
Math 249B. Cartan’s connectedness theorem

1. Introduction

Let G be a connected semisimple group over R. The group G(R) is often disconnected for
its analytic topology (in contrast with the situation over C). For example, if G = PGL2m

then there is a natural continuous surjection

det : G(R)→ R×/(R×)2 = {±1}
induced by the determinant on GL2m(R). Likewise, if (V, q) is an indefinite non-degenerate
quadratic space over R then SO(q)(R) is generally disconnected (with 2 or 4 connected
components).

It is a general theorem of Whitney that if X is an R-scheme of finite type then X(R) has
only finitely many connected components. (For a proof, see Appendix A of Milnor’s book
Singular points of complex hypersurfaces, which rests on the Lemma in §1 of “The Lefschetz
theorem on hyperplane sections” by Andreotti and Frankel in Annals 69 (1959).) That is
overkill for our purposes, and gives very limited information. We shall directly prove that
π0(G(R)) is a 2-torsion finite abelian group controlled by the maximal split R-tori in G.
This will emerge from our proof of:

Theorem 1.1 (E. Cartan). If G is simply connected then G(R) is connected.

The original approach of Cartan used Riemannian geometry. Briefly, since G(C) is a
connected and topologically simply connected Lie group with G(R) the fixed points of the
involution given by complex conjugation, the problem is reduced to showing that any invo-
lution of a connected and simply connected Lie group has connected locus of fixed points, a
problem Cartan solved by geometric methods.

We will take a different approach, due to Borel and Tits (in §4 of their 1972 paper in
IHES 41 that is a supplement to their big 1965 paper on reductive groups in IHES 27).
This deduces the general case from the anisotropic and split cases by using the relationship
between absolute and relative roots. Our presentation of their technique explains some points
in more detail and streamlines other aspects (to keep the exposition self-contained relative
to this course) by using our prior work with relative root systems.

Example 1.2. As a warm-up, let’s discuss the anisotropic and split cases. If G is anisotropic
then G(R) is compact, as can be proved by adapting Prasad’s method from the handout on
compactness and anisotropicity over local fields. This is explained more fully as Theorem
D.2.4 in the Luminy SGA3 article on reductive group schemes, where it is also shown that
G(R) is connected in such cases without any need to assume G is simply connected (in the
sense of algebraic groups).

The split case is more interesting. For a split maximal R-torus T , the “simply connected”
hypothesis (which amounts to a coroot basis ∆∨ of Φ(G, T )∨ being a Z-basis of X∗(T ))
ensures that G(R) is generated by its subgroups Ua(R) for a ∈ Φ(G, T ) (see Proposition
2.5 in the handout on geometric Bruhat decomposition); for SL2 this is very classical (over
any field). But each Ua(R) = R is connected and passes through the identity, so any word
in finitely many elements of such subgroups lies in the connected component of the identity
(consider the associated “word map” using entire Ua(R)’s). Hence, G(R) is connected!
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The strategy for the general case consists of three steps, using a maximal split R-torus S
and the associated relative root system RΦ := Φ(G,S):

(I) Show that S(R) → π0(G(R)) is surjective, so it suffices to prove that S(R) ⊂
G(R)0. (Surjectivity does not use the “simply connected” hypothesis, and gives
precise control over #π0(G(R)) for general connected semisimple G by applying
Cartan’s theorem to the simply connected central cover; see Remark 4.4.)

(II) Prove that for a basis ∆ of the root system RΦnm of non-multipliable relative roots,
the associated set ∆∨ of relative coroots is a basis of X∗(S). In particular, S is a direct
product of copies of GL1 embedded by the coroots in ∆∨, so to prove S(R) ⊂ G(R)0

it suffices to check the result after replacing G with the rank-1 connected semisimple
subgroup D(ZG(Sa)) containing a∨(GL1) for each a ∈ RΦnm. (This derived group
is simply connected, as for derived groups of torus centralizers in simply connected
groups in general; see Corollary 9.5.11 of the course notes.)

(III) For a connected semisimple group with relative rank 1 over a field k, construct SL2

as a k-subgroup containing a given maximal split k-torus. This reduces the task from
(II) to the connectedness of SL2(R) that is a special case of Example 1.2 (or more
concretely, SL2(R) is generated by the R-points of the standard root groups).

Step (II) rests on some input from Bourbaki that we will review when needed, and step
(III) involves some clever group-theoretic considerations (due to Borel and Tits).

2. Control of π0(G(R)) by S(R)

Let G be a connected reductive R-group, and S a maximal split R-torus. We shall show
that S(R) meets every connected component of G(R), which is to say S(R)G(R)0 = G(R).
If r = dimS then S(R) = ({±1} × R>0)r, so it would follow that π0(G(R)) is 2-torsion
abelian with size at most 2r. (A description of the size of π0(G(R)) is given in Remark 4.4.)
To prove S(R)→ π0(G(R)) is surjective, we need:

Lemma 2.1. Let P ⊂ G be a minimal parabolic R-subgroup containing S. Then the quotient
space G(R)/P (R) = (G/P )(R) is connected.

