
Math 249B. Basics of reductivity and semisimplicity
In the previous course, we have proved the important fact that over any field k, a non-solvable

connected reductive group containing a 1-dimensional split maximal k-torus is k-isomorphic to SL2

or PGL2. That proof relied on Grothendieck’s theorem that maximal k-tori remain maximal after a
ground field extension to k. But for algebraically closed fields there is no content to Grothendieck’s
theorem, so for k = k this rank-1 classification is simpler to prove.

The aim of this handout is first to use the rank-1 classification (usually just over algebraically
closed fields) to prove some important results on the behavior of unipotent radicals and the property
of reductivity with respect to two ubiquitous operations on smooth connected affine groups over
an arbitrary field k: the formation of quotient k-groups (modulo normal k-subgroup schemes) and
the formation of centralizers of k-tori (which we have seen are always smooth and connected).

Notation. In what follows, G always denotes a smooth connected affine group over an arbitrary
field k, unless we indicate otherwise. Also, following tradition, we often denote characters and
cocharacters of tori in additive notation, for instance writing −λ rather than λ−1 for the composition
of a homomorphism λ : Gm → T with inversion and likewise writing 0 to denote the trivial character
of T . The reason for doing this is that it is convenient to work with the Q-vector space X(T )Q and
to view the collections of characters and cocharacters as Z-lattices.

1. Preliminary results

We recall the following important fact (proved in an earlier handout):

Lemma 1.1. Assume k = k, and let S be a k-torus in G. The Borel subgroups of ZG(S) are
precisely the subgroups ZB(S) = B ∩ ZG(S) (scheme-theoretic intersection, as always) for Borel
subgroups B of G which contain S.

This was deduced from a rather more general result (proved in the same handout):

Proposition 1.2. If H is a smooth closed subgroup of G (not necessarily connected or solvable) that
is normalized by a torus S ⊂ G, then under the resulting left multiplication action on (G/H)S by
ZG(S) all orbit maps ZG(S)→ (G/H)S through points g0 ∈ (G/H)S(k) are smooth. In particular,
the orbits are open and hence coincide with the connected components of (G/H)S. More specifically,
the natural map of smooth varieties

f : ZG(S)/ZH(S)→ (G/H)S

(induced by the orbit map through 1 mod H, with StabZG(S)(1 mod H) = ZH(S)) is an isomorphism
onto the identity component of the target.

Here is a new lemma that we shall need (and which is useful rather generally):

Lemma 1.3. For any torus T over any field F and any closed F -subgroup scheme M ⊂ T ,
M0

red ⊂ T is an F -torus (in particular, smooth and an F -subgroup). Moreover, its formation
commutes with any extension F ′/F ; i.e., ((M0)red)F ′ = (M0

F ′)red inside MF ′.
Likewise, Mred is an F -smooth subgroup and its formation commutes with any extension on F .

Over every imperfect field there exist affine group schemes H of finite type such that Hred is either
not a subgroup scheme (see [SGA3, VIA, 1.3.2] for a connected example), or is a subgroup but is not
smooth (e.g., the norm-1 hypersurface relative to a nontrivial purely inseparable finite extension
of the ground field), and in such cases its formation does not commute with scalar extension to
F ! Thus, this lemma is a special property of subgroups of tori when the ground field is possibly
imperfect.
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Proof. Since a smooth connected F -subgroup of a torus is a torus, it suffices to show that Mred

is a smooth F -subgroup whose formation commutes with extension on F . Once it is proved to
be smooth in general, the compatibility with ground field extension F ′/F is immediate. Indeed,
(Mred)F ′ and (MF ′)red are then smooth closed subgroups of TF ′ with the same underlying space,
so they must coincide inside TF ′ . Hence, the problem is to prove (for any F ) that Mred is a smooth
F -subgroup of M .

The case char(F ) = 0 is immediate via Cartier’s theorem (i.e., Mred = M and it is smooth), so
we may assume char(F ) = p > 0. The formation of Mred commutes with finite separable extension
on F (as such extensions are étale) and thus with scalar extension to Fs, so we can assume F = Fs.
Hence, T = Gr

m for some r ≥ 0. The key point is that since T is a split torus, subtori of T
correspond bijectively to saturated subgroups of X(T ). Since X(T )→ X(TF ) is bijective (split tori

do not acquire new characters after a ground field extension), it follows that every F -torus in TF
descends to an F -subtorus of T . Hence, the torus (MF )0

red ⊂ TF descends to an F -torus S ⊂ T , and
S ⊂M since SF ⊂MF . By considering character lattices (with trivial Galois action), the subtorus
S in T splits off as a direct factor, say T = S × S′, so M = S ×M ′ inside T with M ′ = M

⋂
S′.

Hence, Mred = S ×M ′red since S is smooth, so we can pass to (M ′, S′) in place of (M,T ) to reduce
to the case that (MF )0 = 1; i.e., M is finite.

Any finite commutative group scheme over a field is killed by a positive integer (proof: pass to an
algebraically closed ground field and use the connected-étale sequence to pass to the infinitesimal
case, which is treated by hand using induction on the order and the vanishing of p on the Lie
algebra), so M ⊂ T [n] = µrn for some n ≥ 1. By Cartier duality for finite commutative group
schemes, such subgroups M are Cartier dual to quotients of D(µn)r = (Z/nZ)r. Hence, D(M) is a
finite constant group Λ. Decomposing Λ = Λ′×Λ′′ where Λ′ =

∏
Z/pnjZ and Λ′′ =

∏
Z/diZ with

p - di for all i shows that

M ' D(D(M)) = (
∏

µpnj )× (
∏

µdi).

Since µpnj is infinitesimal and µdi is étale, we get Mred = D(Λ′′). By inspection this is an étale
subgroup of M . �

For a smooth connected affine group G over an algebraically closed field, since Ru(G) is normal
and solvable in G it is contained in every Borel subgroup B of G. (Indeed, it is contained in some
Borel subgroup, hence in all by conjugacy and normality arguments.) Hence, Ru(G) is contained
in Ru(B) for every B, since such B are solvable and the unipotent radical is functorial for solvable
smooth k-groups. The following result goes much deeper, and the proof will take a long time.

Theorem 1.4. Let T be a maximal torus in a smooth connected affine group G over an algebraically
closed field k. As B varies through the Borel subgroups which contain T , the resulting smooth
connected unipotent subgroup

I(T ) :=

 ⋂
B⊇T

Ru(B)

0

red

coincides with Ru(G). In particular, if G is reductive then I(T ) = 1.

This result is quite striking, since a-priori it isn’t evident that I(T ) is even normal in G. (In fact,
this is the only problem, since Ru(G) certainly lies in I(T ), and by construction I(T ) is smooth,
connected, and unipotent). But there is a reason to expect this result: experience with many
examples in the reductive case (for which the assertion is that I(T ) = 1). In fact, it will be easy to
reduce the general case to the reductive case, and once the structure theory of connected reductive
groups is set up (in terms of root systems and root groups) it will follow that for any single Borel
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subgroup B containing a maximal torus T in a connected reductive group G there is a (unique)
B′ containing T such that Ru(B) ∩Ru(B′) = 1 scheme-theoretically (one calls B′ the “opposite”
Borel subgroup to B relative to T ; for G = GLn and the diagonal T and upper-triangular B, the
lower-triangular Borel is B′). Thus, for a general smooth connected affine group G over k = k,
we may apply this to G/Ru(G) to get a pair of Borel subgroups B and B′ containing T such
that Ru(B) ∩Ru(B′) = Ru(G) scheme-theoretically. This is a much stronger assertion than that
I(T ) = Ru(G), but it rests upon finer structure theory of connected reductive groups.

Proof. The torus T maps isomorphically onto a torus in G/Ru(G), and its image must be a maximal
torus for dimension reasons (as the preimage in G of any torus in G/Ru(G) is clearly smooth
connected and solvable). Thus, it is harmless to replace G with G/Ru(G) to reduce to the case
when G is reductive. We aim to prove I(T ) = 1.

If we can prove that I(T ) is normal in G then it must lie in Ru(G) = 1, so we would be done.
Such normality is not at all obvious, since G(k)-conjugations move T all over the place! The crux of
the matter is to prove that G is generated by some finite collection of smooth connected subgroups
that each normalize I(T ) (so G does as well). We will achieve this by using the classification
of connected reductive groups with a 1-dimensional maximal torus over algebraically closed fields:
such groups are either SL2 or PGL2, for which we can do some concrete calculations. (The intuition,
for those familiar with the structure theory of complex semisimple Lie algebras, is that already for
a single B and its “opposite” Borel with respect to T we should get a trivial intersection. The
problem is that this intuition rests on the structure theory for such Lie algebras in terms of root
systems, and the analogous structure theory for connected reductive groups rests on what we are
presently trying to prove!)

Let Φ = Φ(G,T ) denote the set of nontrivial weights for the adjoint action of T on g = Lie(G).
We may (and do) assume Φ is non-empty. Indeed, otherwise ZG(T ) has Lie algebra gT = g and
thus ZG(T ) = G. But any smooth connected affine group over k = k with a central maximal torus
must be solvable (since the quotient by the central maximal torus has no nontrivial tori and hence
is unipotent). Thus, by reductivity we’d have G = T , leaving nothing to do.

By Lemma ??, for each a ∈ Φ the reduced subscheme Ta := (ker a)0
red is a codimension-1 subtorus

in T whose formation commutes with extension of the ground field. Also, Ga := ZG(Ta) is a smooth
connected subgroup of G containing T with ga := Lie(Ga) = gTa . In other words, ga is the span of
the weight spaces in g for those T -weights which kill Ta, or in other words are rational multiples of
a in X(T )Q (as X(T/Ta)Q is 1-dimensional and contains a 6= 0). In particular, the trivial weight

space gT = Lie(ZG(T )) is contained in every ga, as is the a-weight space, so g is spanned by the
ga’s due to the complete reducibility of the T -action on g. Thus, G is generated by the subgroups
Ga. It therefore suffices to prove that each Ga normalizes I(T ).

Note that by its definition, each Ga does contain ZG(T ). In particular, T is a maximal torus
in every Ga. We claim that each Ga is generated by its Borel subgroups that contain T . If Ga is
solvable (which is actually impossible, but we do not know that yet) then it is its own Borel subgroup
and there is nothing to do. In the non-solvable case, passing to the non-solvable connected reductive
quotient Ga/Ru(Ga) in which T maps isomorphically onto a maximal torus allows us to apply:

Proposition 1.5. Let H be a non-solvable connected reductive group over an algebraically closed
field, and assume H contains a maximal torus S such that all nontrivial S-weights occurring on h
are Q-multiples of each other.

The quotient of H modulo its maximal central torus is either SL2 or PGL2 with the image of S
going over to the diagonal torus, there are exactly two Borel subgroups of H that contain S, and
these Borel subgroups generate H.
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Note that it is automatic that the set Φ(H,S) of non-trivial S-weights on h is non-empty, as
otherwise the equality h = hS = Lie(ZH(S)) would force H = ZH(S), and then H/S makes sense as
a k-group and must be unipotent (as it has no nontrivial tori, due to maximality of S), contradicting
that H is non-solvable.

Proof. Consider the maximal smooth connected solvable normal subgroup R in H. This is reductive
(since H is), so it is a torus. Being a normal torus in the connected H, it must be central. Thus,
it is contained in S (as well as in every Borel) and is killed by all S-weights on h, so replacing
H and S with H/R and S/R respectively is harmless. Thus, we may assume that there is no
nontrivial central torus in H. We will next prove that dimS = 1 (so we can apply the classification
of non-solvable connected reductive groups with a 1-dimensional maximal torus!).

We have seen that Φ(H,S) is non-empty, so by the hypotheses Φ(H,S) spans a single line in
X(S)Q. Hence, if we pick a ∈ Φ(H,S) then S′ := (ker a)0

red is a codimension-1 torus in S on which
all elements of Φ(H,S) ⊂ Q · a are trivial, so the containment ZH(S′) ⊂ H is an equality due
to comparison of the Lie algebras. This forces S′ = 1 since H has no nontrivial central torus, so
dimS = 1.

It follows from our classification of non-solvable connected reductive groups with a 1-dimensional
maximal torus that necessarily H is isomorphic to either SL2 or PGL2. By conjugacy of maximal
tori, we can choose this isomorphism so that S goes over to the diagonal torus. The two standard
Borel subgroups containing S in each case then generate H: for SL2 we know that even their
unipotent radicals do the job, and so the same holds for the quotient PGL2. To prove that these
two Borel subgroups are the only ones containing S, we first observe that in both SL2 and PGL2

the diagonal torus D is its own centralizer, and that D(k) has index 2 in its normalizer. (The case
of PGL2 can be reduced to SL2 since the kernel of SL2 � PGL2 is contained in the diagonal torus.)
We may then conclude by applying the lemma below. �

Lemma 1.6. For any smooth connected affine group G over an algebraically closed field k and any
maximal torus T in G, ZG(T ) is contained in every Borel subgroup B of G that contains T , and
the resulting “conjugation” action of NG(T )(k)/ZG(T )(k) on the set of such B is transitive.

Proof. The smooth connected subgroup ZG(T ) is solvable (since ZG(T )/T is a connected linear
algebraic group with no nontrivial tori, so it is unipotent). Hence, ZG(T ) is contained in some
Borel subgroup B0 of G, and visibly B0 contains T . Since ZG(T ) is certainly normalized by
NG(T )(k), once it is shown that NG(T )(k)-conjugation is transitive on the set of B ⊃ T it will
follow that all such B contains ZG(T ) and we will be done.

Consider any two B,B′ ⊃ T , so gBg−1 = B′ for some g ∈ G. Observe that gTg−1 and T are
maximal torus in B′, so for some b′ ∈ B′ we have b′gTg−1b′−1 = T . Hence, b′g ∈ NG(T )(k) does
the job. (Also see HW9 Exercise 6(i) of the previous course.) �

Returning to our setup of interest, we have shown that G is generated by the Borel subgroups
B ⊃ T in the groups Ga = ZG(Ta), so it suffices to prove that I(T ) is normalized by each such
Borel subgroup. According to Lemma ??, the Borel subgroups of Ga are precisely ZB(Ta) for
Borel subgroups B of G containing Ta, and such a subgroup contains T if and only if B does (as
T obviously centralizes Ta!). Hence, G is generated by its subgroups ZB(Ta) as B varies through
the Borel subgroups containing T . For such B, the smooth connected solvable group ZB(Ta) is
T o Ru(B)Ta , so its unipotent radical is Ru(B)Ta .

If Ga is non-solvable then the maximal central torus in Ga is Ta (as this has codimension 1
in T and certainly T cannot be central as otherwise Ga/T would be unipotent, forcing Ga to be
solvable). Continuing to assume Ga is non-solvable, the reductive quotient Ga/Ru(Ga) must have
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the central codimension-1 torus Ta ⊂ T as its maximal central torus, and Proposition ?? implies
that the resulting quotient Ga/(Ta ×Ru(Ga)) by this central torus is either SL2 or PGL2 carrying
T/Ta over to the diagonal torus. In each of SL2 and PGL2 there are exactly two Borel subgroups
containing the diagonal torus (Proposition ??). Moreover, each such Borel subgroup supports (in
the Lie algebra of its unipotent radical) exactly one of two nontrivial T -weights ±qa · a for some
rational qa > 0, both signs actually occur, and the corresponding weight spaces are 1-dimensional.
Since Ta (and hence Ga) is insensitive to replacing a with a nonzero rational multiple (among the
T -weights on g), it follows that each of ±qa · a is insensitive to replacing a with a positive rational
multiple (among the T -weights on g).

If some Ga is equal to G then it is non-solvable and Ta is central in G and Ru(Ga) = 1, so G/Ta
is either SL2 or PGL2, making it evident by inspection that G has exactly two Borel subgroups
containing T and that their intersection is trivial. Hence, we may assume that all Ga are proper
subgroups of G, so by induction on dimG (!) each unipotent radical Ru(Ga) is the reduced identity
component of the intersection of the Ru(B)Ta for B containing T . By the noetherian condition,
this intersection over all B stabilizes at a finite set of B’s, and likewise for the definition of I(T ).
Since torus centralizers are compatible with smoothness and with identity components (in the sense
that they preserve connectedness), it follows that Ru(Ga) = I(T )Ta for every a.

For a such that Ga is solvable we have Ga = T nRu(Ga) = T n I(T )Ta , in which case it is clear
that Ga normalizes I(T ) and the nonzero a-weight space in g is contained in Lie(I(T )). (This also
shows that once the proof of Theorem ?? is finished, so I(T ) = 1, no Ga can be solvable.) Thus,
we now consider a for which Ga is non-solvable.

Under surjective homomorphisms between smooth connected affine groups over an algebraically
closed field, Borel subgroups map onto Borel subgroups (since images of solvable groups are solvable
and images of complete varieties are complete) and hence likewise for their unipotent radicals (due
to the structure of smooth connected solvable groups over k = k). Thus, as we vary B ⊃ T ,
for a such that Ga is non-solvable the image of each Ru(B)Ta in Ga/(Ta × Ru(Ga)) is one of
two 1-dimensional possibilities. Hence, Ru(B)Ta contains Ru(Ga) = I(T )Ta as a normal subgroup
with codimension 1 and quotient whose Lie algebra supports a T -weight ±qa · a that is insensitive
to replacing a with a positive rational multiple (among the T -weights on g). Moreover, this 1-
dimensional quotient as a T -normalized subvariety of the coset space G/I(T )Ta depends only on
the sign of the multiplier against a. Among all nonzero rational multiples of a which arise as T -
weights on the tangent space at the identity for the coset space G/I(T ) it follows from Proposition
?? (with S = Ta and H = I(T )) that exactly two have weight space in g not entirely contained in
Lie(I(T )), and that these two weights are negatives of each other and have weight spaces meeting
Lie(I(T )) with codimension 1.

Now we may focus on a such that Ga is non-solvable and (by replacing a with a uniquely
determined positive rational multiple if necessary) the a-weight space is not entirely contained
in Lie(I(T )). (As we have seen above, this latter condition on a already forces Ga to be non-
solvable.) The only other nonzero rational multiple of a which occurs in this way is −a (and it
does occur). We have seen that as we vary through all Borel subgroups B of G containing T , the
groups Ru(B)Ta/Ru(Ga) vary through precisely the two Borel subgroups B±a of Ga/(Ta×Ru(Ga))
containing T/Ta (i.e., Borels of SL2 or PGL2 containing the diagonal torus), distinguished by which
of a or −a occurs as the T -weight on its Lie algebra. Correspondingly the preimage Borel subgroups
BTa = T nRu(B)Ta in Ga vary through exactly two possibilities which are distinguished by which
of a or −a occurs as a T -weight on its Lie algebra outside of Lie(I(T )Ta) = Lie(I(T ))Ta . (Keep in
mind that T−a = Ta, and I(T )Ta = Ru(Ga) has nothing to do with the choice of B.) But Ru(B)Ta

is the unipotent radical of T n Ru(B)Ta . Thus, as we vary though all Borel subgroups B of G
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containing T , the groups Ru(B)Ta vary through exactly two possibilities, distinguished by which
of a or −a occurs as the T -weight on the 1-dimensional Ru(B)Ta/Ru(Ga).

Our remaining task is to prove that both possibilities for Ru(B)Ta normalize I(T ). It is harmless
to rename −a as a, due to the symmetry of the situation (as T−a = Ta and both ±a occur as
T -weights outside of Lie(I(T ))), so we may fix a and focus on B0 ⊃ T such that the 1-dimensional
subgroup Ru(B0)Ta/Ru(Ga) in Ga/(Ta × Ru(Ga)) coincides with Ba. But for all such B0 the
groups Ru(B0)Ta ⊂ Ga are the same, whence Ru(B0)Ta lies in Ru(B) as B varies through all Borel
subgroups of G containing T for which Ru(B)Ta/Ru(Ga) = Ba.

Define Ia(T ) as the reduced identity component of an intersection similar to I(T ), except that
we restrict to those B ⊃ T such that Ru(B)Ta/Ru(Ga) = Ba (and not B−a). Since the formation of
Ta-centralizers preserves connectedness and smoothness, Ia(T )Ta = Ru(B0)Ta . Hence, Ru(B0)Ta ⊂
Ia(T ), so to prove that Ru(B0)Ta normalizes I(T ) it suffices to prove that Ia(T ) normalizes its
subgroup I(T ).

The preceding considerations yield the following very important consequence (especially after we
finish the proof of Theorem ??, so for reductive G we have I(T ) = 1 and Ga is always non-solvable
when some a exist, which is to say G 6= T ):

Lemma 1.7. Assume G is connected reductive and is not a torus. The finite collection Ψ(G,T ) ⊂
X(T ) of non-trivial T -weights a on g whose weight space is not contained in Lie(I(T )) is non-
empty and stable under negation, with each such weight having a 1-dimensional weight space in the
tangent space at the identity on the coset space G/I(T ). Moreover, for any a ∈ Ψ(G,T ), the set of
Q-multiples of a in Ψ(G,T ) is {±a}.

Proof. For any such weight a, apply the preceding arguments and Proposition ?? with S = Ta and
H = I(T ). �

The normality of I(T ) in Ia(T ) is reduced to a dimension property, due to:

Lemma 1.8. For any inclusion U ↪→ U ′ between smooth connected unipotent groups over a field,
if U 6= U ′ then NU ′(U) is strictly larger than U . In particular, if dim(U ′/U) = 1 then U is normal
in U ′.

Proof. We may assume the ground field is algebraically closed. The descending central series of U ′

(or consideration of upper-triangular unipotent matrices) forces U ′ to contain a central Ga (here
we use that the ground field is algebraically closed). If this is not contained in U then we win.
Otherwise we can replace U and U ′ with their quotients modulo this common central subgroup and
proceed by induction on dimU ′. �

It now suffices to prove that dim Ia(T )/I(T ) ≤ 1. The coset space Ia(T )/I(T ) has a natural
T -action (as Ia(T ) and I(T ) are normalized by T ), so its tangent space at the identity point is a
direct sum of weight spaces for some T -weights; by the way we have chosen a, one such weight is
a itself. Explicitly, the elements of Q · a that arise as such weights must show up as T -weights
on Ia(T )Ta = Ru(B0)Ta , yet Ia(T )Ta

⋂
I(T ) = I(T )Ta = Ru(Ga) and Ru(B0)Ta/Ru(Ga) = Ba is

1-dimensional with T -weight a. Hence, the only T -weight in Tan1(Ia(T )/I(T )) lying in Q · a is a
itself, with a 1-dimensional weight space. To prove the 1-dimensionality of Ia(T )/I(T ), it therefore
suffices to prove that for any b ∈ Φ(G,T ) ⊂ X(T )Q linearly independent from a over Q, b does not
arise as a T -weight on Tan1(Ia(T )/I(T )).

We assume to the contrary that such a b exists, and we seek a contradiction. The hypothesis on b
implies that the b-weight space in g is not entirely contained in Lie(I(T )), so Gb is non-solvable and
hence the preceding results for a may be applied to b as well. Hence, for any B ⊃ T , the quotient
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Ru(B)Tb/Ru(Gb) is 1-dimensional with b or −b as the unique T -weight on its Lie algebra, and
Ru(B)Tb is the unipotent radical of the preimage in Gb of one of the two Borel subgroups B±b ⊂
Gb/(Tb×Ru(Gb)) containing T/Tb. More specifically, the Borel subgroup BTb = T nRu(B)Tb ⊂ Gb
maps onto exactly one of B±b in Gb/(Tb×Ru(Gb)) and is uniquely determined by that image group.

Now we return to our choice of B0 ⊃ T such that BTa
0 � Ba inside Ga/(Ta × Ru(Ga)).

By definition we have Ia(T ) ⊂ Ru(B0)Ta , so Ia(T ) ⊂ Ru(B0) and hence Ia(T )Tb ⊂ Ru(B0)Tb .
By hypothesis Tan1(Ia(T )/I(T )) has b as a T -weight, so passing to Tb-fixed points implies that
Tan1(Ia(T )Tb/I(T )Tb) has b as a T -weight, yet the equality I(T )Tb = Ru(Gb) yields the closed
immersion

Ia(T )Tb/I(T )Tb = Ia(T )Tb/Ru(Gb) ⊂ Ru(B0)Tb/Ru(Gb) = B±b!

The source has b as a T -weight on its tangent space at 1, hence the right side must be Bb and not
B−b.

Summarizing, for any Borel subgroup B ⊃ T , if BTa � Ba then necessarily BTb � Bb (and not
B−b). To get a contradiction, it suffices to show that we can actually build Borel subgroups B ⊃ T
for which BTa and BTb may be “arbitrarily” assigned. More precisely, Recall that Ta uniquely
determines the pair {a,−a}. Call a codimension-1 torus S in T singular if there is a T -weight on g
which kills S and whose weight space is not entirely contained in Lie(I(T )). To get a contradiction
and complete the proof of Theorem ??, we apply the following lemma. �

Lemma 1.9. Let a, b ∈ Φ be linearly independent over Q such that their weight spaces in g are
not contained in Lie(I(T )). Then there exist Borel subgroups B,B′ in G containing T such that

BTa , BTa � Ba but BTb � Bb and B′Tb � B−b.

