
Math 249B. Compactness and anisotropicity

1. Introduction

Consider an affine scheme X of finite type over a field k equipped with a rank-1 valuation,
so X(k) has a natural topology using a closed immersion j : X ↪→ An

k (the choice of which
does not matter). We say that a subset Σ ⊂ X(k) is bounded if for some j as above its
image in kn is bounded in the usual sense. This is independent of j because it is equivalent
to say that any finite subset (or just one finite generating set) of the coordinate ring k[X] is
pointwise bounded on Σ ⊂ X(k). This notion certainly depends on X (i.e., it is not intrinsic
to the topological space X(k)), and if Y ⊂ X is closed and X(k) is bounded then clearly
Y (k) is bounded.

Example 1.1. Taking X to be the affine k-group GLd, we claim that a subgroup of GLd(k) is
bounded if the matrix entries are bounded functions on the subgroup. This is not a tautology
since the matrix functions don’t generate k[GLd] as a k-algebra, but it is easy to verify by
using the composition of closed immersions GLd ↪→ SL2d ⊂ Mat2d, where the first map is

g 7→
(
g 0
0 g−1

)
(using n× n blocks) and we note that subgroups are stable under inversion.

Using matrix entries in GLd to check boundedness on a subset of the k-points of this affine
variety is not valid for subsets more general than subgroups; this is related to the reason that
one cannot correctly topologize the adelic points of GLd just by using the matrix entries.
The problem already occurs for d = 1: if π ∈ R is a nonzero non-unit then S := {πm}m≥1 is
unbounded in GL1(k) = k× (even though it is bounded in Ga(k) = k; the specified affine k-
variety affects the notion of boundedness!) since the identification with the closed subscheme
{xy = 1} ⊂ A2

k via t 7→ (t, 1/t) has unbounded k-valued 2nd coordinate on S. In particular,
if G is an affine k-group scheme of finite type that contains Gm or Ga as a closed k-subgroup
then G(k) cannot be bounded since Gm(k) = k× and Ga(k) = k are unbounded.

Here are two elementary properties of boundedness:

(i) If k′/k is a finite extension field equipped with a rank-1 valuation extending the one
on k (so a subset of k is bounded if and only if its image in k′ is bounded) then a
subset of X(k) is bounded if and only if its image in X(k′) is bounded.

(ii) If f : X → Z is a k-morphism between two affine k-schemes of finite type then the
map X(k)→ Z(k) on k-points carries bounded sets into bounded sets. This is seen
either by describing such a map in terms of polynomials over k or by pulling back
k[Z] into k[X].

A converse to (ii) is available (and useful!) in the finite case:

Lemma 1.2. If f : X → Z is a finite k-morphism between affine k-schemes of finite type
then a bounded subset Σ ⊂ Z(k) has bounded preimage in X(k).

Proof. Let h1, . . . , hn be k-algebra generators of k[X]. It suffices to show that each hj is
bounded on f−1(Σ). By finiteness, each hj satisfies a monic polynomial over k[Z]. The
coefficient functions on Z in these monic relations are bounded on Σ, so their compositions
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with f are bounded on f−1(Σ). Hence, each hj|Σ satisfies a monic polynomial with coefficients
that are bounded k-valued functions, so clearly each hj|Σ is bounded. �

If k is locally compact then boundedness of a closed subset of X(k) (with the valuation
topology) is equivalent to compactness. In particular, for such k the set X(k) is bounded if
and only if it is compact. Hence, boundedness (or not) of X(k) makes sense for general k as
above and coincides with compactness when k is locally compact.

The aim of this handout is to give Gopal Prasad’s elementary proof of the following result
originally due to Bruhat–Tits (in the complete discretely-valued case) and Rousseau:

Theorem 1.3. Assume k is henselian (i.e., its valuation ring R is henselian) and that G is
a k-anisotropic connected reductive k-group. Then G(k) is bounded.

In particular, if k is a non-archimedean local field then G(k) is compact if and only if G
is k-anisotropic.

A reader who is unfamiliar with henselian rings may assume instead that k is complete (a
stronger condition). The relevance of either of these conditions on k (henselian or complete)
to the proof of Theorem 1.3 is that it ensures every finite extension of k admits a unique
valuation (moreover still henselian or complete respectively) extending the given one on k.

Also, a variant of the method of proof below can be applied to the local field k = R to
show that if a connected reductive R-group H is anisotropic then H(R) is compact (the
converse being obvious). This (self-contained) argument is given in the proof of Theorem
D.2.4 in the Luminy SGA3 notes on reductive group schemes.

