite
component group and K is a maximal compact subgroup, this latter property occurs if and only if Γ is
torsion-free.

In view of the above SL2(R)-equivariant description of the connected components of M, this proposition
recovers the classical fact that a discrete subgroup Γ in SL2(R) acts discontinuously on M and properly
discontinuously if and only if Γ is torsion-free. We also remark that (by some real work) when G is a Lie
group, it is separable if and only if it has countable component group, and it has finite component group
whenever it is the group of R-points of any linear algebraic R-group (as can be proved “by hand” in special
cases). The reader is referred to §3 in Chapter XV of Hochschild’s book “Structure of Lie Groups” (see
Theorems 3.1 and 3.7) for a proof that in any Lie group with finite component, the following hold: (i) all
compact subgroups lie in a maximal one, (ii) all maximal compact subgroups are conjugate, (iii) all maximal
component subgroups meet every connected component.
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Proof. The discontinuity of the action is Theorem 1.5.2 in Miyake’s book “Modular Forms”. The freeness
amounts to the requirement that if γ ∈ Γ and g ∈ G satisfy γgK = gK then γ = 1. The equality of cosets
says exactly that γ ∈ gKg−1, so freeness is equivalent to Γ having trivial intersection with every conjugate
of K, as desired. Finally, in case G is a Lie group with finite component group and K is a maximal compact
subgroup, by the general results from Hochschild’s book mentioned above we see that Γ meets all conjugates
of K trivially if and only if Γ meets every compact subgroup of G trivially. But the intersection of the
discrete Γ with a compact subgroup of G is necessarily finite, so it is equivalent to say that Γ contains no
nontrivial finite subgroups, which is to say that it is torsion-free. �


