
Math 249B. The ∗-action

1. Motivation

Let G be a connected semisimple (not just reductive) group over a field k, and let S be a
maximal split k-torus and P a minimal parabolic k-subgroup of G containing S. Let T be a
maximal k-torus of P containing S (so T is also a maximal k-torus of G, since P is parabolic
in G). Define the notation

kΦ = Φ(G,S), kΦ
+ = Φ(P, S), Φ = Φ(Gks , Tks).

Choose a Borel ks-subgroup B ⊂ Pks containing Tks (so B = Pks if G is quasi-split over
k). This amounts to choosing a positive system of roots Φ+ = Φ(B, Tks) for Φ contained
inside the parabolic set of roots Φ(Pks , Tks) in Φ. We define ∆ to be the basis of Φ+ (so
its elements correspond to the nodes of the Dynkin diagram obtained from (Gks , Tks , B)),
and ∆0 denotes the set of a ∈ ∆ for which the restriction a|Sks

∈ X(Sks) = X(S) is trivial.
Let k∆ ⊂ X(S) − {0} = X(Sks) − {0} denote the restriction of ∆ −∆0 along the inclusion
Sks ↪→ Tks , so restriction defines a map

∆→ k∆ ∪ {0}.
In class, we defined an action of Γ = Gal(ks/k) on the set ∆, called the “∗-action”, as

follows. There is an evident left action of Γ on Φ defined through base change of characters
Tks → GL1. For each γ ∈ Γ, γ(Φ+) is a positive system of roots for Φ, so there is a
unique wγ ∈ W (Gks , Tks) such that wγ(γ(Φ+)) = Φ+. Considering minimal elements of
these positive systems of roots, we see that wγ(γ(∆)) = ∆. We saw in class that

wγ′γ = wγ′γ
′(wγ),

so Γ×∆→ ∆ defined by
(γ, a) 7→ γ ∗ a := wγ(γ(a))

is an action of Γ on the set ∆. This is visibly continuous, since the action factors through
Gal(K/k) for a finite Galois extension K/k inside ks that splits T and over which represen-
tatives in NG(T )(ks) for the elements of the finite group W = W (Gks , Tks) are defined.

Example 1.1. As was noted in class, if G is quasi-split (i.e., P is a Borel k-subgroup of G)
then wγ = 1 for all γ. Thus, in the quasi-split case the ∗-action is induced by the natural
Γ-action on Φ. The converse is true too: if the ∗-action is induced by the Γ-action on Φ then
G is quasi-split.

Indeed, since any nontrivial element of W (Gks , Tks) moves Φ+ to another positive system
of roots, any two of which are disjoint from each other, in such a situation necessarily wγ = 1
for all γ. Thus, Φ+ = wγ(γ(Φ+)) = γ(Φ+), which is to say that Φ(B, Tks) is Γ-stable inside
Φ. But any parabolic ks-subgroup of Gks containing Tks (such as a Borel ks-subgroup) is
uniquely determined by its associated parabolic set of roots, so B is Γ-stable inside Gks and
hence descends to a Borel k-subgroup of G.

The ∗-action on the set ∆ respects a lot of structure, such as the data encoded in the
Dynkin diagram (directed edges and edge multiplicities), and a bit more. To see this, note
that by definition, the Γ-action on Φ is induced by the natural Γ-action on X(Tks). This
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latter action and its left action on the Z-dual X∗(Tks) (related through inversion on Γ!)
permute the sets of absolute roots and coroots, respecting the evaluation pairing between
them. The same holds for the action of the absolute Weyl group W (Gks , Tks) (whose left
action on X(Tks) is defined by w.a : t 7→ a(n−1w tnw) for nw ∈ NG(T )(ks) representing w; note
the placement of n−1 to keep this a left action).

Thus, the ∗-action of any γ ∈ Γ also respects these structures, and hence acts through
not only an automorphism of the based root system (i.e., the root system equipped with
a choice of positive system of roots, or equivalently a choice of basis) – which is to say an
automorphism of the Dynkin diagram – but even an automorphism of the based root datum
for (Gks , Tks) (i.e., the root datum equipped with a choice of positive system or roots, or
equivalently a choice of basis).

We say that a subset of ∆ is ∗-stable if it is stable for the above action of Γ on ∆. In this
handout, our main aim is to prove two properties of this action:

Theorem 1.2. The restriction map ∆ → k∆ ∪ {0} has Γ-stable fibers, and for a subset
∆′ ⊂ ∆ − ∆0 the parabolic set Φ+ ∪ [∆0

∐
∆′] ⊂ Φ is Γ-stable inside Φ if and only if the

subset ∆′ ⊂ ∆−∆0 is ∗-stable.

In the final section of this handout, we explain a more conceptual perspective on the
∗-action that links it up with Galois cohomological considerations to be studied later.

2. Proof of Theorem 1.2

The key point is to show:

Lemma 2.1. For any γ ∈ Γ, wγ ∈ NZG(S)(T )(ks)/T (ks) inside NG(T )(ks)/T (ks).

