
Math 249B. Reductive centralizer

1. Motivation

Let G be a connected reductive group over a field k. Let M be a closed k-subgroup
scheme of G of multiplicative type. (The case of interest to us is M = ker(a) for a nontrivial
character a : S → Gm on a k-split torus S; in positive characteristic this scheme-theoretic
kernel might not be smooth.) We want to study smoothness and reductivity properties of
the scheme-theoretic centralizer ZG(M), but first we need to discuss what ZG(M) means if
M is not smooth (as this will be very important later on, to have a robust theory in positive
characteristic).

By definition, if it exists, ZG(M) is the closed subgroup scheme of G representing the func-
tor whose points valued in a k-algebra R consist of those g ∈ G(R) such that g-conjugation
on GR restricts to the identity on MR. We have established its existence in some special
cases: if g ∈ T (k) and M is the Zariski-closure of gZ in T then M is a smooth (possibly
disconnected) closed k-subgroup of T and ZG(M) = ZG(g) with Lie algebra gg=1 = gM .
More generally, if M is smooth then ZG(M) was constructed by a Galois-theoretic method
in Exercise 3 of HW3 of the previous course, where we saw that its Lie algebra is gM .

In fact, ZG(M) exists and has Lie algebra gM without smoothness hypotheses on M nor
reductivity (or even smoothness!) hypotheses on G. More broadly, for any closed subgroup
scheme H of an affine k-group scheme G of finite type, the scheme-theoretic centralizer
ZG(H) (defined to represent the evident functor on k-algebras) always exists as a closed k-
subgroup scheme of G with Lie algebra gH . To see this, all we need from the group structure
of G is its role in defining the action of the k-group H on G with the identity point as a
fixed point for the action. Hence, to clarify the method, we prove a more general result:

Proposition 1.1. Let Y be an affine k-scheme of finite type and H an affine k-group scheme
of finite type acting on Y . There exists a closed subscheme Y H ⊂ Y representing the functor
of H-fixed points, and its tangent space at any y ∈ Y H(k) = Y (k)H is Ty(Y )H .

This is proved in Proposition A.8.10(1),(2) of [CGP] with no affineness hypotheses on Y
(and even over rings, under some hypotheses on k[H]). But that proof simplifies a lot for
affine Y with base ring a field, as we show below.

Proof. Let {ej} be a k-basis of k[H], so if R is a k-algebra then {ej} is an R-basis of the
coordinate ring of HR. For any k-algebra R and f in the coordinate ring R[H] ⊗R R[Y ] of
(H × Y )R = HR × YR, we can uniquely write f =

∑
ej ⊗ cj(f) for cj(f) ∈ R[Y ].

Let I ⊂ k[H × Y ] be the ideal of the pullback of the diagonal of Y under the action map
α : H × Y → Y × Y defined by α(h, y) = (h.y, y). For any k-algebra R and y ∈ Y (R), we
have that y is fixed by the HR-action on YR precisely when the map iy : HR → HR × YR
defined by h 7→ (h, y) lands inside α−1(∆Y/k), which is to say that the pullback ideal i∗y(IR)
inside R[H] =

⊕
Rej vanishes. Since IR is generated by I as an R-module, this vanishing

condition is equivalent to the vanishing of y∗(cj(f)) ∈ R for every f ∈ I, which is to say that
y : Spec(R) → Y factors through the common zero scheme of the elements cj(f) ∈ k[Y ].
Hence, this latter zero scheme in Y represents Y H .
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For y ∈ Y H(k) = Y (k)H , to prove that Ty(Y
H) = Ty(Y )H inside Ty(Y ) an argument is

really needed, as the tangent space of Y H involves studying an Hk[ε]-action whereas Ty(Y )H

involves an H-action. The problem is to show that a vector v ∈ Ty(Y ) is H-fixed if and only
if when viewed inside Y (k[ε]) it is fixed by the Hk[ε]-action.