Remark 1.4. As a warm-up to the main argument, we relate boundedness to eigenvalues for
cyclic groups of invertible matrices. Consider henselian (or complete) k. For γ ∈ GLn(k),
let Γ = γZ. We claim that Γ is bounded if and only if the eigenvalues of γ are units in the
valuation ring of a finite extension of k. It is harmless to replace k with a finite extension.
The Zariski closure C of Γ in GLn is smooth and commutative, and it is harmless to replace
γ with γm for m > 0 Taking m = #C/C0, we may arrange that C is connected. Thus,
Ck = T × U for a k-torus T and unipotent smooth connected commutative k-group U , so
by replacing k with a finite extension we can arrange that C = T × U for a k-torus T and
unipotent smooth connected commutative k-group U . Since C is closed in GLn, so a subset
of C(k) is bounded if and only if its image in GLn(k) is bounded, we see that Γ is bounded
in GLn(k) if and only if its images under the projections C ⇒ T, U are bounded. This allows
us to treat separately the cases when γ is diagonal and when γ is unipotent.

First assume γ is diagonal. Using the evident closed immersion

GLn ↪→ SL2n ↪→ Mat2n = A4n2

k

as in Example 1.1, the group Γ of diagonal elements is bounded if and only if every eigenvalue
λ of every element of Γ has the property that {λm}m∈Z is bounded in k. But we are allowing
m > 0 and m < 0, so this says exactly that λ is a unit in the valuation ring R. Hence, if Γ
is bounded then the eigenvalues of γ are in R×. Conversely, if the eigenvalues of γ lie in R×

then clearly the same holds for γm for all m ∈ Z.
Now assume γ is unipotent. In this case we need to show that Γ is bounded. It is harmless

to replace γ with γm for some m > 0 (at worst Γ may be replaced with a subgroup of finite
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index, so the boundedness of Γ is unaffected). If char(k) = p > 0 then γ has finite order
and so everything is clear. Suppose instead that char(k) = 0, so we have an isomorphism
of varieties log(1 + t) from U onto the affine space of nilpotent upper triangular matrices.
This turns our problem into the boundedness of the set of Z-multiples of a fixed (nilpotent)
matrix M , and that boundedness is obvious.

2. Proof of main result

We assume G(k) is unbounded and will build a k-torus T ⊂ G admitting a nontrivial char-
acter over k, so it also admits a nontrivial cocharacter over k (due to the Galois-equivariant
duality between X(Tks)Q and X∗(Tks)Q) and thus G contains Gm as a k-subgroup. The
essential step is:

Lemma 2.1. Let G be a connected reductive group over a field k equipped with a rank-1
valuation. If a subgroup Γ ⊂ G(k) is Zariski-dense in G and it is unbounded then there
exists γ ∈ Γ such that γZ is unbounded.

This lemma applies to Γ = G(k) since G is unirational and k is infinite. This is the
only Γ we will need for the main argument, but to prove the lemma the generality of any
Zariski-dense Γ is convenient.

Granting the lemma, let’s now prove that G(k) is bounded when G is k-anisotropic and
k is henselian. Assuming otherwise, the lemma with Γ = G(k) provides g ∈ G(k) such that
gZ is unbounded. We next reduce to the case that g is semisimple.

We can replace g with gm for any m > 0, so if char(k) = p > 0 we can replace g with
gp

r
for r ≥ 0 to ensure that g is semisimple. If char(k) = 0 then the Jordan decomposition

g = su = us is k-rational. By Remark 1.4, relative to a choice of faithful representation
G ↪→ GLn the eigenvalues of g (in a finite extension of k) are not all units of the valuation
ring. But the same property is then inherited by s, so 〈s〉 is unbounded. In other words, we
can rename s as g to again arrange that g is semisimple.

Now that g is semisimple, we have g ∈ ZG(g)0 with ZG(g)0 reductive, by Proposition 3.1
in the handout on applications of Grothendieck’s covering theorem. Thus, we can replace
G with is k-anisotropic connected reductive k-subgroup ZG(g)0 (as ZG(g)0(k) is certainly
unbounded due to its subgroup gZ) to reduce to the case that g is central. Thus, g lies in
a maximal k-torus T ⊂ G, so we can further replace G with T to finally arrive at the case
that G = T is an anisotropic k-torus. In this case we seek a contradiction from the existence
of g ∈ T (k) for which gZ is unbounded.

Let k′/k be a finite Galois extension that split T , and let R′ ⊂ k′ be the valuation ring.
Fix an isomorphism Tk′ ' Ge

m, so the subgroup gZ ⊂ T (k′) = (k′×)e is unbounded. It
follows that some component of g ∈ (k′×)e is not a unit in R′, so we get χ ∈ X(Tk′) such
that χ(g) 6∈ R′×.

Consider
ψ =

∏
σ

σ∗(χ) ∈ X(Tk′)
Gal(k′/k) = Homk(T,Gm),

where σ varies through Gal(k′/k). We claim that ψ 6= 1, which would contradict that T
is k-anisotropic. More specifically, we claim that ψ(g) 6∈ R′×. Indeed, since g ∈ T (k) we
have ψ(g) =

∏
σ σ(χ(g)) ∈ k′×, and the Galois action on k′ over k must preserve the unique
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valuation on k′ extending the given one on k. Hence, all elements σ(χ(g)) have the same
non-trivial valuation, so their product has valuation equal to the #Gal(k′/k)-th power of
that, so indeed ψ(g) 6∈ R′×.

It remains to prove Lemma 2.1:

Proof. If f : G→ G′ is a quotient by a (possibly non-central and non-étale) finite subgroup
scheme then G′ is connected reductive and f(Γ) is Zariski-dense in G′. Moreover, f(Γ) is
unbounded due to Lemma 1.2 and the assumption that Γ is unbounded. Likewise, if there
exists γ ∈ Γ such that f(γ)Z is unbounded in G′(k) then γZ is unbounded in G(k). Hence,
in any such situation we may pass to working with G′ and f(Γ).

To apply the preceding maneuver, pick a faithful representation ρ : G ↪→ GL(V ) (i.e.,
ker ρ = 1 scheme-theoretically), and let {Vi} be a G-stable flag in V with irreducible suc-
cessive quotients Wi = Vi/Vi−1. (These might not be absolutely irreducible.) Thus, we get
a representation ρ : G →

∏
GL(Wi) whose kernel has only unipotent geometric points (ρ-

preimage of a unipotent subgroup of GL(V )), so (ker ρ)(k) is finite due to the reductivity of
G. It follows that the normal subgroup scheme ker ρ in G is finite, so we can replace G with
ρ(G) = G/(ker ρ) to reduce to the case ker ρ = 1; i.e., we may rename ρ as ρ to arrange that
the faithful ρ is semisimple; i.e., (V, ρ) is a direct sum of irreducible representations (Wi, ρi).

Since ρ : G →
∏

GL(Wi) is a closed immersion, boundedness of a subset of G(k) is
equivalent to that of its image under ρ! Hence, unboundedness of Γ in G(k) implies that
for some i0 the image ρi0(Γ) ⊂ GL(Wi0)(k) is unbounded. Thus, by Example 1.1, ρi0(Γ) is
unbounded inside the Euclidean space Endk(Wi0).

We will find γ ∈ Γ such that ρi0(γ)Z is unbounded inside Endk(Wi0), so it is also unbounded
in GL(Wi0)(k) (by Example 1.1), and hence ρ(γ)Z is unbounded in

∏
i GL(Wi)(k), so γZ is

unbounded in G(k) as desired.
Suppose to the contrary that no such γ exists, so for each γ ∈ Γ the cyclic subgroup

generated by ρi0(γ) is bounded (in GL(Wi0)(k) or in Endk(Wi0), which come to the same
thing by Example 1.1). Hence, by Remark 1.4, for every γ ∈ Γ the endomorphism ρi0(γ) of
Wi0 has all eigenvalues (in a finite extension of k) lying in the unit group of the valuation
ring (of a finite extension of k), so the expression for the matrix trace in terms of eigenvalues
implies that Tr(ρi0(γ)) ∈ R for all γ ∈ Γ.

To apply this trace integrality, we now use the irreducibility of Wi0 : the Zariski-density
of Γ in G and the G-irreducibility of Wi0 implies that Γ acts irreducibly on Wi0 too (why?).
Burnside’s theorem then gives that the matrix algebra Endk(Wi0) is generated as a k-algebra
by its subset ρi0(Γ) that we have seen is unbounded inside that matrix algebra. In particular,
since ρi0 is multiplicative it follows that ρi0(Γ) spans Endk(Wi0) as a k-vector space, so there
exist elements γα ∈ Γ such that {ρi0(γα)}α is a k-basis of Endk(Wi0). Letting L be the
R-submodule

⊕
αRρi0(γα) ⊂ Endk(Wi0), the integrality of the trace on ρi0(Γ) implies that

under the non-degenerate k-bilinear trace pairing

Endk(Wi0)× Endk(Wi0)→ k

we have that L × ρi0(Γ) is carried into R. In other words, ρi0(Γ) as a subset of Endk(Wi0)
lies inside the R-dual L∗ (i.e., the R-span of the k-basis of Endk(Wi0) dual to an R-basis of
L). But this contradicts that ρi0(Γ) is unbounded in Endk(Wi0)! �


