
Math 248B. Algebraic theory of q-expansions

1. Basic definitions

Let X = X1(N) for N ≥ 5, viewed as a scheme over Z[1/N ], and let f : E → X be the universal
generalized elliptic curve. In particular, Esm → X has multiplicative fibers along the closed complement
X − Y of the open locus Y = Y1(N) over which E is smooth.

Remark 1.1. Let’s explain how to think about Esm without reference to generalized elliptic curves. Since
XQ is Dedekind, it makes sense to speak of the Néron model over XQ of the universal elliptic curve over
YQ. This Néron model turns out to be Esm (a proof requires some thought, due to component group issues
in the non-proper fibers). However, since X is 2-dimensional there is no concept of “Néron model” over X.

Over X we can at least describe the relative identity component (Esm)0: this is a semi-abelian scheme over
X extending the universal elliptic curve over Y . This latter viewpoint in terms of multiplicative degeneration
works well in the analytic theory, as well as in higher relative dimension.

Let ω = ωE/X be the associated line bundle on X extending (fY )∗(Ω1
EY /Y

). In fancy terms, ω :=
f∗(KE/X) where KE/X on E is the (invertible) relative dualizing sheaf. In equivalent but more group-
theoretic terms that carry over to the analytic and higher-dimensional settings, upon identifying Ω1

EY /Y
with

e∗(Ω1
EY /Y

) = Lie(EY /Y )∨ we have ω = e∗(Ω1
Esm/X) = Lie(Esm/X)∨. Recall from class that both viewpoints

on ω have merits. For example, the relative dualizing sheaf viewpoint is needed in the construction of moduli
spaces, such as to verify that “stable genus-1 curve” is an open condition on the base of a proper flat family
of curves. On the other hand, the relative Lie algebra viewpoint is needed to make contact with formal
groups, as is needed to affirm the consistency between the analytic theory of q-expansions (and spaces of
modular forms) and the algebraic definitions of q-expansions and modular forms over C (to be reviewed
below, and generalized significantly).

In class we proved that under the identification of Γ(Y an
C , (ωan

C )⊗k) with the huge vector space of holo-
morphic quasi-modular forms of weight k for Γ1(N) (i.e., without any growth condition at the cusps), the
subspace Γ(Xan

C , (ωan
C )⊗k) is carried isomorphically onto Mk(Γ1(N)). By Serre’s GAGA theorem, the natural

analytification map
Γ(XC, ω

⊗k
C )→ Γ(Xan

C , (ωan
C )⊗k) = Mk(Γ1(N))

is an isomorphism, and in class we proved that the classical notion of q-expansion at ∞ on the target agrees
with the following purely algebraic definition of q-expansions over C.

Fix a choice of i =
√
−1 ∈ C and consider the generator e2πi/N of µN (C). Using the canonical closed

subgroup inclusion of µN into Tatesm over Z[[q]], by scalar extension to C[[q]] we likewise identify µN as a
closed C[[q]]-subgroup of Tate(q)sm, so e2πi/N is thereby a Γ1(N)-structure on the generalized elliptic curve
Tate(q) over C[[q]] (with 1-gon special fiber). This Γ1(N)-structure defines a map Spec C[[q]] → X and an
identification of Tate(q) with the pullback of E→ X along this map. In this way, identify (dt/t)⊗k with an
O∧XC,∞-basis of the completed stalk (ω⊗kC,∞)∧, and likewise identify O∧XC,∞ with C[[q]].

Definition 1.2. For f ∈ Γ(XC, ω
⊗k
C ), the q-expansion f∞ ∈ C[[q]] is the coefficient of f in the completed

stalk
(ω⊗kC,∞)∧ = C[[q]](

dt
t

)⊗k

under the identifications defined above. That is, f = f∞(dt/t)⊗k.

Remark 1.3. As stated, this definition depends on a choice of i (through the specified level structure e2πi/N ∈
µN ): if we change the choice then the map Spec C[[q]]→ XC does not change (so the isomorphism O∧XC,∞ '
C[[q]] is canonical) but the isomorphism of Tate(q) with the pullback of E → X along this map changes by
inversion. That in turn changes the identification of dt/t with a basis of ω∧C,∞ by a sign, and so changes the
image of (dt/t)⊗k in this completed stalk by a sign of (−1)k.

There are two other roles of a choice of i that arise when converting q-expansions into holomorphic
functions on a half-plane. First, we have to choose a connected component of C−R to which we pull back
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a holomorphic function on ∆∗ via τ 7→ q = e2πiτ . Second, we have to choose a uniformization C → C×

via z 7→ w = e2πiz to convert global sections of globally nontrivial line bundles into global holomorphic
functions. Note that dw/w = 2πidz, so (dw/w)⊗k = (2πi)k(dz)⊗k. This latter appearance of i has a sign
change effect of (−1)k, and exactly matches the choice used to pick e2πi/N ∈ µN (C) above. The choice of i
implicit in q = e2πiτ (or in other words, the choice of connected component of C−R) is actually invisible,
since modular forms viewed over C−R satisfy a transformation law relative to subgroups of GL2(Z). More
specifically, for the connected moduli space of Γ1(N)-structures we do have invariance under (−1 0

0 1 ) (which
swaps τ and −τ).

Since Definition 1.2 computes the classical q-expansion correctly when C is viewed as a Z[1/N, ζN ]-algebra
via ζN 7→ e2πi/N (as we discussed in class), we are now motivated to make some algebraic definitions with
rather general coefficients rings. These definitions are given in the next section.

The aim of this handout is to prove that q-expansions as defined algebraically below can detect the “field
of definition”, or even “ring of definition”, of a holomorphic modular form relative to algebraic models of
modular curves. For simplicity we will focus throughout on the case of X1(N). This modular curve has the
virtue of being smooth and proper over Z[1/N ] with geometrically connected fibers. This is the reason that
in the algebraic theory it will suffice to work with a single cusp (just like in the analytic theory: analytic
continuation is great on a connected complex manifold).

Some of the techniques below were introduced by Katz in his great paper “p-adic properties of modular
curves and modular forms”. Variants can be introduced to handle non-smooth modular curves in the presence
of geometrically reduced but reducible fibers (such as when considering congruences modulo primes that
divide the “level”). In such generality one needs to use q-expansions along a collection of cusps big enough
so that each irreducible component of each fiber over the base ring meets some cusp under consideration.

2. Preparations with ∞

Let O = Z[1/N, ζN ], and let A be an O-algebra. (The most basic case of interest is when A is a subring of
C, or even a subfield of C, with O embedded into C via ζN 7→ e2πi/N for a fixed choice of i =

√
−1 ∈ C×).

Over Z[[q]][1/N, ζN ] = O ⊗Z Z[[q]] we have the Γ1(N)-structure ζN ∈ µN ↪→ Tate(q)sm
O⊗ZZ[[q]], and this defines

a map
Spec(O ⊗Z Z[[q]])→ XO

which lifts a section ∞ : Spec O → XO . Likewise after base change along O → A, we get a map

Spec(A⊗Z Z[[q]])→ XA.

Setting q = 0 gives a section ∞A : SpecA→ XA.

Remark 2.1. It can be proved that the map Spec(A⊗Z Z[[q]])→ XA identifies A[[q]] with the coordinate ring
of the formal completion of XA along ∞A.

Definition 2.2. For any Z[1/N ]-algebra A, the A-module Mk(Γ1(N), A) is Γ(XA, ω
⊗k
A ). This is covariant

in A in the evident manner.

For A = C, the preceding definition recovers the classical space Mk(Γ1(N)) via the GAGA isomorphism,
as discussed above. More generally, for any A-algebra B there is a natural base change morphism

B ⊗AMk(Γ1(N), A)→Mk(Γ1(N), B)

which is an isomorphism when B is A-flat. (The formation of global sections of a quasi-coherent sheaf on a
quasi-compact and separated A-scheme commutes with flat base change on A.)

Example 2.3. Since Z[1/N ]→ C is flat, we have

C⊗Z[1/N ] Mk(Γ1(N),Z[1/N ]) 'Mk(Γ1(N),C).

Hence, Mk(Γ1(N),Z[1/N ]) defines a canonical Z[1/N ]-structure on the space of holomorphic modular forms
of weight k for Γ1(N). Is this the space of holomorphic forms f whose q-expansion coefficients lie in Z[1/N ]?
Typically no. The reason is that although X is a Z[1/N ]-structure on the algebraization XC of the classical
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modular curve, for the cusp ∞ we have only obtained it as a section over Z[1/N, ζN ] (with ζN 7→ e2πi/N ).
We cannot expect to dig deeper than algebras over O based on the preceding definitions.