Proof. We bring in the “dynamic approach” to algebraic groups (discussed in an earlier handout,
and in March 8 and March 10 lectures from the previous course). Call a cocharacter λ : Gm → T
regular if is not killed by any of the weights in Φ(G,T ). This amounts to requiring that λ ∈
X∗(T ) = X(T )∨ avoids finitely many “hyperplanes”, so there are many such λ. In particular, for all
c ∈ Φ(G,T ) the pairing 〈c, λ〉 = c ◦ λ ∈ End(Gm) = Z is nonzero. For any regular λ (or even any
1-parameter subgroup of G at all), we obtained smooth connected unipotent subgroups UG(λ) and
UG(−λ), as well as a smooth connected subgroup ZG(λ) = ZG(−λ), such that all are normalized
by T and their Lie algebras are the respective weight spaces in g for the weights c ∈ Φ(G,T )∪ {0}
satisfying 〈c, λ〉 > 0, 〈c, λ〉 < 0, and 〈c, λ〉 = 0. The final case occurs precisely for c = 0 since λ is
regular, so ZG(λ) and ZG(T ) have the same Lie algebra and hence the containment ZG(T ) ⊆ ZG(λ)
(which follows from the functorial characterization of ZG(λ) because λ is valued in T ) is forced to
be an equality due to connected and dimension reasons. Hence, we have an open immersion

UG(λ)× ZG(T )× UG(−λ)→ G

via multiplication (see §2 of the handout “Lang’s theorem and dynamic methods”, and HW10
Exercise 3 of the previous course), and ZG(T ) = ZG(λ) = ZG(−λ) normalizes both UG(λ) and
UG(−λ).

The centralizer ZG(T ) is solvable (since ZG(T )/T must be unipotent, due to maximality of T ),
so by the centrality of T it has the form ZG(T ) = T ×U for a unipotent radical U . Let us show that
U ⊂ I(T ). The smooth connected solvable subgroup ZG(T ) is contained in some Borel subgroup B
of G, and T ⊂ B since T ⊂ ZG(T ), so U = Ru(ZG(T )) ⊂ Ru(B). But NG(T )(k) acts transitively
on the set of Borel subgroups of B containing T (Lemma ??), yet it clearly normalizes ZG(T ), so
it follows that ZG(T ) is contained in every Borel subgroup of G containing T . Hence, U lies in the
unipotent radical of all such Borel subgroups, so U ⊂ I(T ) as claimed. In particular, we see that
ZG(T ) ⊂ T n I(T ).
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Fix a regular cocharacter λ, so all nontrivial T -weights c on g have nonzero pairing against
λ and hence have weight space meeting the Lie algebra of UG(λ) or UG(−λ) nontrivially. Since
ZG(T ) ⊂ T n I(T ), it follows that g is spanned by Lie(I(T )) and Lie(UG(±λ)). Define the smooth
connected solvable subgroup

H(λ) := T n UG(λ).

We claim that the subgroup

B(λ) := 〈H(λ), I(T )〉
is a Borel subgroup containing T , and that Lie(B(λ)) = Lie(H(λ)) + Lie(I(T )). (Since NG(T )(k)-
conjugation permutes the subgroups B(λ) via the NG(T )(k)-action on X∗(T ), it would then follow
from the transitivity of the NG(T )(k)-action on the set of Borels containing T that every Borel
subgroup of G containing T has the form B(λ) for some regular λ!)

To prove that every B(λ) is a Borel subgroup, and moreover has the predicted Lie algebra, we
argue indirectly. Since H(λ) is smooth, connected, and solvable, it is contained in some Borel
subgroup B, so T ⊂ B since H(λ) contains T . In particular, I(T ) ⊂ B, so B(λ) ⊂ B. We shall
prove that the containment Lie(B(λ)) ⊂ Lie(B) is an equality, forcing B(λ) = B, so B(λ) is a Borel
subgroup. Since ZG(T ) ⊂ T × I(T ) ⊂ B(λ), if the T -stable subspace Lie(B) ⊂ g is strictly larger
than Lie(B(λ)) then it must support a weight c ∈ Φ(G,T ) such that the c-weight space in g is not
entirely contained in Lie(I(T )) and 〈c, λ〉 < 0.

For any such c the group Gc must be non-solvable (since the c-weight space of g is not entirely
inside Lie(I(T )), due to how c was chosen). It follows from our study of Gc/(Tc×Ru(Gc)) for such
c that −c ∈ Φ(G,T ) as well, and that moreover the −c-weight space of g is not entirely contained
in Lie(I(T )). More specifically, since 〈−c, λ〉 > 0 and B contains UG(λ), the entire −c-weight space
is contained in Lie(B), so in fact Lie(BTc) = Lie(B)Tc supports both ±c-weight lines outside of
Lie(I(T )). But then the map

f : BTc → Gc/(Tc ×Ru(Gc))

induced by the inclusion BTc ⊂ Gc has T -equivariant Lie algebra map that hits both nontrivial
weight lines on the target as well as Lie(T/Tc), so Lie(f) is surjective. That forces f to be surjective,
which is absurd because f is a map from a solvable group to a non-solvable group. This completes
the proof that B(λ) is a Borel subgroup, and the argument also shows that Lie(B(λ)) = Lie(H(λ))+
Lie(I(T )) (because it Lie(B(λ)) were any larger then it would admit a T -weight c of exactly the
type from which a contradiction was deduced above).

Now we can construct the desired Borel subgroups containing T . Let S := Ta and S′ := Tb. For
any regular λ ∈ X∗(T ) and the Borel subgroup B = B(λ) (with Lie algebra Lie(H(λ))+Lie(I(T ))),
the Lie algebra of BS is spanned by the Lie algebras of H(λ)S and I(T )S . Hence, the Borel subgroup
BS in GS = Ga is generated by H(λ)S = T n UG(λ)S = T n UGS (λ) and I(T )S . Observe that
I(T )S = I(T )Ta = Ru(Ga) = Ru(GS) is determined by S: it has nothing to do with the choice of
B! Thus, the good behavior of the “UH(µ)” construction with respect to surjections implies that
the common image of BS and UGS (λ) in GS/(S ×Ru(GS)) is the unipotent radical of one of the
two Borel subgroups B±a containing T/S, depending on which of 〈±a, λ〉 is positive. If we replace
λ with −λ then we get the “opposite” one (since UGS (−λ) supports the entire −a-weight space in
g, which is not entirely contained in the Lie algebra of Ru(GS) = I(T )S , due to the occurrence in
opposite pairs in Lemma ??). The same conclusions apply to (b, S′) in place of (a, S).

Since a and b are linearly independent over Q, we may pick λ, λ′ ∈ X∗(T ) ⊂ X∗(T )Q = X(T )∨Q
such that

〈a, λ〉, 〈b, λ〉 > 0, 〈a, λ′〉 > 0 > 〈b, λ′〉.
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Then the Borel subgroups B = B(λ) and B′ = B(λ′) containing T satisfy BS , B′S � Ba but

BS′
� Bb and B′S

′
� B−b. �

Corollary 1.10. Let k be a field and G a connected reductive k-group that is not a torus. Assume
G contains a split maximal k-torus T .

The set Φ(G,T ) of non-trivial T -weights occurring on g is non-empty and stable under negation
in X(T ), and for each a ∈ Φ(G,T ) the weight space ga is 1-dimensional and the only Q-multiples
of a in Φ(G,T ) are ±a.

Proof. If Φ(G,T ) is empty then T acts trivially on g, so ZG(T ) has full Lie algebra in g and hence
ZG(T ) = G. But ZG(T ) = T by reductivity, and G is not a torus by hypothesis. Hence, Φ(G,T )
is non-empty. By Theorem ??, I(T ) = 1. Thus, we may apply Lemma ?? to conclude. �

In view of the triviality of I(T ), so B(λ) = H(λ) in the proof of Lemma ??, we get an important
consequence:

Corollary 1.11. Let G be a connected reductive group over k = k, T a maximal torus. As λ
varies through the regular cocharacters in X∗(T ) (i.e., 〈a, λ〉 6= 0 for all a ∈ Φ(G,T )), the subgroups
B(λ) = T n UG(λ) vary through precisely the Borel subgroups of G containing T .

Remark 1.12. This dynamic description has an extremely interesting consequence: the dimensions
of Borel subgroups B and maximal tori T of G satisfy dimB = (1/2)(dimG + dimT ). Indeed,
fix T ⊂ B, so B = B(λ) = T n UG(λ) for a regular λ ∈ X∗(T ). Consider the T -weight space
decomposition g = t ⊕ (⊕a∈Φga) with 〈a, λ〉 6= 0 for all a ∈ Φ = Φ(G,T ) and all ga of dimension
1 (see Corollary ??). We know that Lie(UG(λ)) is spanned by the lines ga with 〈a, λ〉 > 0, so for
each pair {a,−a} in Φ, exactly one of the associated root lines is in Lie(UG(λ)). In other words,

dimUG(λ) = (1/2)#Φ = (1/2)(dim g− dim t) = (1/2)(dimG− dimT ).