The equality G(R)/P (R) = (G/P )(R) is a special case of a general equality we have
proved over any field (with any parabolic subgroup over the ground field), and crucially
it is a topological equality since passage to R-points carries smooth morphisms (such as
G→ G/P ) to submersions due to the Submersion Theorem.

Proof. We have a dynamic description for P , so P = PG(λ) for some λ ∈ X∗(S). Thus, for
U = UG(−λ) we have a Zariski-dense open immersion U ⊂ G/P . As a variety U is an affine
space. Hence, U(R) is connected. Thus, it suffices to show that U(R) is dense in (G/P )(R).

Rather generally, if X is a smooth R-scheme and Z ⊂ X is a nowhere-dense locally
closed subset then we claim that Z(R) ⊂ X(R) has measure zero and hence empty interior.
(Applying this to X = G/P and Z = (G/P ) − U would then give the desired density on
R-points.) By stratifying Z we may assume it is smooth, yet its dimension is everywhere
strictly smaller than that of X. The map of manifolds Z(R)→ X(R) is therefore nowhere
a submersion, so by Sard’s Theorem its image has measure 0. �
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If Γ is a locally connected topological group with Γ0 denoting is its (necessarily open)
identity component and if H is a subgroup such that Γ/H is connected then H meets every
connected component of Γ (so π0(H) → π0(Γ) is surjective). Indeed, since Γ/Γ0 is discrete
(by openness of Γ0), the quotient space H\Γ/Γ0 is trivial. It follows that H → Γ/Γ0 is
surjective.

Setting Γ = G(R) and H = P (R), it follows that π0(P (R))→ π0(G(R)) is surjective. The
Levi decomposition P = ZG(S)oU with U(R) connected then implies that π0(ZG(S)(R))→
π0(G(R)) is surjective. But the connected reductive R-group ZG(S)/S is anisotropic, so its
group (ZG(S)/S)(R) of R-points is compact and connected. The submersive homomorphism
of Lie groups ZG(S)(R) → (ZG(S)/S)(R) has image that is open, hence closed, so by
connectedness of the target it is surjective. Thus, ZG(S)(R)/S(R) = (ZG(S)/S)(R), so
this quotient modulo S(R) is connected; hence, S(R) meets every connected component of
ZG(S)(R). This says S(R)→ π0(ZG(S)(R)) is surjective, so we obtain:

Proposition 2.2. For a connected reductive R-group G with maximal split R-torus S, the
natural map S(R)→ π0(G(R)) is surjective.

Now assume G is semisimple. Consider a basis ∆ for RΦnm, so the associated relative
coroots provide an isogeny ∏

a∈∆

GL1 → S

defined by (ya) 7→
∏

a∈∆ a
∨(ya). This isogeny is an isomorphism if and only if ∆∨ is a Z-basis

of X∗(S), which is to say that the root datum

(X(S),RΦnm,X∗(S), (RΦnm)∨ = (RΦ∨)nd)

is “simply connected” in the sense that (RΦnm)∨ generates X∗(S) over Z. We will establish
this property when G is simply connected, and that will permit us to reduce the proof of
Cartan’s theorem to the case of R-rank equal to 1 (which needs some work too!).

3. A result on relative root systems

We call a semisimple root datum (X,Φ, X∨,Φ∨) simply connected when Z ·Φ∨ = X∨, and
adjoint type when Z · Φ = X. For a connected semisimple group G over a field k, since the
ranks of the absolute and relative root systems can be very different, it is not at all apparent
whether the properties of being simply connected or adjoint type for the absolute root datum
should be inherited by the relative root datum. Hence, it may be surprising that this works
well in the simply connected case:

Theorem 3.1. Let G be a connected semisimple group over a field k, with maximal split k-
torus S. If G is simply connected then the relative root datum formed by the non-multipliable
relative roots is simply connected; i.e., (Φ(G,S)nm)∨ spans X∗(S).

Remark 3.2. If a root a is multipliable then 2a is not multipliable and (2a)∨ = a∨/2, so
a∨ = 2(2a)∨. Hence, the Z-span of (Φ(G,S)nm)∨ coincides with that of Φ(G,S)∨.

To prove Theorem 3.1, we first reduce to the absolutely simple case. Recall that G =
Rk′/k(G′) for a finite étale k-algebra k′ and a smooth affine k′-group G′ whose fiber G′i over
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each factor field k′i of k′ is connected semisimple, absolutely simple, and simply connected.
For the split k-torus images Si ⊂ Rk′i/k

(G′i) we have S ⊂
∏
Si, so by maximality of S this is

an equality and each Si is maximal. Hence, we can pass to factors and assume k′ is a field.
As we saw in §6 of the handout on the relative Bruhat decomposition, the k-torus S is the

maximal split k-subtorus of Rk′/k(S ′) for a unique maximal split k′-torus S ′ ⊂ G′. Moreover,
as we saw in the handout on relative root systems, naturally X(S ′) ' X(S) identifying
Φ(G′, S ′) with Φ(G,S). The construction of reflections associated to relative roots shows
that if a′ ∈ Φ(G′, S ′) restricts to a ∈ Φ(G,S) then ra is induced by Rk′/k(ra′), so in this way
we see that ra on X(S) coincides with ra′ on X(S ′). It follows that the associated coroots
a∨ and a′∨ which are built to compute these respective reflections must coincide. Hence, it
suffices to treat G′ instead of G, so we may now assume G is absolutely simple over k.