For our purposes, the main point is that for any O-algebra A and global section f ∈ Mk(Γ1(N), A) of
ω⊗kA over XA, its pullback over Spec(A⊗Z Z[[q]]) is identified with an element of

ωTate(q)/Z[[q]] ⊗Z A = (A⊗Z Z[[q]])(dt/t)⊗k.

This brings us to:

Definition 2.4. Using notation as above, the pullback of f has the form f∞(dt/t)⊗k for a unique f∞ ∈
A⊗Z Z[[q]]. This is the q-expansion of f along ∞A.

Remark 2.5. Beware that an argument is required to justify that f∞ determines f uniquely (as we know for
A = C via the analytic theory). We will address this in Lemma 3.2.

The “justification” for the terminology is three-fold: the natural map A⊗Z Z[[q]] → A[[q]] is injective (by
Lemma 2.6 below), the image of f∞ in A[[q]] is the multiplier coefficient when computing the pullback of f
to the formal completion of XA along ∞A (by Remark 2.1), and for A = C we thereby recover Definition
1.2 (which we have seen in class is consistent with the analytic definition of q-expansions).

Lemma 2.6. For any Z-module M , the natural map M ⊗Z Z[[q]]→M [[q]] is injective.

This map is generally not surjective when M is not finitely generated over Z; e.g., for M = Q the image
consists of power series of Q with bounded denominators.

Proof. Since an element of the tensor product is a finite sum of elementary tensors, and an injection M ′ →M
induces an injection M ′[[q]] → M [[q]], to prove the vanishing of the kernel we may replace M with a finitely
generated Z-submodule (namely, arising from an expression for a hypothetical element in the kernel as a
sum of elementary tensors). Then by the good behavior with respect to finite direct sum decompositions in
M we reduce to two cases: M = Z and M = Z/nZ. In both of these cases (and hence for the case of finitely
generated M in general) the map of interest is clearly an isomorphism. �

In view of the injectivity of this lemma, when we speak of f∞ it is no loss of information to work in
A[[q]] rather than in A⊗Z Z[[q]]. Nonetheless, the fact that the q-expansion in the A[[q]]-sense actually lies in
the subring A ⊗Z Z[[q]] tells us something rather non-obvious from the viewpoint of the analytic theory of
q-expansions:

Proposition 2.7 (bounded denominators). Let M ′ ↪→ M be an injection of Z-modules. Inside of M [[q]],
the intersection of M ′[[q]] and M ⊗Z Z[[q]] is equal to M ′ ⊗Z Z[[q]].

In particular, if f is a holomorphic cusp form for Γ1(N) and its q-expansion in C[[q]] lies in K[[q]] for
a number field K then it has bounded denominators (i.e., there exists a nonzero c ∈ OK such that cf has
q-expansion in OK [[q]].

Note that we really are getting bounded denominators at all primes, even those dividing N . For this
it is crucial that we have the Tate curve available over Z[[q]][1/N ] and not just over the much larger ring
Z[1/N ][[q]].

Proof. The second claim follows from the first by the compatibility of algebraic and analytic q-expansions
over C (discussed in class) by taking M ′ = K and M = C. The point is that K ⊗Z Z[[q]] is the localization
at OK − {0} of OK ⊗Z Z[[q]] = OK [[q]] (equality since OK is a finitely generated Z-module, even finite free).

To prove the first claim, note that Z→ Z[[q]] is flat, so the diagram

0→M ′ ⊗Z Z[[q]]→M ⊗Z Z[[q]]→ (M/M ′)⊗Z Z[[q]]→ 0

is a short exact sequence. But by Lemma 2.6, the final term injects into (M/M ′)[[q]] = M [[q]]/M ′[[q]]. Thus,
M ′ ⊗Z Z[[q]] is the set of elements in M ⊗Z Z[[q]] whose image in M [[q]] lies in M ′[[q]], and that in turn is
exactly the assertion we are trying to prove. �
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3. Descending a ring of definition

Consider a map A→ B of O-algebras. (We do not assume these are Z-flat, or even subrings of C.) Since
X is Z[1/N ]-flat, if A → B is injective then the pullback along the map XB → XA is injective for global
sections of vector bundles. In particular, the natural pullback map