From the construction of Y H , we have v ∈ Ty(Y
H) if and only if the composite k-algebra

map

k[Y × Y ]
α∗→ k[H × Y ]

idH⊗v∗−→ k[H][ε]

factors through ∆∗Y/k : k[Y × Y ] � k[Y ] (i.e., the restrictions to the two tensor factors of

k[Y ×Y ] = k[Y ]⊗k k[Y ] coincide). On the other hand, v is H-invariant in Ty(Y ) if and only
if for every k-algebra R and h ∈ H(R) the composite map of R-algebras

R[Y ]
h∗' R[Y ]

v∗R→ R[ε]

(using the effect of the h-action on YR) coincides with vR. Taking the universal case R = k[H]
and h = idH , this is the condition that the composite map of k[H]-algebras

k[H × Y ] ' k[H × Y ]
idH⊗v∗→ k[H][ε]

(where the first step corresponds to (h, y) 7→ (h, h.y)) coincides with idH⊗v∗H . But this latter
equality of k[H]-algebra maps can be checked on the second tensor factor of k[H × Y ] =
k[H] ⊗ k[Y ], where it becomes exactly the equality of maps k[Y ] ⇒ k[H][ε] that encodes
when v ∈ Ty(Y

H). �

As a refinement, for any smooth affine k-scheme Y equipped with an action by a k-
subgroup M of multiplicative type, the k-scheme Y M is always smooth (even when M is
not smooth!). Indeed, to check this we may assume k = k, so M is a “split” group of
multiplicative type, and then we can verify the infinitesimal smoothness criterion for Y M by
using the complete reducibility of k-linear representations of split multiplicative-type k-group
schemes. This calculation is exactly Exercise 3 of HW8 of the previous course (applied to the
M -action on H via conjugation), which was stated only for actions of tori because at that
time we didn’t construct centralizers for non-smooth subgroup schemes (as that generality
wasn’t needed in the previous course, where the Galois-theoretic construction of schematic
centralizers against smooth subgroups was sufficient).

Now let’s return to the original setup with a connected reductive k-group G and a closed
k-subgroup scheme M ⊂ G of multiplicative type, so ZG(M) is smooth. One source of M
as above are k-subgroup schemes of k-tori in G. But there are other examples not arising in
that way:

Example 1.2. For n ≥ 3, let qn denote the standard “split” quadratic form (x1x2+· · ·+xn−1xn
for n even, and x20 + qn−1(x1, . . . , xn−1) for n odd). Let G be the split connected semisimple
group SOn = SO(qn) ⊂ SLn. Consider the k-subgroup

M ′ = {(ζ1, . . . , ζn) ∈ µn2 |
∏

ζj = 1} ' µn−12

inside G. The maximal tori of Gk have dimension bn/2c, and so have 2-torsion equal to

µ
bn/2c
2 . Since bn/2c < n− 1 for n ≥ 3, M ′ is not contained in any k-torus of G.
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Remark 1.3. The special case char(k) = p > 0 with M = µp makes an appearance in the
classical theory of reductive groups in the sense that for a nonzero element X in the line
Lie(M) ⊂ Lie(G), Proposition A.8.10(3) in [CGP] shows that the smooth closed k-subgroup
ZG(M) equals the group denoted ZG(X) in the classical theory (see 9.1 in Borel’s textbook
on linear algebraic groups).

It is an important fact in the classical theory that the smooth connected k-group ZG(M)0

is reductive when M is smooth with cyclic étale component group or when M = µp with
char(k) = p > 0. The former case immediately reduces to ZG(g) for g ∈ T (k), and the latter
case can be expressed in the form of ZG(X) as explained above. In Borel’s textbook, the
reductivity of ZG(M)0 for such M is proved in 13.19.

The goal of this handout is to generalize a classical reductivity result in our scheme-
theoretic framework: ZG(M)0 is reductive for any multiplicative type k-subgroup M of a
k-torus inside G. In the special case that M is smooth and connected, hence a torus, this
is a ubiquitous fact in the theory of connected reductive groups that we have used all the
time. We remove connectedness and especially smoothness hypotheses on M .

Remark 1.4. It is natural to wonder if the reductivity of ZG(M)0 requires the assumption
that M occurs inside a k-torus T of G (that we have seen in Example 1.2 need not always
hold for multiplicative type subgroups of split connected semisimple groups) That is, if M is
any closed k-subgroup scheme of multiplicative type inside G then is the smooth connected
k-subgroup ZG(M)0 reductive? The answer is affirmative, but our technique of proof (which
uses the structure of root groups relative to Φ(Gks , Tks)) for a maximal k-torus T ⊃ M is
not applicable without the crutch of such a T .

Rather generally, consider any finite type affine k-group scheme H such that the represen-
tation theory of Hk is completely reducible. For any action by H on a connected reductive
k-group G, the schematic centralizer GH is smooth with reductive identity component. This
result lies much deeper than the case “H ⊆ T acting through conjugation” treated below, and
a proof is given in Proposition A.8.12 in [CGP]. The proof rests on a remarkable necessary
and sufficient reductivity criterion for smooth connected k-subgroups G′ of G independently
due to Borel and Richardson: G′ is reductive if and only if G/G′ is affine. (Borel’s proof
rests on the general apparatus of étale cohomology, and Richardson’s proof rests on the work
of Haboush and Mumford in geometric invariant theory).

2. Reductivity

To prove the reductivity of ZG(M)0 when M is contained in a k-torus T ⊂ G (that we
may and do assume is maximal), we may and do assume k = k. Suppose to the contrary that
U = Ru(ZG(M)0) is nontrivial, so Lie(U) is a nonzero representation space for T through its
adjoint action on the smooth connected group ZG(M)0. This representation space cannot
support the trivial weight, since gT = Lie(T ) by reductivity of G and Lie(T ) ∩ Lie(U) =
Lie(T ∩U) = 0 (as T ∩U is a multiplicative type subgroup scheme of the unipotent U , so it
has to be trivial since Ga contains no nontrivial multiplicative type closed subgroup scheme).
Thus, for some a ∈ Φ(G, T ) the 1-dimensional weight space ga occurs inside Lie(U).

Let H = ZG(Ta ·M)0 where Ta = (ker a)0red, so H is smooth and connected inside ZG(M)0.
In particular, U ∩H is a normal subgroup scheme of H. Note that since T normalizes U (by
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working inside ZG(M)0 in which U is normal), the schematic centralizer UTa is smooth. But
U ∩H = UTa and this has Lie algebra Lie(U)Ta ⊇ ga 6= 0, so (U ∩H)0 is a nontrivial smooth
connected unipotent subgroup of H that is normal. In other words, by replacing M with
Ta ∩M we may assume that Ta ⊆M without losing the hypothesis that H is not reductive.

But H ⊂ ZG(Ta) and ZG(Ta) is an almost direct product of the torus Ta and the rank-1
connected semisimple group H ′ := D(ZG(Ta)) = 〈Ua, U−a〉 that is either SL2 or PGL2 and
meets T in the diagonal torus D. Since Ta ⊆M , by writing T = Ta ·D we have M = Ta ·µ for
µ = D ∩M . Thus, ZG(M)0 = Ta ·ZH′(µ)0 as an almost direct product of smooth connected
k-groups, so the failure of reductivity for ZG(M)0 forces the failure for ZH′(µ)0.

To get a contradiction, we’re now reduced to checking for H ′ equal to either SL2 or PGL2

and any closed k-subgroup scheme µ of the diagonal D = Gm that ZH′(µ))0 is reductive. The
cases µ = 1, D are trivial, so we can assume µ = µn for some n > 1. Since Lie(ZH′(µ)0) =
Lie(ZH′(µ)) = Lie(H ′)µ, if H ′ = PGL2 then Lie(H ′)µ = Lie(D). Hence, in such cases the
inclusion D ⊂ ZH′(µ)0 between smooth connected groups is an equality on Lie algebras, so
it is an equality of k-groups. Suppose instead that H ′ = SL2. If µ = µ2 then ZH′(µ) = H ′

and we are done, so we may assume µ = µn with n > 2. Thus, squaring on µn is nontrivial,
so it is easy to check that Lie(H ′)µ = Lie(D), and hence once again D = ZH′(µ)0 by Lie
algebra considerations.


