
Math 248B. Strong approximation in algebraic groups

1. Setup and SL2

For any global field k and finite set S of places of k, let AS
k denote the factor ring of Ak obtained by

removing kS :=
∏
v∈S kv, so Ak = AS

k × kS as topological rings. A smooth affine k-group G satisfies strong

approximation with respect to a given non-empty S if the image of G(k) in G(AS
k ) is dense. (Note that since

AS
k is a locally compact Hausdorff topological ring, G(AS

k ) is a locally compact Hausdorff topological group;
see §2 and (3.51) through Theorem 3.6 in the notes on adelic topologies on my webpage.) The discreteness of
k in Ak implies the discreteness of G(k) in G(Ak), so the possibility of denseness of G(k) in G(AS

k ) is quite
striking. However, this possibility is already seen in number theory for the special case G = Ga, where it is
the classical strong approximation theorem for the adele ring (i.e., k is dense in AS

k for any non-empty finite
S). For many problems in number theory which involve an interplay between local and global considerations,
the strong approximation property (for quite general S) is extremely important when it is available.

In this handout, we explain how to easily prove the strong approximation property for SL2 with respect
to any non-empty finite S (and any global field), and for readers familiar with the theory of algebraic groups
we explain why this special case implies the same for many other interesting linear algebraic groups over
global fields. (The ultimate result is that for k-simple connected semisimple G 6= 1 and a non-empty finite
S, strong approximation holds for G with respect to S if and only if G is simply connected and G(kv) is
non-compact for some v ∈ S. That is the strong approximation theorem for linear algebraic groups, and it
lies quite deep.)

Proposition 1.1. For any k and non-empty finite S, SL2(k) is dense in SL2(AS
k ). That is, SL2 over k

satisfies the strong approximation property with respect to S.

Proof. The closure Z of SL2(k) in SL2(AS
k ) is a subgroup. It suffices to prove that Z contains SL2(kv)

(embedded canonically as the v-factor) for every v 6∈ S. Indeed, if such containment holds then Z contains
all finite direct factors

∏
v∈S′ SL2(kv) for finite S′ disjoint from S, as well as SL2(Ov) for all v 6∈ (S ∪S′), so

by closedness of Z and stability under multiplication it would follow that Z contains every open subgroup∏
v∈S′

SL2(kv)×
∏

v 6∈S∪S′

SL2(Ov) = SL2(kS′ ⊗
∏

v 6∈S∪S′

Ov).

But these exhaust SL2(AS
k ), so Z = SL2(AS

k ) as desired.
To verify that SL2(kv) ⊂ Z, we recall the classical fact (see Lemma 8.1 in Chapter XIII of 3rd edition

of Lang’s “Algebra”) that for any field F the group SL2(F ) is generated by the F -points of the unipotent
F -subgroups U+ = ( 1 ∗

0 1 ) and U− = ( 1 0
∗ 1 ) in the F -group SL2 (i.e., U+(F ) and U−(F ) generate SL2(F )).

Thus, it suffices to prove that Z contains U±(kv). Since Z contains the closure of U±(k), and U± is a closed
k-subgroup of the k-group SL2, we may replace SL2 with the k-groups U± ' Ga to reduce to the analogous
problem with Ga in place of SL2. But this is exactly the classical strong approximation property for the
adele ring of k! �

2. Generalization

For readers familiar with the basics of the structure theory of connected semisimple groups, we now deduce
strong approximation over any k relative to any non-empty finite S for a connected semisimple k-group G
that is simply connected and k-split (i.e., contains a split maximal k-torus). This includes cases such as SLn
(n ≥ 2) and Sp2g (g ≥ 1).

Fix a choice of split maximal torus T in G, and a positive system of roots in Φ(G,T ). Let B be the
corresponding Borel k-subgroup. This specifies a collection of simple reflections {rα} that generate the Weyl
group W = W (G,T )(k) = NG(T )(k)/T (k); the indexing set {α} is the set of simple positive roots. For
each positive (not necessarily simple) root α ∈ Φ(G,T )+, let Gα be the type-A1 subgroup generated by the
opposite root groups U±α. This is k-split (with maximal k-torus Tα = Gα ∩ T ) and more specifically is
k-isomorphic to SL2 or PGL2. By the simple connectedness of G, every Gα is actually k-isomorphic to SL2
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and the simple positive coroots α∨ : Gm → T form a basis of the cocharacter group of T . In view of the
Bruhat decomposition

G(k) =
∐
w∈W

B(k)wB(k),

and the fact that W is generated by the simple reflections rα that in turn represent the nontrivial element
in W (Gα, Tα), it follows that G(k) is generated by the subgroups Gα(k) as α varies through Φ(G,T )+ (not
just the simple roots). Thus, exactly as we reduced the strong approximation property for SL2 to the case
of Ga in the earlier proof, now the case of a general k-split simply connected G is reduced to the case of the
k-groups Gα ' SL2.