Since dimB = dimT + dimUG(λ), the asserted formula for dimB follows.
One reason that this formula for dimB is interesting is that it provides a criterion to identify

when an explicitly constructed connected solvable subgroup in G is maximal as such (i.e., is a Borel
subgroup): it is necessary and sufficient that its dimension is (1/2)(dimG+ dimT ). We know how
to identity when a candidate torus T in G is maximal: just check that dimT = dimZG(T ), or
in other words that Lie(T ) is the entire 0-weight space for the T -action on g. Once such a T has
been found, we can then compute (1/2)(dimG+ dimT ) to know what the dimension of the Borel
subgroups must be!

We will later vastly generalize Corollary ??, giving a dynamical description of all parabolic
subgroups and deducing an analogue over any ground field. Inspired by Theorem ?? let’s now
analyze the set of all Borel subgroups B containing a fixed maximal torus T in a smooth connected
affine group G over an algebraically closed field k, going beyond the reductive case as in Corollary
??. By Lemma ??, we know that all such B contain ZG(T ) and that the finite constant group
W (G,T ) = NG(T )/ZG(T ) acts transitively on this collection. Even better:

Proposition 1.13. The transitive action by W (G,T ) = NG(T )/ZG(T ) on the set of Borel sub-
groups containing T is simply transitive. In particular, the number of such Borel subgroups is finite,
and in fact equal to #W (G,T ).

As an example, if G = GLn and T is the diagonal torus D then the subgroup Sn ⊂ G(k) of
permutation matrices lies in NG(T ) and maps isomorphically onto W (G,T ). Thus, the Sn-orbit
of the standard upper-triangular subgroup B ⊂ G is the set of Borel subgroups of G containing D



10

(i.e., these correspond to choices of enumeration of the standard ordered basis, each enumeration
giving rise to a different flag, the stabilizer of which is the corresponding Borel subgroup).

Proof. We have to show that if n ∈ NG(T ) satisfies nBn−1 = B for some n ∈ NG(T ) then
n ∈ ZG(T ). In the March 5 lecture of the previous course we discussed the important theorem of
Chevalley that every parabolic subgroup is its own normalizer at the level of field-valued points,
and its proof (resting on dimension induction and especially the connectedness of torus centralizers
in connected linear algebraic groups) was given at the start of the present course. As a consequence
of that result, n ∈ B, so n ∈ NB(T ). The problem is reduced to a general property of solvable
connected linear algebraic groups H over a field: the normalizer of a maximal torus T in H is the
centralizer of T . We may assume the ground field k is algebraically closed, so H = T n U for a
smooth connected unipotent U , and we just need to show that if u ∈ U(k) normalizes T then it
centralizes T . We will not even use the unipotence of U .

It suffices to show that if u ∈ U(k) and utu−1 ∈ T for all t ∈ T then u is centralized by the
T -action. It is harmless to multiply on the right by t−1, so it is equivalent to say u(tu−1t−1) ∈ T
for all t ∈ T . But tu−1t−1 ∈ U , so u(tu−1t−1) ∈ U . Thus, membership in T is equivalent to the
condition u(tu−1t−1) = 1 which says exactly that u commutes with every t ∈ T ; i.e., u ∈ ZG(T ). �

2. Torus centralizers and unipotent radicals

The following theorem is the key miracle.

Theorem 2.1. For any k-torus S in G, we have

ZG(S)k ∩Ru(Gk) = Ru(ZG(S)k)

inside Gk. In particular, if G is reductive then so is ZG(S).

The preservation of reductivity under passage to torus centralizers in connected reductive groups
is a powerful inductive technique to prove general theorems by dimension induction.

Proof. We may and do assume k = k. The S-conjugation on G preserves the normal subgroup
Ru(G), and the scheme-theoretic intersection ZG(S) ∩Ru(G) is simply the S-centralizer Ru(G)S

in Ru(G) under this action. But functorial considerations make it clear that

ZSnRu(G)(S) = S ×Ru(G)S ,

and the left side is smooth and connected since it is a torus centralizer in the smooth connected
affine group S n Ru(G)! Thus, it follows that the direct factor (as a k-scheme) Ru(G)S is also
smooth and connected. (This same argument shows more generally that for any smooth connected
subgroup H in G normalized by S, ZG(S) ∩H is smooth and connected.)

We conclude that ZG(S) ∩Ru(G) is a smooth connected unipotent subgroup of ZG(S), and it
is visibly normal (as Ru(G) is normal in G), whence ZG(S) ∩Ru(G) ⊆ Ru(ZG(S)). It remains to
prove the reverse inclusion, which is to say that Ru(ZG(S)) ⊆ Ru(G).

The unipotent radical of any smooth connected affine group H (over k = k) is smooth connected
solvable and thus lies in some Borel subgroup. By conjugacy of Borel subgroups and normality
of the unipotent radical, it follows that Ru(H) lies in all Borel subgroups of H, and thus (by
solvability of Borel subgroups) in the unipotent radicals of all of these Borel subgroups. Taking
H = ZG(S), we obtain from Lemma ?? that

Ru(ZG(S)) ⊆
⋂
B⊇S

Ru(ZG(S) ∩B) ⊆
⋂
B⊇S

Ru(B)
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since the formation of the unipotent radical is functorial in smooth connected solvable groups (such
as with respect to the inclusion ZG(S) ∩B → B). Thus,

Ru(ZG(S)) ⊆

 ⋂
B⊇S

Ru(B)

0

red

.

If we pick a maximal torus T containing S, then the intersection can only grow if we restrict to
those B that contain T . But restricting to such B yields the group I(T ) = Ru(G) by Theorem
??. �

Recall the elementary fact that reductivity is inherited by smooth connected normal k-subgroups.
More specifically, if N ⊆ G is a smooth connected normal k-subgroup then the G(k)-conjugation
action on Nk must preserves Ru(Nk), so this unipotent radical is normal in Gk. Hence, Ru(Nk) ⊂
Ru(Gk), so reductivity of G implies that of N . In fact, the inclusion Ru(Nk) ⊆ Nk ∩Ru(Gk) of
subgroup schemes of Gk (using scheme-theoretic intersection) is always an equality, but the proof
rests on some non-trivial structural properties of reductive groups which have not yet been proved
and we will not need this result. (A proof is given in Proposition A.4.8 of “Pseudo-reductive
groups”, working over k there.) The main input is the non-obvious fact that the scheme-theoretic
center of a connected reductive group is a subgroup scheme of a torus (see Corollary ?? below), and
so has no nontrivial subgroup schemes which can arise as subgroup schemes of smooth unipotent
groups (see HW5, Exercise 1 of the previous course).

Corollary 2.2. If G is a connected reductive group over a field k and T is a maximal k-torus then
ZG(T ) = T ; in particular, the scheme-theoretic center ZG is contained in all such T .

Also, for any surjective k-homomorphism π : G � G′, π(Ru(Gk)) = Ru(G′
k
). In particular, if

G is reductive then so is G′.

Our proof of the first assertion in this corollary will rest on Grothendieck’s theorem concerning
the existence of a maximal k-torus which remains maximal over k, as that ensures Tk is maximal

in Gk. But we only apply the equality ZG(T ) = T in the setup where k = k (e.g., in the proof of
the behavior of unipotent radicals under quotient maps). Special cases were seen in HW3 Exercise
4(i) and HW4 Exercise 1 of the previous course.

Proof. We may and do assume k = k. By Theorem ??, ZG(T ) is reductive since G is reductive. But
its maximal torus T is central, so the quotient ZG(T )/T is unipotent. Hence, ZG(T ) is a solvable
connected reductive group, so it is a torus (due to the structure of smooth connected solvable
groups over algebraically closed fields). By maximality, the inclusion T ↪→ ZG(T ) must then be an
equality.

Now consider the scheme-theoretic preimage of Ru(G′) under the quotient map G→ G′. This is
a normal subgroup scheme of G (since Ru(G′) is normal in G′), so the identity component N of its
underlying reduced scheme is as well. Then N inherits reductivity from G and admits Ru(G′) as a
quotient, so we can replace G with N to reduce to showing that for any connected reductive group
G, a smooth connected unipotent quotient U of G must be trivial. Let T be a maximal torus in
G. Its image in U is trivial, so by the compatibility of torus centralizers with respect to surjective
homomorphisms between smooth connected affine groups (Corollary 2.5 in the handout “Lang’s
theorem and dynamic methods”) it follows that U = ZU (1) is the image of ZG(T ) = T . This forces
U = 1 since U is unipotent and T is a torus. �

Example 2.3. Consider a smooth affine group G over an algebraically closed field k, and any
quotient π : G� G′ with G′ reductive. Thus, G0 maps onto the reductive G′0, so by Corollary ??
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the unipotent radical Ru(G) = Ru(G0) is killed by this quotient map. Hence, π factors uniquely
through the natural quotient map G→ G/Ru(G), and conversely any quotient of G which factors
through this latter map must be a quotient of G/Ru(G) and hence is reductive. For these reasons,
the quotient G/Ru(G) is sometimes called the maximal reductive quotient of G.

Corollary 2.4. Let G be a connected reductive group over a separably closed field k. Then G is
generated by its maximal k-tori, and ZG is the scheme-theoretic intersection of such tori.

This corollary is actually true over any field, but the proof requires deeper structure theory (and
extra care when k is finite).

Proof. Let N be the smooth connected k-subgroup generated by the maximal k-tori. Since G(k) is
Zariski-dense in G (as k = ks) and it normalizes N , it follows that N is normal in G. Thus, G/N
makes sense as a smooth connected group, and by construction it contains no nontrivial k-tori.
By Grothendieck’s theorem, such a group is unipotent. But G/N is reductive by Corollary ??,
so it is trivial. Hence, G = N , so G is generated by its maximal k-tori T . It follows that ZG is
defined (functorially) by the condition of centralizing all such T . But ZG(T ) = T , so ZG is the
(scheme-theoretic) intersection of all such T . �

We end this section with a surprisingly useful and non-obvious fact:

Corollary 2.5. Let G be a connected reductive group over a field k of characteristic p > 0, and
ZG its scheme-theoretic center. Then (ZG)k cannot contain αp or Z/pZ as subgroup schemes. In
particular, if U is a smooth unipotent k-subgroup of G then ZG ∩ U = 1 scheme-theoretically, and
so U → G/ZG is a closed k-subgroup inclusion.

Beware that it can happen that a connected reductive group G contains a normal non-central
infinitesimal subgroup scheme U having a composition series by αp’s, though the resulting so-called
unipotent isogenies G → G/U only exist in characteristic 2. The simplest example is the weird
purely inseparable isogeny PGL2 → SL2 obtained by factors the Frobenius isogeny SL2 → SL2

through the central quotient SL2 → PGL2 whose kernel µ2 is killed by Frobenius.

Proof. By Corollary ??, ZG is a k-subgroup of a torus. Thus, we just have to check that Gm does
not contain αp or Z/pZ. Since Gm[p] = µp, this amounts to the assertion that αp and Z/pZ are
not isomorphic to µp. The case of Z/pZ is clear since µp is not étale in characteristic p, and for
αp we can use the comparison of their p-Lie algebras to rule out an isomorphism (though Cartier
duality provides another way, once one has computed that αp is its own Cartier dual, which is not
entirely trivial to verify directly.) �

3. Derived groups and semisimple groups

Now we reap the fruit of our labors. A smooth connected affine group H over a field is called
perfect if H = D(H). For example, if G is connected reductive over a field k then D(G) is a smooth
connected normal k-subgroup of G, so it is also reductive. How about its own derived group
D(D(G))? Can this decreasing chain involve several steps before it terminates (for dimension
reasons), as happens for solvable groups? No, the process ends immediately:

Lemma 3.1. Let G be a connected reductive group over a field k. The derived group D(G) is
perfect.

Proof. Let N = D(G). To prove that N is perfect, first note that D(N) is normal in G, so we
may replace G with the (reductive!) quotient G/D(N) to reduce to the case when D(N) = 1. In
other words, the connected reductive group N is commutative, so it is a torus. But G/N is also
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commutative and reductive, hence a torus, so G must itself be a torus! But then obviously N = 1,
which is perfect. �

Recall that a solvable connected reductive k-group is just a k-torus by another name. By HW5
Exercise 4(iii) of the previous course, these are the same as the “Galois lattices” via the functor
T  Homks(Tks ,Gm). The non-solvable case is much more interesting, and requires the apparatus
of root systems to get a handle on the structure. The following result, refining Corollary ??,
explains the importance of SL2 and PGL2 in the general theory of connected reductive groups
(very similarly to the reason for the importance of sl2 in the general theory of semisimple Lie
algebras in characteristic 0).

Proposition 3.2. Let k be a field and G a connected reductive k-group that is not a torus. Assume
G contains a split maximal k-torus T .

For a ∈ Φ(G,T ) and Ga := ZG(Ta), the natural map Ta×D(Ga)→ Ga is a central isogeny (i.e.,
isogeny with central kernel) and D(Ga) is k-isomorphic to SL2 or PGL2 with the scheme-theoretic
intersection T

⋂
D(Ga) as a 1-dimensional split maximal k-torus.

In characteristic p > 0, general isogenies between connected linear algebraic groups need not
be central (unlike in characteristic 0); e.g., n-fold Frobenius isogenies FG/k,n : G → G(pn) for any
n ≥ 1 and any smooth affine k-group G, or PGLp = SLp/µp → SLp through which FSLp/k,1 factors.

Proof. By Theorem ?? we know that the smooth connected k-subgroup Ga is reductive. Each Ga
is non-solvable, because otherwise by reductivity such a Ga would be a torus, and hence equal to
its maximal torus T , contradicting that Lie(Ga) = gTa contains the non-zero weight space in g for
the nontrivial T -weight a. Thus, the central quotient Ga/Ta is a connected reductive non-solvable
k-group in which T/Ta is a split 1-dimensional maximal k-torus. Hence, by the classification of
non-solvable connected reductive groups with a 1-dimensional split maximal torus (see the March
12 lecture from the previous course), the quotient Ga/Ta must be k-isomorphic to SL2 or PGL2.
This is its own derived group by inspection (classical for SL2, hence inherited by the quotient
PGL2), so D(Ga)→ Ga/Ta is surjective.

It follows that Ta × D(Ga) → Ga is surjective, with central kernel given by the anti-diagonally
embedded Ta ∩D(Ga). We claim that this intersection is finite, which would imply that D(Ga)→
Ga/Ta is an isogeny, so the maximal tori in D(Ga) are then 1-dimensional. This finiteness is a
special case of:

Lemma 3.3. A central torus C in a linear algebraic group H has finite intersection with D(H).

Proof. We can assume the ground field is algebraically closed, so C is split. Pick a faithful linear
representation H ↪→ GL(V ), and form the weight decomposition V = ⊕Vχi with respect to the
faithful C-action, so the χi generate X(C) up to finite index. Then by centrality, H lands in∏

GL(Vχi), so D(H) projects to have determinant 1 in each factor. Thus, C ∩ D(H) maps into
each GL(Vχi) with scalar image killed by the determinant, hence inside the diagonal µdi with
di = dimVχi . It follows that for n =

∏
di we have that χni kills C ∩ D(H) for all i. But the χi

generate a finite-index subgroup of X(C), so C ∩D(H) is killed by a finite-index subgroup of X(C).
Hence, C ∩D(H) cannot contain any tori of positive dimension, so it is finite. �

It remains to show that T := T
⋂

D(Ga) is a maximal k-torus of D(Ga), as such a torus inherits
the k-split property from T and so forces D(Ga) to be k-isomorphic to SL2 or PGL2 via the rank-1
classification theorem. We have seen that all maximal tori in D(Ga) are 1-dimensional, and T
must have positive dimension since Ga/D(Ga) is isogenous to the codimension-1 torus Ta ⊂ T .
Hence, we just have to show that T is a torus. But T = ZG(T ), so T

⋂
D(Ga) = D(Ga)

T . This
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is smooth and connected (as for centralizers of torus actions on smooth connected affine groups in
general), so it must be a torus because it is a subgroup of T . �

Example 3.4. For G = SLn and T the diagonal torus, it is straightforward to check by inspection
that each D(Ga) is SL2 and not PGL2. We claim that for n ≥ 3, in G′ := PGLn every D(G′a′)
is SL2 (and not PGL2). To see this, first note that q : G = SLn → PGLn = G′ has kernel equal
to the central diagonal µn, so (by centrality) for the diagonal torus T ′ = T/µn ⊂ G′ we have
Φ(G′, T ′) = Φ(G,T ) =: Φ inside X(T ′) ⊂ X(T ) (for both groups, by inspection the roots are
t 7→ ti/tj for i 6= j). For each a ∈ Φ, the isogeny Ta → T ′a induces a central isogeny Ga = ZG(Ta)�
ZG′(T ′a) = G′a (central since its kernel is contained in ker q ⊂ ZG), so we get a central isogeny
qa : D(Ga) � D(G′a) between derived groups. But D(Ga) = SL2 has center µ2 that is clearly not
contained in the diagonal µn = ker q ⊂ G when n ≥ 3. Thus, for n ≥ 3 we have ker qa = 1 and so
qa is an isomorphism.