Mk(Γ1(N), A) = H0(XA, ω
⊗k
A )→ H0(XB , ω

⊗k
B ) = Mk(Γ1(N), B)

is injective in such cases. In general there are respective q-expansion maps to A[[q]] and B[[q]] from the two
sides, using the Tate curve construction described above, and upon unraveling the definitions it is not hard
to verify the commutativity of the diagram

(3.1) H0(XA, ω
⊗k
A ) //

��

H0(XB , ω
⊗k
B )

��
A[[q]] // B[[q]]

where the vertical maps are the q-expansion maps and the bottom map is the natural map.

Example 3.1. Let A = C and B = C but let A → B be an abstract field automorphism over Q(ζN ).
The top map in (3.1) then corresponds to the “global” Aut(C/Q(ζN ))-action on Mk(Γ1(N)) = C ⊗Q(ζN )

Mk(Γ1(N),Q(ζN )) provided by the Q(ζN )-structure XQ(ζN ) on the algebraization XC of the classical mod-
ular curve XΓ1(N). The commutativity of (3.1) implies that this automorphism group action corresponds
exactly to the action on q-expansion coefficients! Note that this consistency of actions is not a definition
(though it also doesn’t lie too deep).

As a consequence of the commutativity of (3.1), if A → B is injective then both horiztonal maps are
injective. An important point is that the vertical maps are always injective (regardless of A→ B):

Lemma 3.2. For any O-algebra A, the q-expansion map

H0(XA, ω
⊗k
A )→ A⊗Z Z[[q]] ↪→ A[[q]]

is injective.

Proof. We now use an elegant trick due to Katz, replacing rings with modules to acquire more variation.
To be precise, since XA → XO is an affine map, we can identify the left side with the global sections on
XO of the quasi-coherent pushforward sheaf A⊗O ω

⊗k
O . Now the role of A as a ring has gone away: it only

matters as an O-module! That is, for any O-module M we can use pullback along Spec O[[q]]→ XO to define
a q-expansion map

H0(XO ,M ⊗O ω
⊗k
O )→M ⊗O (O ⊗Z Z[[q]]) = M ⊗Z Z[[q]]

and when M = A is an O-algebra this construction recovers the earlier one (check!).
The formation of this construction for any M is functional in M and even compatible with the formation

of direct limits in M . Hence, to prove the injectivity in general we may express M as a direct limit of finitely
generated O-submodules and thereby reduce the problem to the case when M is O-finite (but possibly not
free, nor even torsion-free).

If 0→M ′ →M →M ′′ → 0 is an exact sequence of O-modules then

0→M ′ ⊗O ω
⊗k
O →M ⊗O ω

⊗k
O →M ′′ ⊗O ω

⊗k
O → 0

is short exact as a sequence of quasi-coherent sheaves on XO since ωO is a line bundle on the O-flat XO .
Thus, the diagram of global sections is left-exact. The flat scalar extension of 0 → M ′ → M → M ′′ → 0
against the O-flat O ⊗Z Z[[q]] also yields a left-exact (even short exact) sequence, so a simple diagram chase
shows that the injectivity result for M ′ and M ′′ implies the same for M . Thus, to solve our problem for
O-finite M it suffices to separately treat the torsion-case and the torsion-free case (using M ′ = Mtor and
M ′′ = M/Mtor). But in the torsion-free case we can embed M into a finite free O-module. Thus, by the
compatibility with direct sums and the structure of finitely generated torsion O-modules (and a few more
applications of the preceding argument with short exact sequences, applied to a composition series for a
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finitely generated torsion O-module), we finally reduce to two basic cases: M = O and M = O/m for a
maximal ideal m of O.

In terms of our original problem, the above formal manipulations have reduced the problem to the special
cases A = O and A = κ = O/m for a maximal ideal m of O. For the case A = O, we can use the injection
into the fraction field K to reduce to treating K. Hence, it suffices to prove that the two q-expansion maps

H0(XK , ω
⊗k
K )→ K[[q]], H0(Xκ, ω

⊗k
κ )→ κ[[q]]

are injective. By the identification of K[[q]] with the completed local ring of XK at the rational point
∞ ∈ XK(K), the case A = K reduces to the assertion that if the global section of a line bundle on a
connected smooth variety vanishes in the completed stalk at some point (and hence vanishes in the actual
stalk, by injectivity of completion for local noetherian rings) then the global section is zero. This in turn
follows from the fact that a smooth connected variety is integral, so the space of global sections injects into
the generic stalk, which in turn contains all other stalks.

The argument just used over K can be applied equally well over κ, due to Xκ being smooth and connected,
provided that we can identify the q-expansion process with computing the completed stalk at ∞κ. That
is, the map Spec(κ[[q]]) → Xκ arising from the Tate curve construction induces a local κ-algebra map
O∧Xκ,∞ → κ[[q]] between complete discrete valuation rings with residue field κ, and we wish to prove that this
map is an isomorphism. Exactly as we saw in class over K, it suffices to prove surjectivity onto κ[[q]]/(q2),
which amounts to the Tate curve modulo q2 (over κ) being a non-trivial equicharacteristic deformation of
its 1-gon special fiber.

To prove the nontriviality, it suffices to find some “invariant” that vanishes for the trivial first-order
deformation over κ but is nonzero for the Tate curve modulo q2. The invariant is found in the annihilator
ideal of the coherent sheaf Ω2

Tate(q)/κ[[q]]. This sheaf is physically supported at the singularity in the special
fiber, so its annihilator ideal cuts out an infinitesimal structure supported at that point. We claim that
this ideal contains the element q that is nonzero modulo q2, contrasting with the elementary fact that for
the trivial deformation the ideal has vanishing intersection with the base ring (even modulo q2). To do the
calculation of the annihilator ideal, observe that the formal singularity is R = κ[[q]][[u, v]]/(uv − q), and

Ω̂1
R/κ[[q]] = (Rdu⊕Rdv)/(udv + vdu),

so passing to second exterior powers gives the R-module R/(u, v). This has R-annihilator (u, v), which
contains the element uv = q of κ[[q]] that is nonzero modulo q2. �

Theorem 3.3. Let A → B be an injective map of O-algebras, and choose f ∈ H0(XB , ω
⊗k
B ). If the q-

expansion f∞ ∈ B[[q]] lies in A[[q]] then f lies in the A-submodule H0(XA, ω
⊗k
A ).

In particular, if f is a holomorphic modular form on Γ1(N) and its q-expansion coefficients lie in an
O-subalgebra R of C then f ∈ H0(XR, ω

⊗k
R ).

The most “popular” applications of the final part of the theorem are with R a number field, or localized
integer ring thereof (all containing O). We emphasize that this theorem does not make any assertion
concerning Z[1/N ]-subalgebras of C not containing a primitive Nth root of unity.

Proof. By Proposition 2.7 and Lemma 3.2, it is equivalent to prove that the intersection

H0(XB , ω
⊗k
B ) ∩ (A⊗Z Z[[q]])

inside of B ⊗Z Z[[q]] is equal to H0(XA, ω
⊗k
A ). Once again using the trick of viewing XB and XA as affine

over XO , we can recast the problem relative to a general injection M ′ → M of O-modules (in place of the
injection A→ B of O-algebras): we claim that

H0(XO ,M ⊗O ω
⊗k
O ) ∩ (M ′ ⊗Z Z[[q]])

inside of M ⊗Z Z[[q]] is equal to H0(XO ,M
′ ⊗O ω⊗kO ). (This generalization “makes sense”, since the proof

of Lemma 3.2 proved the injectivity of the q-expansion construction with coefficients in any O-module, and
M ′ ⊗Z Z[[q]]→M ⊗Z Z[[q]] is injective due to the Z-flatness of Z[[q]].)
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An element of the intersection has q-expansion in M ⊗Z Z[[q]] that vanishes in (M/M ′)⊗Z Z[[q]], so by the
functoriality of the q-expansion construction with O-module coefficients and its injectivity in general (shown
in the proof of Lemma 3.2), it follows that an element in the intersection of interest has vanishing image in
H0(XO , (M/M ′)⊗O ω

⊗k
O ). But the diagram of quasi-coherent sheaves

0→M ′ ⊗O ω
⊗k
O →M ⊗O ω

⊗k
O → (M/M ′)⊗O ω

⊗k
O

on XO is exact since ωO is a line bundle on the O-flat XO , so the associated diagram of global sections is
also exact. This gives the result. �


