
Math 249B. Geometric Bruhat decomposition

1. Introduction

Let (G,T ) be a split connected reductive group over a field k, and Φ = Φ(G,T ). Fix a positive
system of roots Φ+ ⊂ Φ, and let B be the unique Borel k-subgroup of G containing T such that
Φ(B, T ) = Φ+. Let W = W (G,T )(k) = NG(k)(T )/T (k), and for each w ∈W let nw ∈ NG(k)(T ) be
a representative of W . For each a ∈ Φ we let ra ∈ W be the associated involution, and we let ∆
denote the base of Φ+.

Under the action of B × B on G by (b, b′).g = bgb′−1, the orbit BgB through any g ∈ G(k) is
a locally closed subvariety (as for orbits of linear algebraic groups in general). The double coset
C(w) = BnwB (a Bruhat cell) depends only on w, not nw, and in class we proved that C(w)
decomposes as a direct product scheme under multiplication: for the closed subset

Φ′w = Φ+
⋂
w(−Φ+) ⊂ Φ+,

the multiplication map

UΦ′wnw ×B → C(w)

is an isomorphism of k-schemes. Equivalently, the left translate n−1
w C(w) is identified with the

closed subscheme Uw−1(Φ′w) × B in the open cell Ω = U−Φ+ × B ⊂ G. (Thus, C(w) is open in G

if and only if Φ′w = Φ+, which is to say that w(Φ+) = −Φ+. There is exactly one such w0, and
C(w0) is the unique open Bruhat cell.)

Remark 1.1. The k-scheme UΦ′w is a direct product (under multiplication, in any order) of the
root groups Ua for a ∈ Φ′w, so it is an affine space of dimension #Φ′w. This cardinality has a
simple combinatorial interpretation: it is the length `(w) relative to the generating set {ra}a∈∆ of
W . (That is, this is the minimal length of a word in the ra’s whose product is equal to w.) In
particular, `(w) ≤ #Φ+ with equality if and only if C(w) is the unique open Bruhat cell. See
Corollary 2 to Proposition 17 in §1.6 of Chapter VI of Bourbaki for a proof.

By Corollary 3 to Proposition 17 in §1.6 of Chapter VI of Bourbaki there is a unique longest
element w0 ∈ W relative to {ra}a∈∆, it is given by the product

∏
a∈Φ+ ra taken in any order, and

w0(Φ+) = −Φ+. In particular, w2
0 = 1 since w2

0(Φ+) = Φ+. We call w0 the long Weyl elements.

The purpose of this handout is to prove that the subvarieties C(w) are a pairwise disjoint
covering of G; we call this the geometric Bruhat decomposition since it concerns covering the entire
scheme G (and since each C(w) is locally closed, this is equivalent to a covering statement at the
level of k-points). In the setting of possibly non-split connected reductive groups there will be
an analogous covering result (called the Bruhat decomposition) that is only valid at the level of
k-points, recovering the geometric version over algebraically closed fields.

Remark 1.2. The Zariski closure of each C(w) is a union of Bruhat cells C(w′) for some subset
of elements w′ ∈ W . Indeed, to prove this it suffices to work over k (since the formation of the
Zariski closure of a locally closed subscheme commutes with extension of the ground field), and this
closure is visibly stable under left and right multiplication by B. Hence, the closure of C(w)(k)
inside G(k) is a union of B(k) double cosets, so it is indeed a union of Bruhat cells.

But which C(w′) lie in the closure of C(w)? This has a nice combinatorial answer: if we
fix a “reduced decomposition” w = ra1 · · · ra`(w)

(i.e., a minimal length expression for w as a

product of the ra’s, allowing some repetition in the sequence {aj}) then C(w′) ⊂ C(w) if and
only if w′ is obtained as a subproduct of

∏
raj by removing some terms: w′ = rai1 · · · rain with
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1 ≤ i1 < · · · < in ≤ `(w). We will not use this important result; see 8.5.4–8.5.5 in Springer’s book
for a proof.

2. Bruhat decomposition

We begin by proving the disjointness of the Bruhat cells. This will ultimately reduce to a general
result concerning torus actions on unipotent groups.