The absolute root system Φ := Φ(Gks , Tks) for a maximal k-torus T ⊃ S in G is now
irreducible. Our study of relative root systems yields from the irreducibility of Φ that RΦ :=
Φ(G,S) is also irreducible (but possibly non-reduced!), with a basis R∆ given by the set of
nontrivial restrictions to S of a choice of basis ∆ of Φ. This opens the door to applying two
general properties of irreducible root systems, as follows.

To state the first of these, we recall from §1.8 in Chapter VI of Bourbaki that for any ir-
reducible root system equipped with a specified root basis, there is always a unique positive
root each of whose coefficients relative to the chosen basis is at least as large as the corre-
sponding coefficient occurring in all other roots (in particular, all coefficients are positive
for this distinguished root); we call it the highest root. The following lemma concerning the
highest root is the unique Corollary in §2.3 of Chapter VI of Bourbaki:

Lemma 3.3. Let (V,Φ) be an irreducible and reduced root system, and let ∆ be a root basis.
Let {$a}a∈∆ ⊂ P (Φ∨) be the dual basis to ∆ (the “fundamental weights” for the dual root
system Φ∨). Let b =

∑
a∈∆maa be the highest root for Φ relative to ∆.

A set of representatives for the nonzero elements of the fundamental group P (Φ∨)/Q(Φ∨)
of the dual root system is given by the dual weights $a associated to those a ∈ ∆ whose
coefficient ma in the highest root b of Φ is equal to 1.

This lemma could be proved by case-checking of the tables at the end of Bourbaki, but
Bourbaki gives a case-free proof. Here is a companion result in the non-reduced case.

Lemma 3.4. For a non-reduced irreducible root system (V,Φ) and the irreducible root system
(V,Φnm) of non-multipliable roots,

P (Φnm) = P (Φ) = Q(Φ).

Proof. The first equality in Lemma 3.4 is dual to the equality Q((Φ∨)nd) = Q(Φ∨) that says
Q(Φ∨) is spanned over Z by elements of a coroot basis, which in turn holds since elements
of a root coroot basis are certainly non-divisible.

To prove that P (Φ) = Q(Φ), we first note that the inclusion of root lattices Q(Φnm) ⊂
Q(Φ) has index 2 (because a root basis ∆ for BCn consists of one multipliable root a and
n− 1 additional roots that are neither multipliable nor divisible, so the root system of non-
multipliable roots has a root basis consisting of 2a along with the same n − 1 additional
roots). Since P (Φ) = P (Φnm), to establish that the inclusion Q(Φ) ⊂ P (Φ) has index 1 it
suffices to show that Q(Φnm) has index 2 inside P (Φnm); i.e., the root system Φnm of type
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Cn (n ≥ 1) has fundamental group of order 2. But this is clear from the Cn-table at the end
of Bourbaki for n ≥ 3. For n ≤ 2, we check type-A and type-B for A1 and B2. �

We are finally ready to prove Theorem 3.1, completing step II of the proof of Cartan’s
connectedness theorem.

Proof. We have reduced to the case that G is absolutely irreducible, and we may and do
assume S 6= 1. Let T ⊂ G be a maximal k-torus containing S, so the reduced absolute root
system Φ = Φ(Gks , Tks) is irreducible (as G is absolutely simple) and X(Tks) = P (Φ) (i.e.,
the coroots span X∗(Tks)) by the hypothesis that G is simply connected.

Let V = X(Tks)Q and V0 = X(S)Q = X(Sks)Q. The restriction map ρ : X(Tks)→ X(Sks) =
X(S) is surjective since S is a k-subtorus of T , so in terms of the map r = ρQ : V � V0 it
suffices to show that r(P (Φ)) = P (kΦ) inside V0, where kΦ := Φ(G,S). Certainly r(P (Φ)) =
ρ(X(Tks)) = X(S) ⊂ P (kΦ), and we need to prove the reverse containment.