Here is a nontrivial example in which some D(Ga) are PGL2 and some are SL2. Let Q =
x1x5 + x2x4 + x2

3, so G := SO(Q) = SO5 has diagonal maximal torus

m : G2
m ' T ⊂ SO(Q)

via m(t, t′) = diag(t′, t, 1, 1/t, 1/t′). (Use weight space considerations and pairwise distinctness of
the diagonal characters of T to prove that T = ZG(T ), so T is indeed maximal in G.) It is easy to
check that the closed immersion u : Ga ↪→ G defined by

u(y) =


1 0 0 0 0
0 1 y −y2 0
0 0 1 −2y 0
0 0 0 1 0
0 0 0 0 1


is a homomorphism normalized by T , with m(t, t′)u(y)m(t, t′)−1 = u(ty). (This does land in G,
since x2x4 + x2

3 is invariant under (x2, x3, x4) 7→ (x2, x3 + yx2, x4 − 2yx3 − y2x2).) This subgroup
U ⊂ G satisfies Lie(U) = ga where a : T → Gm is a(m(t, t′)) = t.

We claim that in this example, D(Ga) = PGL2. In fact, by inspection the “opposite” T -
normalized unipotent subgroup U ′ = Ga using the “lower triangular” analogue has the opposite
weight on its Lie algebra, so these are the unipotent radicals of the two Borel subgroups of D(Ga)
that contain the 1-dimensional diagonal maximal torus T

⋂
D(Ga). Together they visibly generate

the 3-dimensional SO(x2x4 + x2
3) = SO3 ' PGL2, so this is D(Ga) for dimension reasons.

In contrast, the subgroup SO(x1x5 + x2x4) ⊂ G is an SO4 in which T is a maximal torus, and
SO4 ' SL2 ×µ2 SL2. The two evident Gm-factors of T are the respective 1-dimensional diagonal
maximal tori of these “factor” subgroups SL2 ⊂ SO4 ⊂ G, and the standard weight spaces in each
sl2 ⊂ g are T -weight spaces for some pairs of opposite roots {±b}, {±b′}. Hence, we see that each
of these SL2’s centralizes one of the codimension-1 tori Tb or Tb′ and must therefore exhaust the
3-dimensional D(Gb) or D(Gb′) respectively.

Remark 3.5. For any smooth connected normal k-subgroup N in any connected reductive k-group
H (e.g., N = D(Ga) in H = Ga) and any maximal k-torus T in H, the scheme-theoretic intersection
N ∩ T is a maximal k-torus of N . To prove this, we first note (as in the proof of Proposition ??)
that T

⋂
N is smooth and connected, since T

⋂
N = NT (as T = ZH(T )). Thus, T

⋂
N is a torus,

as for any smooth connected subgroup of T .
The maximality requires a different argument from what was done in the “1-dimensional” setting

of Proposition ??. Let S ⊂ N is a k-torus containing T
⋂
N . Let S′ ⊃ S be a maximal torus of

G containing S, so S′
k

and Tk are G(k)-conjugate (as they are maximal over k, by Grothendieck’s
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theorem!). By normality of N in G, it follows that both (S′
⋂
N)k = S′

k

⋂
Nk and (T

⋂
N)k =

Tk
⋂
Nk are G(k)-conjugate. The resulting equality of dimensions then forces the containments

T
⋂
N ⊂ S ⊂ S′

⋂
N among smooth connected groups to be equalities.

Theorem 3.6. Let G be a connected reductive group over a field k, and Z the maximal central
torus. Then Z = (ZG)0

red and the formation of Z commutes with any extension of the ground field,
and the multiplication homomorphism

Z ×D(G)→ G

is a central isogeny (i.e., an isogeny with central kernel).
In particular, D(G)→ G/Z and Z → G/D(G) are central isogenies.

The basic example of this theorem is the central isogeny Gm × SLn → GLn, whose kernel is
the central anti-diagonal µn, along with the induced central isogenies SLn → PGLn and Gm →
GLn/SLn = Gm given by t 7→ det(diag(t)) = tn.

Proof. Since ZG lies in any maximal k-torus T (as T = ZG(T )), any central torus must lie in (ZG)0
red.

If we can prove that this is itself a torus, then it must be Z. Moreover, if that is established, then
for any K/k we have that (ZGK

)0
red is the maximal central torus in GK yet it contains the base

change ((ZG)0
red)K that is also a torus and visibly has the same geometric points, so the inclusion

((ZG)0
red)K ⊂ (ZGK

)0
red must be an equality. Thus, for the assertions concerning Z we just have to

check that (ZG)0
red is a k-torus. Pick a maximal k-torus T ⊂ G, so ZG ⊂ ZG(T ) = T . By Lemma

??, it follows that (ZG)0
red is a torus whose formation commutes with any extension on k, settling

the assertions concerning Z alone.
By Lemma ??, Z ∩D(G) is finite. Hence, Z×D(G)→ G has finite central kernel. To prove that

this is an isogeny, it suffices to prove that G/Z is perfect. We claim that there are no nontrivial
central tori in G/Z. If S is a central torus in G/Z then its preimage S′ in G is a torus (being an
extension of the torus S by the torus Z) and is also normal in G, forcing centrality in G (since
G is connected). That implies S′ ⊆ Z, so S = 1 as claimed. We may now rename G/Z as G to
reduce to showing that if Z = 1 then D(G) = G. In particular, we may and do assume that k is
algebraically closed (since we already proved that the formation of Z commutes with extension of
the ground field).

Pick a maximal torus T in G. By Corollary ??, for each a ∈ Φ(G,T ), the a-weight space is
1-dimensional and the Q-multiples of a in Φ(G,T ) are precisely ±a. The set Φ(G,T ) generates a
finite-index subgroup of X(T ). Indeed, otherwise there would be a nontrivial torus S in T killed
by all elements of Φ(G,T ), so g = gS = Lie(ZG(S)), forcing ZG(S) = G and so contradicting that
we arranged for G to contain no nontrivial central tori.

For each a ∈ Φ(G,T ), Proposition ?? ensures that for Ta = (ker a)0
red, the natural map

Ta ×D(ZG(Ta))→ ZG(Ta)

is a central isogeny. More specifically, D(ZG(Ta)) equipped with its T/Ta-action has exactly ±a
as the nontrivial weights on its Lie algebra, and Sa := T ∩D(ZG(Ta)) is a 1-dimensional maximal
torus of D(ZG(Ta)). Thus, the smooth connected subgroups D(ZG(Ta)) of D(G) generate a smooth
connected subgroup H of D(G) whose Lie algebra supports all weight spaces for the nontrivial T -
weights on g. Since h is a T -stable subspace of g which contains all weight spaces for nontrivial
weights, whereas

Lie(T ) = Lie(ZG(T )) = gT

is the weight space for the trivial weight, to prove that G = D(G) it remains to show that T ⊆ D(G).
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We will prove that T is equal to the group (NG(T ), T ) generated by commutators ntn−1t−1 for
n ∈ NG(T )(k) and t ∈ T (k). Let W = NG(T )(k)/ZG(T )(k) = NG(T )(k)/T (k) denote the usual
Weyl group which acts on T , so (NG(T ), T ) is the smooth connected subgroup of T generated by
the images of the maps T → T defined by t 7→ (w.t)t−1 for w ∈ W . There is a natural action of
W on the lattice X∗(T ) of cocharacters λ : Gm → T , and the sublattice X∗((NG(T ), T )) contains
all elements w.λ − λ. Hence, to prove that the subtorus (NG(T ), T ) in T is full, it suffices to
show that the elements w.λ − λ generate a finite-index sublattice of X∗(T ), or equivalently that
the Q[W ]-module X∗(T )Q has vanishing space of coinvariants. Since W is finite (HW8 Exercise
4(iii) of the previous course), so Q[W ] is semisimple, it is equivalent to have a vanishing space of
W -invariants, which is to say that X∗(T )W = 0. In other words, we claim that TW is finite.