Proposition 2.1. If w 6= w′ then C(w)
⋂
C(w′) = ∅.

Proof. Since any two B(k) double cosets in G(k) are either equal or disjoint, we just have to rule
out the possibility that nw ∈ C(w′)(k) = UΦ′

w′
(k)nw′B(k). That is, for w,w′ ∈ W we shall prove

that an equality

nw = unw′b

with u ∈ UΦ′w(k) and b ∈ B(k) forces w′ = w.

Let U = UΦ+ , and define the closed set of roots Φ+
w = Φ+

⋂
w−1(Φ+) inside Φ+, so Φ+ =

Φ′w
∐

Φ+
w and U = UΦ+

w
×UΦ′w under multiplication. Similarly define Φ+

w′ . For u as above, we claim
that

(1) UΦ+
w

= uUΦ+
w′
u−1.

To establish this equality, we first prove the formula

UΦ+
w

= U
⋂
nwBn

−1
w

for any w ∈W . A point u of U lies in nwBn
−1
w if and only if n−1

w unw ∈ B. But if we write u = u′u+

under the decomposition U = UΦ′w × UΦ+
w

(via multiplication inside G) then

n−1
w unw = (n−1

w u′nw)(n−1
w u+nw)

with n−1
w u′nw ∈ n−1

w UΦ′wnw = Uw−1(Φ′w) ⊂ U−Φ+ and likewise n−1
w unw ∈ UΦ+ . Hence, the direct

product structure of the open cell Ω = U−Φ+ × B implies that n−1
w unw ∈ B if and only if u′ = 1,

which is to say u ∈ UΦ+
w

.

But we can compute U
⋂
nwBn

−1
w in another way: since nw = unw′b, clearly nwBn

−1
w =

unw′n
−1
w′ u

−1, so

U
⋂
nwBn

−1
w = u(U

⋂
nw′Bn

−1
w′ )u

−1 = uUΦ+
w′
u−1.

Thus, we have proved (1).
Now comes the key point:

Lemma 2.2. Let U be a unipotent smooth connected k-group equipped with an action by a split k-
torus T such that all T -weights on Lie(U) are non-trivial, pairwise linearly independent in X(T )Q,
and have a 1-dimensional weight space.

If V, V ′ ⊂ U are T -stable smooth connected k-subgroups that are U(k)-conjugate then they are
equal inside U .

Proof. We may and do assume k = k, and we argue by induction on dimU (the case dimU = 0
being trivial). For each a ∈ Φ(U, T ), let Ta = (ker a)0

red. The centralizer Ua = ZU (Ta) of the
Ta-action on U is smooth and connected, with Lie(Ua) = ua since Φ(U, T )

⋂
Qa = {a} by the

hypotheses. Thus, Ua is 1-dimensional, so Ua ' Ga. The 1-dimensionality implies by dynamic
considerations (!) that Ua is the unique nontrivial smooth connected T -stable k-subgroup of U
with T -weight a on its Lie algebra. The k-subgroups Ua for a ∈ Φ(U, T ) generate U since their Lie
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algebras span Lie(U). These conclusions also apply to any T -stable smooth connected k-subgroup
of U in place of U .

The unipotent U is nilpotent (see the handout “Nilpotence of unipotent groups”), so (ZU )0
red is

nontrivial and T -stable. The above reasoning can be applied to (ZU )0
red in place of U , so (ZU )0

red

contains Ua for each T -weight a on Lie((ZU )0
red). Fix such a weight a, and consider the central

quotient U/Ua. The images of V and V ′ in this quotient coincide (by dimension induction), so
V · Ua = V ′ · Ua. If the central Ua ⊂ U is contained in one of V or V ′ then it is contained in both
(as V and V ′ are U(k)-conjugate), in which case V = V · Ua = V ′ · Ua = V ′ as desired. Hence, we
can assume that Ua is not contained in V nor in V ′.