Proof. Let U = Ru,k(P ), so P = ZG(S) n U due to the minimality of P . Thus, Borel ks-
subgroups of P necessarily contain U and so the set of these corresponds bijectively to the
set of Borel ks-subgroups of P/U = ZG(S) via “image” and “preimage”. In particular, the
set of Borel ks-subgroups of Pks containing Tks is in bijective correspondence with the set
of Borel ks-subgroups of ZG(S)ks containing Tks . The group W (ZG(S)ks , Tks) acts (simply)
transitively on the set of Borel ks-subgroups of ZG(S)ks containing Tks . Thus, for the purpose
of choosing wγ we can find a choice inside NZG(S)(T )(ks). �

Since Lie(ZG(S)) = Lie(G)S, an element of Φ occurs in Lie(ZG(S))ks if and only if Sks is
killed by that absolute root. In other words, the elements of ∆ whose 1-dimensional weight
space in Lie(G)ks occurs inside Lie(ZG(S))ks are exactly the elements of ∆0. Writing P =
ZG(S) n U , so Uks ⊂ B, the Tks-weights occurring on Lie(Uks) lie inside Φ(Bks , Tks) = Φ+.
Hence, any element of Φ(Pks , Tks) nontrivial on Sks lies in Φ+ and thus its negative cannot
lie in Φ(Pks , Tks), so the roots in Φ(Pks , Tks) whose negative also lies in there are precisely
the elements of Φ(ZG(S)ks , Tks) = [∆0].

We conclude that ∆0 is the basis of the positive system of roots for (ZG(S)ks , Tks) asso-
ciated to the Borel ks-subgroup of ZG(S)ks = Pks/Uks whose preimage in Pks is B. Hence,
the Weyl group W (ZG(S)ks , Tks) is generated by the reflections ra for a ∈ ∆0. In view of
the Lemma above, we conclude that wγ = ra1 · · · ram for a sequence a1, . . . , am ∈ ∆0. For
a ∈ ∆0 and x ∈ X(Tks),

ra(x) = x− 〈x, a∨〉a ∈ x+ Z∆0.
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Since moreover ra(∆0) ∈ Z∆0, it follows that ra(x+Z∆0) = x+Z∆0. Thus, wγ(x) ∈ x+Z∆0

for any such x, so γ ∗ a = wγ(γ(a)) ∈ γ(a) + Z∆0. Restricting to Sks kills ∆0, so using the
triviality of the natural Γ-action on X(Sks) = X(S) implies that

(γ ∗ a)|Sks
= γ(a)|Sks

= a|Sks
.

This proves that the map ∆→ k∆ ∪ {0} is invariant under the ∗-action on ∆.
It remains to show for ∆′ ⊂ ∆ −∆0 that Φ+ ∪ [∆0 ∪∆′] is Γ-stable inside Φ if and only

if ∆′ is ∗-stable inside ∆. (Keep in mind that Φ(Pks , Tks) = Φ+ ∪ [∆0].) It suffices to show
that under the natural Γ-action on Φ,

γ(Φ+ ∪ [∆0 ∪∆′]) = Φ+ ∪ [∆0 ∪ γ ∗∆′]

for all γ ∈ Γ, where γ ∗∆′ denotes the image of ∆′ under the ∗-action of γ ∈ Γ.
Clearly γ(Φ(Pks , Tks)) = Φ(Pks , Tks), and Φ+ ∪ [∆0 ∪∆′] = Φ(Pks , Tks) ∪ [∆0 ∪∆′], so

γ(Φ+ ∪ [∆0 ∪∆′]) = Φ(Pks , Tks) ∪ [γ(∆0 ∪∆′)] = Φ+ ∪ [∆0] ∪ [γ(∆0) ∪ γ(∆′)].

We want this to coincide with Φ+∪ [∆0∪γ ∗∆′]. We have γ ∗∆′ = wγ(γ(∆′)) ⊂ γ(∆′)+Z∆0

since wγ arises from reflections in roots from the basis ∆0 of Φ(ZG(S)ks , Tks), so [∆0∪γ∗∆′] =
[∆0 ∪ γ(∆′)]. It follows that

Φ+ ∪ [∆0 ∪ γ ∗∆′] ⊂ γ(Φ+ ∪ [∆0 ∪∆′]).

These have the same size (recall that γ ∗∆0 = ∆0), so it is an equality since the ∗-action is
through automorphisms of the root system.

Remark 2.2. There is another viewpoint one can take: a continuous Γ-action on a finite set
is a finite étale k-scheme, so the ∗-action gives rise to a finite étale k-scheme whose set of
ks-points is identified with the set of nodes of the Dynkin diagram of (Gks , Tks , B). Note that
the ∗-action preserves the structure of the diagram (directed edges and edge multiplicities),
and this structure can be encoded in terms of (i) specifying a subset of ∆ × ∆ away from
the diagonal (directed edges that are not loops) and (ii) a map from that subset to {1, 2, 3}
(edge multiplicity).

To summarize, the ∗-action defines a finite étale k-scheme Dyn(G) and a finite étale closed
subscheme DirEdge(G) ⊂ Dyn(G) × Dyn(G) disjoint from the diagonal along with a map
from DirEdge(G) to the constant k-scheme {1, 2, 3} (and an identification of this structure
on ks-points with the Dynkin diagram). Actually, the ∗-action is a bit finer, since it respects
information related to the root datum and not just the root system (which is all that is
“known” through the diagram).

In SGA3, Exp. XXIV, §3, the notion of the finite étale scheme of Dynkin diagrams is
defined for semisimple group schemes over a general (non-empty) base scheme S. This is
a finite étale S-scheme D equipped with a finite étale closed subscheme of D × D disjoint
from the diagonal and a map from that closed subscheme to the constant scheme {1, 2, 3}S
(satisfying some axioms which ensure it arises from an actual Dynkin diagram on geomet-
ric fibers). Working over the field k and applying this to G, we recover Dyn(G) with its
additional structure built above via the ∗-action.