We will prove that TW ⊆ ker(2a) (scheme-theoretically) for all a ∈ Φ(G,T ), so (TW )0
red ⊆

(ker(2a))0
red = (ker a)0

red = Ta. This is sufficient because the subtorus (∩aTa)0
red in T is killed by

all a ∈ Φ(G,T ) and hence is trivial (as we have seen that Φ(G,T ) generates X(T )Q, due to the
arranged property Z = 1). Consider the group Ga = ZG(Ta) and its derived group Ha = D(Ga)
(which is isomorphic to SL2 or PGL2), so Ta is the maximal central torus in Ga and Sa := T ∩Ha is
a maximal torus of Ha. Pick any representative ha ∈ Ha of the nontrivial element in NHa(Sa)/Sa,
so ha acts on Sa via inversion. It also centralizes Ta, and so normalizes Ta ·Sa = T . Thus, the class
wa ∈ W of ha centralizes Ta and swaps the weight spaces ±a for Sa, which in turn are the weight
spaces for T/Ta acting on Lie(Ga) (since Sa → T/Ta is an isogeny). In other words, the W -action
on X(T ) negates a ∈ X(T/Ta). It follows that if t ∈ TW (R) for a k-algebra R then

a(t) = a(wa.t) = (wa.a)(t) = (−a)(t),

so (2a)(t) = 1 (i.e., a(t)2 = 1). In other words, t ∈ ker(2a), as desired. �

Now we prove the equivalence of several different ways to characterize semisimple groups:

Corollary 3.7. Let G be a smooth connected affine group over a field k. The following are equiv-
alent:

(1) The maximal smooth connected solvable normal subgroup R(Gk) of Gk is trivial.
(2) The group G is reductive and has finite center.
(3) The group G is reductive and perfect.

Condition (1) is the usual definition of semisimplicity, but sometimes one sees (2) or (3) used as
cheap definitions. In practice it is important to know the equivalence among all of these conditions.
Also, the connectedness condition on G cannot be removed, since the semi-direct product G =
Gm o (Z/2Z) via inversion has G0 = Gm a positive-dimensional torus but ZG = µ2 × (Z/2Z) is
finite.

Proof. Under all hypotheses G is reductive, so we now may assume G is connected reductive. By
Lemma ?? and Theorem ??, there is then is a central isogeny

f : Z ×D(G)→ G

where Z = (ZG)0
red is the maximal central k-torus and D(G) is perfect. Thus, (2) implies (3).

Likewise, if (3) holds then the isogeny property for f implies Z = 1, so the central torus (ZG)0
red is

trivial. Hence, ZG is finite, so (2) holds. This proves the equivalence of (2) and (3).
It is clear that (1) implies Z = 1, and hence implies (3). Conversely, if (3) holds then R = R(Gk)

is a smooth connected solvable normal subgroup of the perfect connected reductive group Gk.
Normality forces R to be reductive, and solvability forces it to be a torus. Normality in the
connected Gk then forces this torus to be central. But (3) is equivalent to (2), so this central torus
is trivial. Thus, (1) holds. �
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4. Relations between subgroups of G and D(G)

Let G be a connected reductive group over a field k, and Z its maximal central k-torus, so we
have a central isogeny Z×D(G)→ G. This underlies a link between maximal k-tori (resp. parabolic
k-subgroups, resp. Borel k-subgroups) of G and D(G). For example, G admits a Borel k-subgroup
if and only if D(G) does. First we explain the dictionary for relating such subgroups through
central quotient maps in general, and then we deduce the consequences for passing between such
k-subgroups of G and D(G).

Proposition 4.1. Let f : G′ → G be a central surjective homomorphism between connected reduc-
tive k-groups. Then the operations T ′ 7→ f(T ′) and T 7→ f−1(T ) are inverse bijections between the
sets of maximal k-tori in G′ and G.

The same operations (image and preimage) define inverse inclusion-preserving bijections between
the sets of parabolic k-subgroups (and hence between the sets of minimal parabolic k-subgroups), as
well as between the sets of Borel k-subgroups, in G′ and G.

In this result, we use scheme-theoretic preimages; e.g., part of the assertion is that f−1(H) is
k-smooth when H is a maximal k-torus or parabolic k-subgroup of G. Before we prove Proposition
??, we present an example that highlights the importance of centrality of ker f : an example of a
non-central isogeny f : G′ → G between connected semisimple groups such that G admits a Borel
k-subgroup B and G′ does not! (What “goes wrong” in the following example is that f−1(B) is
not smooth, and in fact f−1(B)red is not a smooth k-subgroup of G′.)

Example 4.2. Let k be a local function field of equicharacteristic p > 0 (with finite residue field).
By local class field theory, Br(k) = Q/Z and the Brauer class [D] of a central division algebra of
rank n2 over k has order exactly n. Pick D of rank p2, so [D] has order p.

Let G = SL1(D). We claim that G has no Borel k-subgroup, nor any proper parabolic k-
subgroup whatsoever. Indeed, we will later show (via the dynamic method) that for any proper
parabolic F -subgroup P of a connected reductive group over any field F , the geometric unipotent
radical Ru(PF ) descends to a unipotent smooth connected F -subgroup U ⊂ P that is “split”:
admits a composition series with successive quotients F -isomorphic to Ga. Hence, if G contains
a proper parabolic k-subgroup P (so Ru(Pk) 6= 1) then G contains Ga as a k-subgroup, so G(k)
contains nontrivial p-torsion elements. But this is impossible, since G(k) ⊂ D×, and any element
of D× lies in a commutative extension field of k, yet multiplicative groups of commutative fields of
characteristic p > 0 never have nontrivial p-torsion!

The reason for interest in G is that it admits a (non-centrally) isogenous quotient that does

have Borel k-subgroups. To see this, consider the Frobenius isogeny FG/k : G → G(p), where

G(p) = G ⊗k,φk k with φk : k → k the p-power endomorphism. Clearly G(p) = SL1(D(p)), where

D(p) = D⊗k,φk k. We claim that D(p) ' Matp(k) as k-algebras, so G(p) ' SLp as k-groups (so G(p)

visibly has a Borel k-subgroup).
In other words, we claim that the central simple k-algebra D is split by the field extension

φk : k → k. That is, we claim that the induced map Br(φk) : Br(k) → Br(k) kills [D]. Explicitly,
k ' Fq((t)), so φk is a degree-p extension field. But it is a general fact in local class field theory
(essentially proved in Serre’s “Local Fields”) that the canonical isomorphism invL : Br(L) ' Q/Z
for non-archimedean local fields L is functorial with respect to arbitrary finite extensions j : L→ L′

(no separability hypotheses!) via multiplication by [L′ : L]. That is,

invL′ ◦ Br(j) = [L′ : L] · invL.

Applying this to φk : k → k shows that Br(φk) kills Br(k)[p], and so kills [D].
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Now we prove Proposition ??.

Proof. The operations in both directions are compatible with change of the ground field, and
whether or not a closed subgroup is smooth or a maximal torus or a Borel subgroup or a parabolic
subgroup can be checked after a ground field extension. Hence, it is harmless to replace k with k (!),
so we may assume k is algebraically closed. In particular, all maximal tori in G are G(k)-conjugate,
and similarly with Borel subgroups.

Let T ′ ⊂ G′ be a maximal torus, so ker f ⊂ ZG′ ⊂ ZG′(T ′) = T ′. Hence, T := f(T ′) = T ′/(ker f)
inside G = G′/(ker f). Thus, f−1(T ) = T ′. It follows that T ′ 7→ f(T ′) is an injective map from
the set of maximal tori in G′ to the set of those of G, and that f−1 inverts this map on its image
in the set of maximal tori of G. But this map between sets of maximal tori is surjective because
every maximal torus of G is G(k)-conjugate to T and G′(k)→ G(k) is surjective. This settles the
case of maximal tori. The case of Borel subgroups goes exactly the same way.

For parabolic subgroups, conjugacy no longer holds for all possibilities, so instead we use group
theory by collecting the parabolics containing a fixed Borel subgroup. Let B′ ⊂ G′ be a Borel
subgroup and B = B′/(ker f) ⊂ G, so G′/B′ ' G/B as schemes. Consideration of geometric points
shows that P ′ 7→ f(P ′) defines a bijection between sets of parabolic subgroups containing B′ and
B respectively, with f−1 defining an inverse operation. �

Corollary 4.3. Let G be a connected reductive group over a field k, and Z ⊂ G the maximal
central k-torus. Then T 7→ T

⋂
D(G) defines a bijection between the sets of maximal k-tori of G

and D(G), with T 7→ Z ·T the inverse bijection.
Likewise, the operations H 7→ H

⋂
D(G) and H 7→ Z ·H define inverse inclusion-preserving

bijections between the sets of parabolic k-subgroups of G and D(G) (hence between sets of minimal
parabolic k-subgroups), and also inverse bijections between the sets of Borel k-subgroups of G and
D(G).

Proof. As in the proof of Proposition ??, we may replace k with k (since the formation of Z
commutes with extension on k). We apply Proposition ?? to the central isogeny Z × D(G) → G
and observe that (by conjugacy considerations over k = k) the maximal tori of Z × D(G) are
precisely Z × T for maximal tori T ⊂ D(G), and similarly for Borel subgroups. In the case of
parabolic subgroups the same description holds, but rather than appeal to conjugacy considerations
(which no longer apply) we use group theory considerations relative to the containment of Borel
subgroups (much as in the treatment of parabolic subgroups in the proof of Proposition ??). �


