1. Let K be a number field, and fix a finite set of non-archimedean places v_1, \ldots, v_r and integers $e_1, \ldots, e_r \geq 1$. Show that there is a maximal finite abelian extension K'/K unramified away from ∞ and the v_i’s with inertia group at v_i of exponent e_i (which includes the case of ramification degree equal to e_i). Describe the corresponding subgroup of A_K^\times/K^\times. Hint: $(\mathcal{O}_K^\times)^e$ is open in \mathcal{O}_K^\times.

2. (i) Using class field theory, prove that $\mathbb{Q}(\zeta_3)/\mathbb{Q}(\sqrt{-3})$ is the maximal finite abelian extension of $\mathbb{Q}(\sqrt{-3})$ that is unramified away from 5∞ and has degree prime to 5. What if we omit the degree condition?

(ii) Use local class field theory and the structure of \mathbb{Q}_p^\times to show that \mathbb{Q}_p has exactly p totally ramified degree-p abelian extensions when $p > 2$.

(iii) Let K be a local field with residue field of size q. Use local class field theory to prove that any tamely ramified abelian finite extension of K has ramification degree dividing $q-1$ (regardless of the degree of the total extension, so most of the extension is unramified).

3. Let K be an imaginary quadratic field. In HW8 you saw that its \mathbb{Z}_p-rank is 2. Let L/K be the field generated by the \mathbb{Z}_p-extensions of K, so $\text{Gal}(L/K) \simeq \mathbb{Z}_p^2$.

(i) Prove L/\mathbb{Q} is Galois, and construct a \mathbb{Z}_p-linear action of $\text{Gal}(K/\mathbb{Q})$ on $\text{Gal}(L/K)$ (using $\text{Gal}(L/\mathbb{Q})$).

(ii) Using that \mathbb{Q} has \mathbb{Z}_p-rank 1 (and not 2), prove that the action by $\text{Gal}(K/\mathbb{Q})$ on $\Gamma \simeq \mathbb{Z}_p^2$ has its nontrivial element acting with eigenvalues $\{-1, 1\}$. Deduce that for each sign $\epsilon = \pm 1$ there is a unique quotient $\Gamma^\epsilon \simeq \mathbb{Z}_p$ of Γ on which the non-trivial element of $\text{Gal}(K/\mathbb{Q})$ acts by ϵ. Show that the corresponding field K^1/K is the cyclotomic \mathbb{Z}_p-extension; the field K^1/K is called the anti-cyclotomic \mathbb{Z}_p-extension.

4. This exercise encapsulates most of the arithmetic content of the book “Primes of the form $x^2 + ny^2$”, up to the issue of using elliptic functions to explicitly compute class fields of imaginary quadratic fields.

(i) Fix a squarefree $n > 1$ with $n \equiv 2, 3 \mod 4$, so $K = \mathbb{Q}(\sqrt{-n})$ has $\mathcal{O}_K = \mathbb{Z}[\sqrt{-n}]$ and the discriminant is $-4n$. Consider primes $p \nmid 2n$, (i.e., primes unramified in K). Prove that $p = x^2 + ny^2$ with $x, y \in \mathbb{Z}$ if and only if p is a square mod n (i.e., p splits in K) and the two primes over p in \mathcal{O}_K are principal.

(ii) Continuing with (i), given that p is a square mod n, so $p\mathcal{O}_K = pp'$, how can we tell when p (or equivalently $p' = \overline{p}$) is principal? By the Hilbert/Artin principal ideal theorem, it is equivalent to say that p splits completely in the Hilbert class field H of K! But given that p is already split in K (as p is a square mod n), this condition on p says exactly that p is totally split in the Galois (generally not abelian) extension H/\mathbb{Q}! Since p is unramified in H (as H/K is unramified everywhere), being totally split amounts to having its common residual degree at all primes over p in H equal to 1.

Fix a lift of complex conjugation from K to H and let H^+ be its fixed field, so $H = K \otimes_{\mathbb{Q}} H^+$. (Beware that H^+ may not be Galois over \mathbb{Q}.) Prove that H/\mathbb{Q} is totally split at a prime p if and only if K/\mathbb{Q} is split at p and H^+ is unramified at p with a place of residual degree 1 at p. Deduce that if $\alpha \in \mathcal{O}_{H^+}$ is a primitive element for H^+ over \mathbb{Q} with minimal polynomial $f \in \mathbb{Z}[X]$, so the inclusion $\mathbb{Z}[\alpha] \subseteq \mathcal{O}_{H^+}$ is an equality locally at all primes away from $f/d(f)$ (why?), then for $p \nmid 2n \cdot \text{disc}(f)$,

$$p = x^2 + ny^2 \text{ for some } x, y \in \mathbb{Z} \iff p \text{ is a square mod } n \text{ and } f(t) \equiv 0 \pmod{p} \text{ has a solution}. $$

(iii) Prove that for $p \neq 2, 23$, $p = x^2 + 23y^2$ for some $x, y \in \mathbb{Z}$ if and only if p is a square mod 23 and $t^3 - t - 1 \equiv 0 \pmod{p}$ has a solution. (Hint: Exercise 4 in HW2.)

Remark The preceding technique required n to be squarefree and $\equiv 2, 3 \mod 4$ so that $\mathbb{Z}[\sqrt{-n}]$ is integrally closed. To allow general non-square $n > 1$, there is a similar argument to be made except that one has to replace the Hilbert class field of $\mathbb{Q}(\sqrt{-n})$ with another class field of $\mathbb{Q}(\sqrt{-n})$ attached to the order $\mathbb{Z}[\sqrt{-n}]$ in its ring of integers.

In general, if K is a number field then for any order $\mathcal{O} \subseteq \mathcal{O}_K$ (say with conductor c) the group $\text{Pic}(\mathcal{O})$ (which we saw is always finite in Math 248A) admits an adelic description as quotient of A_K^\times/K^\times modulo an open subgroup (generalizing the case $\mathcal{O} = \mathcal{O}_K$ that we already know and love). Thus, by class field theory we get a finite abelian extension $K_\mathcal{O}/K$ equipped with a canonical isomorphism $\text{Gal}(K_\mathcal{O}/K) \simeq \text{Pic}(\mathcal{O})$ (and it is unramified away from \mathcal{O} but is generally not a ray class field!). This is called the ring class field over K attached to \mathcal{O}; in case $\mathcal{O} = \mathcal{O}_K$ it is the Hilbert class field of K.