Under the quotient map r : V � V0, for any lattice L ⊂ V the image r(L) ⊂ V0 is a
lattice and its Z-dual r(L)∗ ⊂ V ∗0 coincides with L∗ ∩V ∗0 (as we verify immediately from the
definitions). Taking L = P (Φ), our problem is equivalent to proving

(1) Q(Φ∨) ∩ V ∗0
?
⊂ Q(kΦ∨)

and we know the reverse containment holds.
Since Q(Φ) and P (Φ∨) are dual lattices, clearly

Q(Φ∨) ∩ V ∗0 ⊂ P (Φ∨) ∩ V ∗0 = r(Q(Φ))∗ = Q(kΦ)∗ = P (kΦ∨),

(the equality r(Q(Φ)) = Q(kΦ) is immediate from the following facts: Q(Φ) is the Z-span
of ∆, r(∆) lies between k∆ and k∆ ∪ {0} for a basis k∆ of kΦ (as we showed in our study
of relative root system), and Q(kΦ) is the Z-span of k∆). Combining this with the known
reverse of (1), we get a natural map of fundamental groups

(2) P (kΦ∨)/Q(kΦ∨)→ P (Φ∨)/Q(Φ∨)

induced by the inclusion of V ∗0 into V ∗, and the desired containment (1) expresses exactly
that this map is injective. Hence, we need to prove such injectivity.

Recall that kΦ (which is non-empty, since S 6= 1 and G is semisimple) is the set of
nonzero elements in r(Φ). Our study of relative root systems gave that kΦ is irreducible
since Φ is irreducible. If the irreducible root system kΦ is non-reduced then so is kΦ∨, so its
fundamental group is trivial by Lemma 3.4 and hence (2) is clearly injective. We therefore
may and do assume that the irreducible root system kΦ is reduced. Lemma 3.3 therefore
applies to Φ and kΦ, giving us a handle on both fundamental groups in (2) and motivating
the following considerations with highest roots.

Let b =
∑

a∈∆maa be the highest root in Φ, so ma ≥ 1 for all a. For every c ∈ Φ we have
c =

∑
a∈∆ νaa with νa ≤ ma for all a. Thus, restricting to S and dropping those a killed by

such restriction gives

r(c) =
∑
a′∈k∆

νa′a
′
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where
νa′ =

∑
a∈∆,r(a)=a′

νa.

For each c we have c ≤ b coefficient-wise along ∆, so r(c) ≤ r(b) coefficient-wise along k∆.
This says that r(b) is the highest root

∑
a′∈k∆ ma′a

′ for kΦ with respect to k∆. Hence, the
respective coefficients {ma} and {m′a′} for the highest roots b ∈ Φ and r(b) ∈ kΦ satisfy the
relations

(3) m′a′ =
∑

a∈∆,r(a)=a′

ma

for all a′ ∈ k∆.
Now consider a nonzero ξ ∈ P (kΦ∨)/Q(kΦ∨). By Lemma 3.3, there exists a unique a′ ∈ k∆

such that m′a′ = 1 and the dual weight $a′ ∈ P (kΦ∨) represents ξ. We have to show that $a′

viewed as an element of the dual weight lattice P (Φ∨) (using the inclusion of V ∗0 into V ∗)
does not lie inside coroot lattice Q(Φ∨). But (3) with m′a′ = 1 implies that there is a unique
a ∈ ∆ satisfying r(a) = a′ and moreover that ma = 1. We shall prove that $a′ = $a via the
inclusion of V ∗0 into V ∗, so then (2) carries ξ to the class of $a which in turn is nonzero by
Lemma 3.3 (as ma = 1).

To establish the equality of $a′ and $a using the inclusion V ∗0 ↪→ V ∗ dual to the natural
quotient map r : V � V0, we note that r is identified with the natural map

Q∆ � Qk∆

killing the factors corresponding to ∆ ∩ r−1(0) and sending the factor indexed by any other
element of ∆ onto the factor indexed by its S-restriction in k∆ (via the identity map on
Q-coefficients). In particular, the fact that a ∈ ∆ is the unique element carried onto a′ by
r implies that the member $a′ in the dual basis to k∆ is carried under V ∗0 ↪→ V ∗ to the
member $a in the dual basis to ∆. �

4. A split subgroup

We have reduced the proof of Cartan’s Theorem to when G is absolutely simple (and
simply connected). For a maximal split R-torus S ⊂ G, it suffices to prove S(R) ⊂ G(R)0

(by Proposition 2.2). The case S = 1 is trivial, so we may assume S 6= 1.
The cocharacter lattice X∗(S) has a basis consisting of non-divisible coroots {a∨i } by

Theorem 3.1, so the isomorphism
∏

i GL1 ' S via (yi) 7→
∏
a∨i (yi) gives

∏
a∨i (R×) = S(R)

with non-multipliable {ai} ⊂ Φ(G,S). It therefore suffices to show that a∨(R×) ⊂ G(R)0

for each a ∈ Φ(G,S).
Fix a choice of a ∈ Φ(G,S), and let Sa = (ker a)0. The connected semisimple group

G′a := D(ZG(Sa)) is simply connected with R-rank 1. The coroot a∨ is valued in G′a, and
via the identification Φ(ZG(Sa), S) = Φ(G′a, a

∨(GL1)) defined by restriction to the isogeny
complement a∨(GL1) inside S to the central Sa ⊂ ZG(Sa), the relative root a|a∨(GL1) ∈
Φ(G′a, a

∨(GL1)) has the same associated coroot a∨ (why?). Since it is enough to prove that
a∨(R×) ⊂ (G′a)(R)0, we may rename G′a as G to reduce to the case that dimS = 1.

We shall build a copy of SL2 as an R-subgroup of G containing S. Then we would have
S(R) ⊂ SL2(R) ⊂ G(R)0, completing the proof. The rank-1 root system Φ(G,S) is either A1
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or BC1. Let a be a non-multipliable relative root. Since G is simply connected, a∨ : GL1 → S
is an isomorphism by Theorem 3.1 and the relative root group Ua is a vector group over R
on whose Lie algebra S acts through the character a. Relative to the unique linear structure
on Ua, let E ⊂ Ua be a line.

We claim there exists a unique split connected semisimple R-subgroup L ⊂ G containing
S and E with S a maximal R-torus in L. Granting this, L must be SL2 or PGL2, and
Φ(L, S) of type A1 contains the character a for which there is an isomorphism a∨ : GL1 ' S
satisfying 〈a, a∨〉 = 2. It then follows that a ∈ 2X(S), so necessarily L = SL2 and we would
be done. The construction of L is a special case of a general result over any field:

Proposition 4.1. Let G be a connected semisimple group over a field k with a maximal split
k-torus S of dimension 1. For any non-multipliable a ∈ kΦ := Φ(G,S) and line E inside
the vector group Ua, there exists a unique split connected semisimple k-subgroup L ⊂ G
containing S and E with S maximal in L.

Before we prove this result, we make a few remarks. Note that the S-action on Ua has
a as its only weight on the Lie algebra since a is non-multipliable, so Ua is a vector group
and admits a unique S-equivariant linear structure (the “S-equivariant” condition can be
dropped when char(k) = 0). This defines the notion of “line” inside Ua.

Also, this proposition has a generalization allowing any dimS > 0: for a basis ∆ of the
reduced root system of non-multipliable roots in Φ(G,S) and a choice of line Ea ⊂ Ua for
each a ∈ ∆, there exists a unique split connected semisimple k-subgroup L ⊂ G containing
S as a maximal k-torus and containing each Ea; the root datum of (L, S) coincides with the
reduced root datum

(X(S),Φ(G,S)nm,X∗(S), (Φ(G,S)nm)∨ = (Φ(G,S)∨)nd).

The proof of this generalization is given by Borel and Tits in §7 of their IHES 27 paper on
reductive groups (see 7.2). A more conceptual and much simpler version of their argument
given in [CGP, Theorem C.2.30] (where k is assumed to be infinite, but from which the finite
case can be deduced by the same method as used in the argument below); we specialize the
latter to the case of k-rank equal to 1.

Proof. In the BC1-case, ker a = µ2 and this centralizes U±a, so it centralizes any possibility
for L. Hence, in such cases we can replace G with D(ZG(ker a)0) to reduce to the A1-case.
(This step might lose contact with a “simply connected” hypothesis were one imposed on G,
since ker a is finite rather than a torus, so it is important that there is no such assumption
concerning G in Proposition 4.1.) Hence, k∆ = {a} is a basis of kΦ, so Ua = UG(a∨) and
U−a = UG(−a∨). Note also that ZG(S) = ZG(a∨), so the multiplication map

U−a × ZG(S)× Ua → G

is an open immersion by the dynamic method; denote its image as Ω.
Let N = NG(S) and Z = ZG(S), so N(k)/Z(k) = (N/Z)(k) has order 2 since G has

k-rank 1. Pick a nonzero u ∈ E(k) and any n ∈ N(k) − Z(k). Note that n-conjugation
swaps the two minimal parabolic k-subgroups P±a = S n U±a containing S. The Bruhat
decomposition of G relative to S and P−a is

G(k) = P−a(k)
∐

P−a(k)nP−a(k) = P−a(k)
∐

U−a(k)(N(k)− Z(k))U−a(k)
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since N − Z = nZ. We have u 6∈ P−a(k) since Ua ∩ P−a = 1, so there exist u′, u′′ ∈ U−a(k)
such that u′uu′′ ∈ N(k) − Z(k). Such u′ and u′′ satisfy the following additional properties
(inspired by a result of Tits in the split reductive case):

Lemma 4.2. There exist unique u′, u′′ ∈ U−a(k) such that m(u) := u′uu′′ ∈ N(k). Also:

(i) m(u) 6∈ Z(k) and u′, u′′ 6= 1,
(ii) if K/k is an extension field and z ∈ Z(K) satisfies zuz−1 ∈ Ua(k) then zu′z−1 ∈

U−a(k) and m(zuz−1) = zm(u)z−1,
(iii) u′′ = u′ = m(u)−1um(u) 6= 1, and m(u)2 ∈ S(k).

Before proving this lemma, we explain the motivation for it in a special case:

Example 4.3. In the special case of SL2 or PGL2, u 7→ u′ recovers the map of varieties
Ua − {0} ' U−a − {0} given by (

1 x
0 1

)
7→
(

1 0
−1/x 1

)
for x ∈ k×, as the reader is urged to check. This special case motivates the properties in (i),
(ii), and (iii) that the reader should also directly verify for SL2 and PGL2 (fun exercise).

Proof. We have seen that there exist u′, u′′ ∈ U−a(k) such that u′uu′′ ∈ N(k). For any
such u′, u′′, the product n′ = u′uu′′ cannot lie in Z(k), since otherwise we would have
u = u′−1n′u′′−1 ∈ U−a(k)Z(k)U−a(k) = P−a(k), contradicting that Ua ∩ P−a = 1. Since
N(k)−Z(k) = n′Z(k), uniqueness for u′ and u′′ amounts to checking that if v′, v′′ ∈ U−a(k)
and v′n′v′′ = n′z for some z ∈ Z(k) then v′ = v′′ = 1 (so z = 1). But

v′(n′v′′n′
−1

) = n′zn′
−1 ∈ Z(k)

yet v′ ∈ U−a(k) and n′v′′n′−1 ∈ Ua(k), so this forces v′ = 1 and n′v′′n′−1 = 1 (so v′′ = 1)
since the multiplication map

U−a × Z × Ua → G

is an open immersion (hence injective on k-points).
To prove u′, u′′ 6= 1, by passing to inversion if necessary we just need to get a contradiction

if there exists u′ ∈ U−a(k) such that u′u =: n ∈ N(k). But u′ = nu−1 = (nu−1n−1)n ∈
U−a(k)n yet u′ ∈ U−a(k), so we would have n ∈ U−a(k) and hence u = u′−1n ∈ U−a(k),
impossible since u ∈ Ua(k)− {0} and Ua ∩ U−a = 1. We have proved (i).

In the setting of (ii), applying the preceding to zuz−1 ∈ Ua(k) − {0} provides unique
u′z, u

′′
z ∈ U−a(k) such that m(zuz−1) := u′z(zuz

−1)u′′z ∈ N(k). From the definition of m(·) on
Ua(k)− {0} we then have

z−1m(zuz−1)z = (z−1u′zz · u′
−1

)m(u)(u′′
−1
z−1u′′zz),

so multiplying on the left by m(u)−1 and on the right by (u′′−1z−1u′′zz)−1 gives

(m(u)−1 · z−1m(zuz−1)z)(u′′
−1 · z−1u′′zz)−1 = m(u)−1(z−1u′zz · u′

−1
)m(u).

Since the left side lies in Z(K) n U−a(K) = P−a(K) and the right side lies in Ua(K), both
sides are trivial (as P−a ∩ Ua = 1) Analyzing this on each side then yields

zu′z−1 = u′z ∈ U−a(k), zu′′z−1 = u′′z ∈ U−a(k),m(zuz−1) = zm(u)z−1,
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establishing (ii).
To prove (iii), pick a geometric point s ∈ S(k) satisfying a(s) = −1 so that s-conjugation

on (U±a)(k) is negation (i.e., inversion). Thus,

sm(u)s−1 = u′
−1
u−1u′′

−1

inside G(k), so applying inversion gives that

u′′uu′ = sm(u)−1s−1 ∈ G(k) ∩N(k) = N(k).

The uniqueness of u′ and u′′ therefore forces u′ = u′′ and that sm(u)−1s−1 = m(u), so

m(u)2 = (m(u)sm(u)−1)s−1 ∈ G(k) ∩ S(k) = S(k).

To prove the elements u′ and m(u)−1um(u) ∈ U−a(k) coincide (where m(u)−1um(u) ∈
U−a(k) because u ∈ Ua(k) and conjugation on S by m(u) ∈ N(k) − Z(k) is inversion), the
general equality for (iii) that we have just established (i.e. u′ = u′′ for u ∈ Ua(k) − {0})
reduces us to finding v ∈ Ua(k)− {0} such that

u′v(m(u)−1um(u)) ∈ N(k)

(as then u′ = v′ = v′′ = m(u)−1um(u)). The choice v := m(u)−1u′m(u) 6= 1 works (directly
from the definition of m(u)) since this v lies in Ua(k) due to m(u)-conjugation carrying
U−a(k) into Ua(k). �

Now we prove the existence and uniqueness of L. Pick u ∈ E(k) − {1}. By Lemma 4.2,
there is a unique v ∈ U−a(k) such that n := m(u) = vuv normalizes S, and n-conjugation
on S is inversion. Lemma 4.2 also gives that n2 ∈ S(k) and v = n−1un. The 1-dimensional
smooth connected k-subgroup E− := n−1En of U−a is stable under the conjugation action
of S, so it is a 1-dimensional k-linear subgroup. Clearly v ∈ E−(k).

We claim that the k-subgroup E− does not depend on the choice of u. Since S acts on
E ' Ga through a 6= 1, if u′ ∈ E(k) − {0} is another choice and E ′− is the analogue of E−

resting on u′ in place of u then extracting a square root in k
×

of the scaling factor relating
the nonzero points u′ and u in the k-line E(k) gives that u′ = sus−1 for some s ∈ S(k).
Hence, Lemma 4.2(ii) yields that n′ := m(u′) = sns−1, so

(E ′−)
k

= n′−1Ek n
′ = sn−1s−1Ek sns

−1 = n−1(nsn−1s−1)Ek (nsn−1s−1)−1n.

Since nsn−1s−1 ∈ S(k) and E is normalized by S, the right side is n−1Ekna = (E−)k. Thus,
the k-subgroups E ′− and E− coincide over k, so they are equal over k.

Now it is well-posed to define L to be the smooth connected k-subgroup of G generated
by S, E, and E−. In view of the construction of E− and Example 4.3 and the uniqueness
in Lemma 4.2, this is the only possibility that can work. We will prove that L is a k-split
connected semisimple k-subgroup of G with maximal k-torus S such that Φ(L, S) = {±a}.
First we shall treat the case of infinite k, and then at the end we settle finite k by using a
well-chosen infinite-degree algebraic extension (arranged to preserve the relative rank).

Assume k is infinite. The key point is then to give a concrete subgroup of L(k) that is
Zariski-dense in L. Since n = vuv ∈ L(k), the subset

Γ = E(k){1, n}S(k)E(k)
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is contained in L(k). We will now prove that Γ is a subgroup of L(k) that is Zariski-dense
in L (Zariski-density is where we use that k is infinite).

It is clear that Γ contains 1 and is stable under inversion in G(k) (as n normalizes S and
n2 ∈ S(k)), so we just have to show that Γ is stable under multiplication. Since it is stable
under left and right multiplication by E(k) and S(k), and n2 ∈ S(k), to prove that Γ is a
subgroup it suffices to show that nE(k)n−1 is contained in Γ.

By the transitivity of the conjugation action of S(k) on E(k) − {0}, every nontrivial
v ∈ E(k) has the form v = sus−1 for some s ∈ S(k). For such an s, a(s) ∈ k× since
v, u ∈ E(k). Thus, the conjugation action over k of s on E and E−, and so also of nsn−1 on
E and E−, is actually defined over k. Now

nvn−1 = nsus−1n−1 = nsn−1 · nun−1 · (nsn−1)−1,

so it suffices to prove that nun−1 ∈ E(k)nE(k). Indeed, the conjugation action of nsn−1

keeps E(k) stable (since it is a k-rational action), and the conjugate

cs := nsn−1 · n · (nsn−1)−1

of n under nsn−1 is equal to the product n ·sns−1n−1 that lies in nS(k) (because, by Lemma
4.2(ii), sns−1 = m(sus−1) = m(u) ∈ G(k), forcing sns−1n−1 ∈ S(k)).

The formula n = u′uu′ with u′ = n−1un yields

n = nu′n−1 · nun−1 · nu′n−1 = u · nun−1 · u,
so nun−1 = u−1nu−1 ∈ E(k)nE(k) ⊆ Γ. This proves that Γ is a subgroup. Since S(k), E(k),
and n−1E(k)n = E−(k) are Zariski-dense in S, E, and E− respectively (as k is infinite!), we
conclude that Γ is Zariski-dense in L.

The multiplication map
U−a × Z × Ua −→ G

is an open immersion by the dynamic method with λ = a∨ (recall we arranged Φ(G,S) =
{±a}). Let Ω be the left n-translate of this open subscheme; i.e., Ω = UanZUa. Since
Pa := ZnUa is a minimal pseudo-parabolic k-subgroup of G containing S, the relative Bruhat
decomposition gives that Ω(k) ∩ Pa(k) is empty. In particular, the set E(k)S(k)E(k) (⊆
Pa(k)) is disjoint from Ω(k), so Γ ∩ Ω(k) = E(k)nS(k)E(k).

The formation of closures is of local nature in any topological space, so by the Zariski-
density of Γ in L we conclude that the subset Γ ∩ Ω(k) = E(k)nS(k)E(k) is Zariski-dense
in L ∩ Ω. The Zariski-closure of E(k)nS(k)E(k) in Ω is clearly EnSE (since k is infinite),
so the open subscheme L ∩Ω of L is equal to EnSE. In particular, dimL = 2 + dimS = 3,
so the locally closed immersion E− × S × E → L via multiplication is an open immersion.
But n ∈ L(k) and E− = n−1En, so

L ∩ U−aZUa = L ∩ n−1Ω = n−1(L ∩ Ω) = n−1EnSE = E−SE.

Since U−aZUa is a direct product (as a scheme), we conclude that L ∩ Z = S (hence S is a
split maximal k-torus of L), L ∩ Ua = E, and L ∩ U−a = E−.