The T -weight a cannot occur on Lie(V ) or Lie(V ′) (as otherwise the construction of Ua could be
carried out inside V or V ′, a contradiction), so the intersections V

⋂
Ua and V ′

⋂
Ua have vanishing

Lie algebra and thus are étale. But Ua = Ga on which T acts as t.x = a(t)x for the nontrivial
character a of T , so visibly Ua has no nontrivial T -stable finite étale k-subgroup. In other words,
the surjective homomorphisms V ×Ua → V ·Ua and V ′ ×Ua → V ′ ·Ua are isomorphisms. Passing
to Lie algebras and comparing T -weights, we see that Φ(V, T ) = Φ(V ′, T ) inside Φ(U, T ). But the
unipotent smooth connected V is generated by the groups Ua for a ∈ Φ(V, T ), and similarly for V ′,
so V = V ′ inside U as desired. �

It follows from the lemma that UΦ+
w

= UΦ+
w′

inside U = UΦ+ , so Φ+
w = Φ+

w′ inside Φ+. Passing to

complements in Φ+, we also have Φ′w = Φ′w′ . Thus, Φ+
w

∐
−Φ′w = Φ+

w′
∐
−Φ′w′ . Denoting this set

as Ψ, we have

w(Ψ) = w(Φ+
w)

∐
w(−Φ′w) = (Φ+

⋂
w(Φ+))

∐
(Φ+

⋂
w(−Φ+)) = Φ+

and similarly w′(Ψ) = Φ+. Thus, w′w−1(Φ+) = Φ+, so by simple transitivity of the W -action on
the set of positive systems of roots in Φ+ we have w′ = w. �

Proposition 2.3 (Geometric Bruhat decomposition). The locally closed subvarieties {C(w)}w∈W
cover G. In particular, G(k) is covered by the disjoint subsets C(w)(k) = UΦ′w(k)nwB(k) and the
natural map W (G,T )(k)→ B(k)\G(k)/B(k) is bijective.

Proof. We first treat the case when the split connected reductive G has semisimple-rank 1 (i.e.,
D(G) is k-isomorphic to SL2 or PGL2). Let w ∈ W be the unique nontrivial element, so C(w) =
UnwB for U = UΦ+ = Ga. Thus, C(w)/B is an affine line that is open in G/B ' P1

k, so its
complement in G/B is a single k-rational point. The extra point C(1)/B accounts for this, so
C(w) ∪ C(1) = G.

In general, for every a ∈ Φ(G,T ) and the associated codimension-1 torus Ta = (ker a)0
red, Ga :=

ZG(Ta) is split connected reductive with semisimple-rank 1 and W (Ga, T )(k) = {1, ra}. A Borel
subgroup of Ga containing T is Ba = T · Ua ⊂ B, so for na ∈ NGa(k)(T ) representing ra we have

(2) Ga = Ba

∐
UanaBa.

For each a ∈ ∆, we claim that

(3) GaBnwB ⊂ BnwB ∪BnanwB,

or equivalently GaC(w) ⊂ C(w) ∪ C(raw). Once this is proved, it follows that
⋃

w∈W C(w)(k) is

stable under left multiplication by the subgroups Ga(k) for a ∈ ∆. But G(k) is generated by the
subgroups Ga(k) for a ∈ ∆ since T,U±a ⊆ Ga and the elements na ∈ 〈Ua, U−a〉 generate W (and
W ·∆ = Φ, so every root group is in the W -orbit of some Ua with a ∈ ∆). Thus,

⋃
w∈W C(w)(k) is
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stable under left multiplication by G(k) and hence it coincides with G(k). This implies the Bruhat
decomposition (conditional on (3)), as each C(w) is locally closed in G.

To prove (3), we fix a ∈ ∆, so Ψ = Φ+ − {a} is a closed set of roots contained in Φ+. The
associated unipotent smooth connected k-subgroup UΨ ⊂ UΦ+ = U satisfies

U = UΨ × Ua = Ua × UΨ

under multiplication. Thus,

GaBnwB = GaUTnwB = GaUaUΨnwB = GaUΨnwB.

Lemma 2.4. For each a ∈ ∆ and Ψ = Φ+ − {a}, GaUΨ = UΨGa.

Proof. Since Ga is generated by T , Ua, U−a, it suffices to prove that UΨ is normalized by each of
T , Ua, and U−a. Normalization by T is obvious, and the cases of Ua and U−a are equivalent upon
replacing the positive system of roots Φ+ = Ψ∪{a} in Φ with wa(Φ+) = Ψ∪{−a}. Thus, we focus
on Ua-conjugation.

Fix isomorphisms uc : Ga ' Uc for c ∈ Φ, so for b 6= ±a in Φ we have

ua(x)ub(y)ua(x)−1ub(y)−1 ∈ U(〈a〉+〈b〉)∩Φ+ .

Thus, ua(x)ub(y)ua(x)−1 ∈ U(〈a〉+〈b〉)∩Φ+ · Ub ⊂ UΨ since UΨ is directly spanned in any order by
the root groups Uc for c ∈ Ψ. This gives that ua(x) conjugates Ub into UΨ for all b ∈ Ψ, so Ua

normalizes UΨ. �

The preceding lemma implies (via (2)) that

GaBnwB = UΨGanwB = UΨ(Ba ∪ UanaBa)nwB ⊂ BnwB ∪ UnaBanwB = BnwB ∪ UnaUanwB

since Banw = UaTnw = UanwT with T ⊂ B. But UnaUa = UU−ana, so

GaBnwB ⊂ BnwB ∪BU−ananwB.

We claim that

(4) Ga ⊂ UanwBn
−1
w ∪ UananwBn

−1
w ,

from which it would follow that U−ananw ⊂ UanwB ∪ UananwB, so

BU−ananwB ⊂ BnwB ∪BnanwB

and hence GaBnwB ⊂ BnwB∪BnanwB as desired for (3). To prove (4) it is harmless to replace the
Borel subgroup nwBn

−1
w of G containing T with its intersection Ga

⋂
(nwBn

−1
w ). This intersection

is a Borel subgroup of Ga = ZG(Ta) containing T , so it is equal to one of the groups B±a = T ·U±a.
Hence, (4) is equivalent to

Ga
?
= UaB±a ∪ UanaB±a

for each of the roots ±a. For the case of Ba this is the Bruhat decomposition (2) of the semisimple-
rank 1 group Ga relative to (Ba, T ), and for the case of B−a this is the left na-translate of the
Bruhat decomposition of Ga relative to the pair (B−a, T ). �

Here is an important application of the Bruhat decomposition.

Proposition 2.5 (Chevalley). Let (G,T ) be a split connected semisimple group over a field k, and
assume that G is simply connected. Then G(k) is generated by the subgroups Uc(k) for c ∈ Φ(G,T ).
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Proof. Let B be a Borel k-subgroup containing T , Φ+ = Φ(B, T ) a positive system of roots in
Φ = Φ(G,T ), and ∆ the base of Φ+. By the Bruhat decomposition, G(k) is generated by the
subgroups Uc(k), T (k), and na ∈ NG(k)(T ) for representatives na of the generating set {ra}a∈∆ of
W = W (G,T )(k).

Since G is simply connected, we have an isomorphism G∆∨
m ' T via (λa)a∈∆ 7→

∏
a∈∆ a

∨(λa).
This direct product structure implies that even on rational points, T (k) is generated by its subgroups
a∨(k×) for a ∈ ∆. Hence, G(k) is generated by: the subgroups {Uc(k)}c∈Φ, the subgroups a∨(k×)
for a ∈ ∆, and representative elements na for a ∈ ∆. But Φ = W ·∆, so in this generating list we
can limit the root groups considered to just those associated to roots in ∆. But 〈Ua, U−a〉 ' SL2 in
which U±a go over to the standard unipotent k-subgroups U±, a∨(k×) goes over to the subgroup
of diagonal elements, and na goes over to the standard Weyl element. It is classical that SL2(k) is
generated by U±(k), so we are done. �

The “simply connected” hypothesis in Proposition 2.5 cannot be dropped. To prove this, consider

a split connected semisimple k-group G. Let f : G̃ → G be the simply connected central cover

and T̃ the split maximal k-torus preimage of T in G̃. We have seen in class (Example 5.2.6)

that the bijection Φ(G̃, T̃ ) = Φ(G,T ) induced by X(f) : X(T )Q ' X(T̃ )Q yields isomorphisms

Uc′ ' Uc for corresponding roots c ∈ Φ(G,T ) and c′ ∈ Φ(G̃, T̃ ). Proposition 2.5 implies that the

subgroups Uc(k) ⊂ G(k) generate the image of G̃(k) → G(k), a normal subgroup for which the
cokernel is a generally non-trivial commutative group. (For example, SLn(k) → PGLn(k), has
cokernel k×/(k×)n, and in general the cokernel is a subgroup of H1(k, ker f).) More explicitly, the

commutator morphism G̃ × G̃ → G̃ factors uniquely through a morphism G × G → G̃ since G is

a central quotient of G̃, and this induced morphism is a lift of the commutator morphism of G.

Hence, the commutator subgroup of G(k) is contained in the image of G̃(k)→ G(k).

3. The long Weyl element

As we noted in Remark 1.1, there is a unique longest element w0 ∈W relative to {ra}a∈∆, and it
is characterized by the property that w0(Φ+) = −Φ+. It is therefore natural to wonder if perhaps
w0 = −1. This holds if and only if −1 ∈ W inside GL(X(T )), since if −1 ∈ W then it satisfies the
property uniquely characterizing w0 ∈W through its effect on Φ+. But does −1 belong to W?

Inspection of the Bourbaki Plates shows that −1 ∈ W precisely for the root systems A1, Bn

(n ≥ 2), Cn (n ≥ 3), D2m (m ≥ 2), E7, E8, F4, and G2. In the other cases (i.e., An for n ≥ 2,
D2m+1 for m ≥ 2, and E6), the Bourbaki Plates show that w0 = −ι where ι on Q∆ arises from the
unique diagram involution of Φ.

Remark 3.1. Don’t confuse w0 =
∏

a∈Φ+ ra (independent of the order of multiplication) with the
Coxeter element

∏
a∈∆ ra that does depend on the order of multiplication but has conjugacy class

independent of all choices (see Bourbaki Chapter IV, §1.11). Whereas w0 has order 2, the order of
the Coxeter element is the Coxeter number h that is generally larger than 2.

We finish by describing the long Weyl element and the Coxeter element (up to conjugacy) for the
root system An with n ≥ 1. Recall that the weight lattice is X = Zn+1/diag. Letting ε1, . . . , εn+1

be the standard basis of Zn+1, a root basis ∆ is given by ai = εi − εi+1 modulo the diagonal, for
1 ≤ i ≤ n.

For 1 ≤ i ≤ n, the effect of the reflection rai is given by negation of ai, ai+1 7→ ai+1 + ai if i < n,
ai−1 7→ ai−1 +ai if i > 1, and no effect on any other aj . This is induced by the linear automorphism
of Zn+1 (preserving the diagonal!) given by swapping εi and εi+1 and leaving all other εj unaffected.
In terms of the indexed set of residue classes of εj ’s in the weight lattice, it follows that the subgroup
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Sn+1 ⊂ GL(Zn+1) arising as permutations of the standard basis (preserving the diagonal) maps
onto W ⊂ GL(X). The resulting map Sn+1 �W is an isomorphism since the finite kernel consists
of unipotent elements.

Under this description of W , the long Weyl element w0 is induced by the swapping of εi and
εn+2−i for all 1 ≤ i ≤ n + 1; i.e., it swaps ai and −an+1−i for all 1 ≤ i ≤ n. This shows quite
explicitly that w0 6= 1 when n ≥ 2. Likewise, the Coxeter element (up to conjugacy) is induced
by the “left shift” εi 7→ εi−1 using indexing modulo n + 1 (so ε1 7→ εn+1). In terms of ∆, this is
induced by ai 7→ ai−1 for 1 < i ≤ n and a1 7→ −(a1 + · · ·+ an). Clearly this latter operation is not
an involution when n > 2.