The derived group of any solvable smooth connected affine group H is unipotent, so in
any such H the normalizer of a maximal torus is equal to its centralizer. Since the element
n ∈ L(k) normalizes S but does not centralize S, it follows that L is not solvable. Thus, the
connected solvable codimension-1 subgroups B := S n E and B− := S n E− of L are Borel
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k-subgroups of L. Since B ∩ B′− = S is a torus, we conclude that L is reductive. The root
system of L with respect to S is clearly {±a}. Hence, D(L) is SL2 or PGL2. But we saw
that dimL = 3, so L = D(L) is semisimple too. This settles the case of infinite k.

Now assume k is finite. We know that the construction L is the only possibility that can
actually work, and we must prove that it does work (i.e., L is a k-split connected semisimple
k-group with maximal k-torus S such that Φ(L, S) = {±a}). Suppose we could find an
infinite-degree algebraic extension k′/k such that Sk′ is maximal split in Gk′ . Then Lk′

works by the settled case of infinite ground fields, so L is connected semisimple in which the
split k-torus S is maximal since Sk′ is maximal in Lk′ by hypothesis on k′/k. Thus, L is split
and Φ(L, S) = Φ(Lk′ , Sk′) = {±a}, so we would be done.

To find the desired k′/k, consider the centralizer ZG(S). This is a maximal k-torus of G
since G is quasi-split (as k is finite), so if k′/k is any extension and we pick a maximal split
k′-torus S ′ ⊂ Gk′ containing Sk′ then S ′ ⊂ ZGk′

(Sk′) = ZG(S)k′ . Hence, for our purposes it
is sufficient that the anisotropic k-torus ZG(S)/S remains anisotropic over k′. That is, it is
enough that k′/k is linearly disjoint over k from the finite Galois splitting field K/k of the
k-torus ZG(S). Hence, for a prime ` not dividing [K : k], we may take k′/k to be the unique
Z`-extension. �

Remark 4.4. Let G be a connected semisimple R-group with maximal split R-torus S of
dimension r. We have seen that π0(G(R)) = (Z/2Z)e for some e ≤ dimS. By using Cartan’s
connectedness theorem, we can control e as follows. Consider the simply connected central

cover f : G̃ → G. The induced map G̃(R) → G(R) is a local analytic isomorphism (by

the Inverse Function Theorem) with G̃(R) connected, so f(G̃(R)) = G(R)0. The identity

component S̃ = f−1(S)0 is a maximal split R-torus in G̃, and the invariance of relative root

systems under a central isogeny implies via Theorem 3.1 that X(S̃) = P (RΦ). Beware that

the finite central subgroup ker f might not lie entirely inside S̃, so f−1(S) = S̃ · ker f .
We now prove Corollary 4.7 in the Borel–Tits IHES 27 paper, which asserts

(4) #π0(G(R)) = #(ker f)(R)/((ker f)/(S̃ ∩ ker f))(R).

In terms of a maximal R-torus T ⊃ S, the absolute root system Φ = Φ(GC, TC), and the

preimage T̃ = f−1(T ) in G̃, we have X(T̃ ) = P (Φ) and X(S̃) = P (RΦ) (by Theorem 3.1), so

(ker f)(C) = Hom(X(T )/P (Φ),C×), (S̃ ∩ ker f)(C) = Hom(X(S)/P (RΦ),C×)

as modules over Γ = Gal(C/R), so

((ker f)/(S̃ ∩ ker f))(C) = Hom(X(T )/(X(S) + P (Φ)),C×).

Thus, an equivalent formulation of (4) in more combinatorial terms is

#π0(G(R))
?
= #HomΓ(X(T )/P (Φ),C×)/#HomΓ(X(T )/(X(S) + P (Φ)),C×)

where X(S) is the maximal torsion-free quotient of X(T )Γ.
Proposition 2.2 gives that G(R)/G(R)0 = S(R)/(S(R) ∩ G(R)0). Hence, since S(R)

and S(R) ∩ G(R)0 share the same identity component and S(R) = S(R)0 × {±1}r for

r = dimS = dim S̃ (the R-rank of G), we see that

#π0(G(R)) = 2r/#π0(S(R) ∩G(R)0).



12

The surjectivity of f : G̃(R)→ G(R)0 implies that

S(R) ∩G(R)0 = f((S̃ · ker f)(R)) ' (S̃ · ker f)(R)/(ker f)(R).

But (S̃ · ker f)(R) has torsion-free identity component, so the quotient of (S̃ · ker f)(R)

modulo a finite subgroup has #π0 equal to #π0((S̃ · ker f)(R)) divided by the size of that
finite subgroup. Hence,

(5) #π0(G(R)) = 2r#(ker f)(R)/#π0((S̃ · ker f)(R)).

The exact sequence

1→ S̃(R)→ (S̃ · ker f)(R)→ ((S̃ · ker f)/S̃)(R) = (ker f/(S̃ ∩ ker f))(R)→ 1

with finite target has kernel with 2r connected components, so

(6) #π0((S̃ · ker f)(R)) = 2r#(ker f/(S̃ ∩ ker f))(R).

Combining (5) and (6) yields (4).


