
Math 249B. Relative Bruhat decomposition and relative Weyl group

1. Overview

Let G be a connected reductive group over a field k, S a maximal k-split torus in G, and
P a minimal parabolic k-subgroup of G. Let N = NG(S) and Z = ZG(S), so N/Z is a
finite étale k-group (as for any torus centralizer in any smooth affine group). The ordinary
group N(k)/Z(k) is called the relative Weyl group and is usually denoted kW . (Later it will
naturally be identified with the “combinatorial” Weyl group of the root system attached to
(G,S).)

In class we proved most of the (relative) Bruhat decomposition: the natural map

kW := N(k)/Z(k)→ P (k)\G(k)/P (k)

is bijective. In other words, if we choose Z(k)-coset representatives nw ∈ N(k) for each
w ∈ kW then every P (k)-double coset in G(k) has the form P (k)nwP (k) for a unique
w ∈ kW . In §2 we fill in the one loose end of that argument (which is also the step where
the Bruhat decomposition over k is used!).

Then we establish a geometric refinement: if n, n′ ∈ N(k) are distinct modulo Z(k) then
PnP 6= Pn′P as locally closed subschemes of G. (Equivalently, P (k)nP (k) 6= P (k)n′P (k)
inside G(k).) We also address the question of how the finite group N(k)/Z(k) is related to
the finite étale k-group N/Z, ultimately showing that every connected component of N has a
k-point (so N/Z is the constant group associated to N(k)/Z(k)), and in §5ff. we wrap up our
discussion of these matters by giving examples with commutative Z for which H1(k, Z) 6= 0.

2. Intersection of parabolics

To complete the proof of the relative Bruhat decomposition, we have to prove:

Theorem 2.1. Let P,Q be parabolic k-subgroups of G. There exists a maximal split k-torus
of G contained in both P and Q.

To prove this we may shrink P to be minimal, so the quotient P := P/Ru,k(P ) has a central
maximal split k-torus. Consequently, if T is a maximal k-torus of P then its maximal torus
isomorphic image T in the connected reductive group P is its own centralizer and thus must
contain the unique central maximal split k-torus. It follows that T contains a split k-torus of
the same dimension as the maximal split k-tori of G; i.e., T contains a maximal split k-torus
of G. Consequently, it suffices to show that P and Q share a common maximal k-torus of
G.

Suppose we knew that P ∩ Q is smooth (and connected). Then the dimension of its
maximal k-tori coincides with the dimension of the maximal tori of Pk ∩ Qk = (P ∩ Q)k;
we want this to coincide with the dimension of the maximal tori of Gk. The property of an
affine k-group scheme of finite type being k-smooth and connected is also checkable over k,
so we are brought to a geometric problem (applied to Gk):

Proposition 2.2. Let H be a connected reductive group over an algebraically closed field k.
For any parabolic subgroups P,Q ⊂ H, the intersection P ∩Q is smooth and connected and
it contains a maximal torus of H.
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Proof. First we find a maximal torus T ⊂ H contained in each of P and Q, and then we use
this T as a crutch to prove P ∩Q is smooth and connected. For the purpose of finding such
a T it is harmless to shrink P and Q to be minimal; i.e., we may focus on Borel subgroups
B,B′ ⊂ H, and seek a maximal torus of H contained in each.

Fix a maximal torus T ⊂ B. Note that B′ = hBh−1 for some h ∈ H. By the Bruhat
decomposition over algebraically closed fields, applied to the borus (B, T ), we have h = b1nb2
for some b1, b2 ∈ B and n ∈ NH(T ). Hence,

B′ = b1nBn
−1b−11 ,

so B′ ∩B = b1(nBn
−1 ∩B)b−11 ⊃ b1Tb

−1
1 since n ∈ NH(T ). Thus, b1Tb

−1
1 is a maximal torus

of H contained in B and B′.
Returning to the original setup with parabolic subgroups P,Q ⊂ H, we have found a

maximal torus T ⊂ H contained in P and Q. The dynamic description of P involves a
cocharacter of any desired maximal torus of P , such as T . Hence, P = PG(λ) for some
λ : GL1 → T . But we rigged T to be contained in Q also, so the good behavior of dynamic
constructions relative to intersections gives

P ∩Q = PG(λ) ∩Q = PQ(λ),

and that inherits smoothness and connectedness from Q. �

3. Geometric refinement

As explained above, for n, n′ ∈ N(k) distinct modulo Z(k), we wish to show that (PnP )(k)
and (Pn′P )(k) are disjoint. Since P = Z n U for the k-unipotent radical U = Ru,k(P ) and
n and n′ normalize Z, we have

(PnP )(k) = Z(k) · (UnU)(k)

and similarly for n′. Thus, if (PnP )(k) and (Pn′P )(k) have a common point then there exists
z ∈ Z(k) such that z(UnU)(k) meets (Un′U)(k). But Z normalizes U , so z(UnU)(k) =
(U(zn)U)(k) and zn 6= n′ since n and n′ are distinct modulo Z(k) (as N(k)/Z(k) injects
into (N/Z)(k) ⊆ (N/Z)(k) = N(k)/Z(k)). By Corollary 7.4.5 in the course notes, there
exists λ : GL1 → S such that P = PG(λ) and ZG(S) = ZG(λ). Hence, it suffices to prove
the following result applied over k upon renaming such a hypothetical zn as n:

Proposition 3.1. Let G be a smooth connected affine group over a field, S a torus of
G, and λ : GL1 → S a cocharacter of S such that ZG(λ) = ZG(S). Let N = NG(S),
Z = ZG(S) = ZG(λ), U = UG(λ), and P = PG(λ) = Z n U .

For n, n′ ∈ N(k), if UnU meets Un′U then n = n′.

Proof. Without loss of generality k = k, and since the double cosets meet we must have
nu = u′n′ for some u, u′ ∈ U(k). Hence, n′−1n = n′−1(nu)u−1 = n′−1u′n′u−1. We aim to
eventually prove that n′−1n = 1, so as a preliminary step we will investigate the structure of
the solvable (even unipotent) smooth connected group V := n′−1Un′.

Note that Sn′ = n′S, so V is normalized by S (since S ⊂ Z ⊂ P and U is normal in
P ), so it is normalized by λ. Thus, the dynamic method applies to V (or rather to the
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semidirect product GL1 n V defined via the GL1-action on V through λ), so we obtain an
open subscheme

UV (−λ)× ZV (λ)× UV (λ) ↪→ V

via multiplication. But in the connected solvable case this open immersion is always an
equality! (Indeed, in the commutative case it follows from the fact that a smooth connected
group has no proper open subgroups, and in general one can bootstrap from the commutative
case to the solvable case via the derived series and appropriate dimension induction: see
Proposition 2.1.12 and its proof in [CGP].) Hence, this says that we have an equality of
schemes via multiplication

(V ∩ U ′)× (V ∩ Z)× (V ∩ U) = V,

where U ′ := UG(−λ). By definition of V we have V ∩ Z = n′−1(U ∩ Z)n′ = 1, so

(V ∩ U ′)× (V ∩ U) = V

via multiplication. Thus, the element n′−1u′n′ ∈ V (k) can be written as u′1u1 for u′1 ∈ U ′(k)
and u1 ∈ U(k).

Recall that n′−1n = n′−1u′n′u−1, so this is equal to u′1(u1u
−1) ∈ U ′(k)×U(k). Thus, n′−1n

lies in N(k)∩ (U ′(k)×U(k)). We claim that the intersection of N with the open subscheme
U ′×Z×U of G is equal to Z, so this would force u′1, u1u

−1 = 1 and hence n′ = n as desired.
It now remains to prove rather generally that for any smooth closed subgroup H of Z (such
as S), the inclusion

(ZG(H) ∩ U ′)×NZ(H)× (ZG(H) ∩ U) ⊆ NG(H) ∩ (U ′ × Z × U)

inside G is an equality. (Indeed, NZ(H) = ZG(H) ∩ Z and if H = S then by hypothesis
ZG(S) = ZG(λ) = Z and we know that Z ∩ U ′, Z ∩ U = 1, so we would be done.) We will
prove the equality by computing with points valued in arbitrary k-algebras R.

Choose a k-algebra R and points u′ ∈ U ′(R), z ∈ Z(R), and u ∈ U(R) such that u′zu lies
in NG(H)(R), which is to say that it normalizes HR inside GR. The aim is to prove that
u, u′ centralize HR and z normalizes HR. Such properties are sufficient to check on R′-valued
points for every R-algebra R′, so upon choosing an R′ and renaming it as R (as we may do),
the task is to prove that u, u′ centralize H(R) and z normalizes H(R) inside G(R). That is,
if h ∈ H(R) we want to show that it commutes with u and u′ and also that zhz−1 ∈ H(R).

Consider the automorphism f of HR induced by conjugation by u′zu ∈ NG(H)(R). For
all h ∈ H(R),

u′ · zh · h−1uh = u′zuh = f(h)u′zu = (f(h)u′f(h)−1) · f(h)z · u.
But H ⊂ Z and so it normalizes U and U ′. Hence, the outer terms in this equality visibly
correspond to decompositions in the subset U ′(R) × Z(R) × U(R) ⊂ G(R) (inclusion via
multiplication), so corresponding terms coincide. This says exactly that

u′ = f(h)u′f(h)−1, zh = f(h)z, h−1uh = u.

As we vary h through H(R), f(h) likewise sweeps out H(R) (as f is an automorphism of
HR), so the first and third equalities give that u and u′ are centralized by H(R), whereas
the second says zhz−1 = f(h), so z normalizes H(R) inside G(R). �
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4. Split Weyl group

Now we study the relationship between N(k)/Z(k) and N/Z. As a first step, we show:

Lemma 4.1. The finite étale k-group N/Z is constant. Equivalently, the natural Gal(ks/k)-
action on (N/Z)(ks) = N(ks)/Z(ks) is trivial.

Note that the equality (N/Z)(ks) = N(ks)/Z(ks) rests on the k-smoothness of Z.

Proof. The slick proof is to observe that the N -action on S identifies N/Z with a k-subgroup
of the automorphism scheme AutS/k that is constant since S is split. We now give a more
down-to-earth version of the same idea, avoiding automorphism schemes of tori.

Choose n ∈ N(ks) and γ ∈ Gal(ks/k). We want to show that γ(n)−1n ∈ Z(ks), as that
says γ(n) and n have the same image in N(ks)/Z(ks) = (N/Z)(ks), so the triviality of the
Galois action would be proved.

Consider the ks-automorphism of Sks defined by conjugation against the element n ∈
N(ks): this is x 7→ nxn−1. For any two split k-tori T and T ′, all ks-homomorphisms
Tks → T ′ks are defined over k. Thus, n-conjugation on Sks is defined over k, which is to say
that this ks-automorphism is equivariant with respect to the application of any γ. That is,
for x ∈ S(ks) we have γ(nxn−1) = nγ(x)n−1, but γ(nxn−1) = γ(n)γ(x)γ(n)−1, so γ(n)−1n
centralizes all such x and hence γ(n)−1n ∈ Z(ks) as desired. �

Since the cosets of Zks inside Nks are the connected components of Nks , the triviality of the
Galois action in the preceding lemma says exactly that each of these components is defined
over k inside N . In other words, the connected components of N are geometrically connected
over k. Rather more subtle is that each of these components actually contains a k-point.
That property is equivalent to the assertion that the inclusion N(k)/Z(k) ↪→ (N/Z)(k) is
an equality, and it is most remarkable since H1(k, Z) is utterly mysterious (see §5ff.). Let us
now prove it:

Proposition 4.2. The natural map N(k)/Z(k)→ (N/Z)(k) is surjective.

Proof. Let W denote the constant finite k-scheme N/Z. The idea for proving that the
subgroup N(k)/Z(k) ⊆ W (k) is full is to show that W (k) acts freely on a set whose resulting
N(k)/Z(k)-action is transitive. Motivated by the bijective correspondence between the set
of Borel subgroups containing a given maximal torus and the set of Weyl chambers in the
associated root system (or equivalently the set of positive systems of roots) in the split
case, together with the simply transitive action of the combinatorial Weyl group on the set
of chambers (and the equality of this Weyl group with the “Weyl group” defined by the
reductive group and its chosen maximal torus), we are led to consider the set P of minimal
parabolic k-subgroups P of G that contain the maximal k-split torus S.

There is an evident action of N(k) on P, and we claim that it is transitive. For any
P, P ′ ∈ P we know there exists g ∈ G(k) such that P ′ = gPg−1, so S and gSg−1 are
maximal k-split tori in P ′. But we have shown that in any parabolic k-subgroup of a
connected reductive k-group, all maximal k-split tori are k-rationally conjugate. Thus, there
exists p′ ∈ P ′(k) such that p′gSg−1p′−1 = S. Hence, p′g ∈ N(k) and this element conjugates
P to P ′. This proves the transitivity of the N(k)-action on P, and it factors through
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N(k)/Z(k) since we know that any parabolic k-subgroup P of G containing S necessarily
contains ZG(S) = Z.

Now it remains to define a free action of W (k) on P that restricts to the above action
of N(k)/Z(k) on P. The preceding lemma implies that W (k) = W (ks), and we know that
W (ks) = N(ks)/Z(ks). For any w ∈ W (k), choose a representative n ∈ N(ks) and consider
nPksn

−1 for P ∈P. This is a parabolic ks-subgroup of Gks with the same dimension as P , so
if it is defined over k then its k-descent must be a minimal parabolic k-subgroup of G (as we
know that the minimal parabolic k-subgroups of G all have the same dimension, due to their
G(k)-conjugacy). For any γ ∈ Gal(ks/k) we have γ(n) = nz for some z ∈ Z(ks) ⊂ P (ks), so

γ(nPksn
−1) = γ(n)Pksγ(n)−1 = nPksn

−1.

Thus, nPksn
−1 descends to a minimal parabolic k-subgroup of G, and we may denote it as

w.P since clearly nPksn
−1 depends on n only through its Z(ks)-coset (which in turn depends

only on w). Clearly P 7→ w.P is an action of W (k) on P, and its restriction to an action of
N(k)/Z(k) is obviously the action considered above.

To show that this W (k)-action on P is free, we assume n ∈ N(ks) satisfies nPksn
−1 = Pks

for some P ∈ P then want to deduce that n ∈ Z(ks). But the G(ks)-normalizer of Pks

coincides with P (ks) (Chevalley’s theorem on the self-normalizing property of parabolic
subgroups in general smooth connected affine groups), so n ∈ N(ks) ∩ P (ks) = Z(ks). �

When G is quasi-split (i.e., the minimal parabolic k-subgroups are Borel subgroups), there
is a refinement of Proposition 4.2 as follows. Let S be a maximal k-split torus in G and B
a minimal parabolic k-subgroup containing S, so ZG(S) is a Levi k-subgroup of B. But a
Levi k-subgroup of a Borel k-subgroup is a maximal k-torus (as may be checked over k), so
T := ZG(S) is a maximal k-torus in G. Any g ∈ NG(S)(k) certainly normalizes ZG(S) = T ,
so we have NG(S)(k) ⊂ NG(T )(k), and this is an equality since any g ∈ G(k) that normalizes
T must also normalize the unique maximal split k-subtorus S in T . By definition we have
ZG(S) = T , so by Proposition 4.2 we have the inclusion of groups

W (Φ(G,S)) = W (G,S)(k) = NG(S)(k)/ZG(S)(k) = NG(T )(k)/T (k)

⊂ (NG(T )/T )(k)

= W (G, T )(k)

= W (G, T )(ks)
Gal(ks/k).

The refinement of Proposition 4.2 is this:

Proposition 4.3. Let G be a quasi-split connected reductive group over a field k. For
a maximal split k-torus S and the associated maximal k-torus T = ZG(S), let kW =
NG(S)(k)/ZG(S)(k) = W (Φ(G,S)) be the relative Weyl group and W = NG(T )/T the finite
étale “absolute” Weyl group. The natural inclusion kW ↪→ W (k) as defined above is an
equality.

Proof. Such equality is clear whenever H1(k, T ) = 1, and that always holds when G is
semisimple and either simply connected or of adjoint type. Indeed, in such cases we claim
that T = ZG(S) is an “induced” torus; i.e., a direct product

∏
Rki/k(GL1) of Weil restrictions

of GL1 from finite separable extensions ki of k. Once such a description is in hand, we have
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H1(k, T ) =
∏

H1(ki,GL1) by Shapiro’s Lemma (functoriality of group cohomology with
respect to induction), and this vanishes by Hilbert 90.

To obtain the “induced” description, pick a Borel k-subgroup B ⊃ S, so T is contained
in B and Φ(Bks , Tks) is a Galois-stable positive system of roots in Φ(Gks , Tks). The basis
∆ of simple positive roots is therefore also Galois-stable, and in the adjoint type case ∆
is a Z-basis of the character lattice X(Tks) while in the simply connected case ∆∨ is a
Galois-stable basis of the dual lattice X∗(Tks) . Thus, in both cases the character lattice is
a permutation representation of Gal(ks/k) (i.e., there is a Z-basis on which Gal(ks/k) acts
through permutations), so T is induced (the factor fields ki correspond to the open stabilizers
in Gal(ks/k) for an element in each orbit in the Z-basis).

We shall reduce the general quasi-split case to the semisimple case of adjoint type via the
insensitivity of relative and absolute root systems to the formation of central quotients. The
central quotient G = G/ZG is semisimple of adjoint type. The respective images S and T of S
and T in G are a maximal split k-torus and maximal k-torus containing it (the maximality
of S in G rests crucially on G being a central quotient of G), with T = ZG(S) because
torus centralizers behave well under images. The formation of the relative and absolute root
systems is insensitive to passing to a central quotient, so the natural maps

NG(T )(k)/T (k)→ NG(T )(k)/T (k), W (G, T )(ks)→ W (G, T )(ks)

are isomorphisms because these maps are respectively identified with the natural equalities

W (Φ(G,S)) = W (Φ(G,S)), W (Φ(Gks , Tks)) = W (Φ(Gks , T ks))

(using that the Q-vector spaces spanned by the relative and absolute roots depend only on
the derived group, with D(G)→ D(G) a central isogeny).

Putting this all together, we have a commutative diagram

NG(T )(k)/T (k)
? //

'
��

W (G, T )(k)

'
��

NG(T )(k)/T (k) // W (G, T )

in which the vertical maps are isomorphisms and the top map is what we want to be an
isomorphism. This commutativity reduces our task to the isomorphism property for the
bottom map, which is an isomorphism by the settled case of quasi-split semisimple groups
of adjoint type. �

5. An interesting Galois cohomology example

The remainder of this handout is devoted to giving two classes of quasi-split examples
for which H1(k, Z) 6= 0. The point of the quasi-split condition is to ensure that the Levi
factor ZG(S) of a minimal parabolic k-subgroup is commutative (equivalently, a torus), so
our discussion does not involve non-abelian Galois cohomology.

Remark 5.1. One place where not to look are the simply connected and adjoint type cases,
because in such cases the maximal k-torus T = ZG(S) is “induced” and hence has vanishing
degree-1 cohomology, as we saw in the proof of Proposition 4.3.
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We shall work with G = Rk′/k(SLn)/µn for a finite separable extension k′/k and an integer
n > 1, subject to some conditions with Brauer groups that we will arrive at near the end of
the calculation. In accordance with the lesson from Remark 5.1, note that if k′ 6= k (as we
will want) then this is neither simply connected nor adjoint type since Gks is the quotient of
a direct product of [k′ : k] copies of SLn modulo the diagonally embedded central µn.

To get started, we need to identify a maximal split torus in G. It is easy to make a guess:
if D is the diagonal split k-torus in the k-group SLn then D ↪→ Rk′/k(Dk′) should be maximal
as a split k-torus of Rk′/k(SLn) and D/µn should be a maximal split k-torus in G. We wish
to justify this by addressing more generally how maximal split tori interact with isogenies
(central or not!) and with Weil restriction.

Recall that for any central quotient map f : G′ → G between connected reductive groups
there is a bijection between sets of maximal split k-tori in G and G′ via S ′ 7→ S := f(S ′)
and S 7→ f−1(S)0red. This can fail when we drop the centrality condition on the kernel of
the isogeny. (For example, let k be a local function field of characteristic p, and ∆ is a
central division algebra of rank p2 over k. Consider G′ = SL1(∆), which is k-anisotropic.

The Frobenius base change G := G′(p) along the degree-p Frobenius endomorphism k → k is
SLp since a degree-p extension field splits a Brauer class of degree p. Hence, the Frobenius
isogeny G′ → G from an anisotropic k-group to a split connected semisimple k-group is a
counterexample.)

Hence, to identify a maximal k-split torus in G = Rk′/k(SLn)/µn it suffices to identify one
in the central isogenous cover Rk′/k(SLn). Of course, if D is the diagonal split k-torus in the
k-group SLn then it is natural to guess that D ↪→ Rk′/k(Dk′) is maximal as a split k-torus
of Rk′/k(SLn). Since it will be useful quite generally, let’s briefly digress to discuss how Weil
restriction interacts with maximal tori, maximal split tori, and parabolic subgroups in a
wider framework. Then we will focus on our specific example of interest.

6. Weil restriction, maximal tori, and parabolic subgroups

Let k be a field, k′ a finite étale k-algebra, and X ′ an affine finite type k′-scheme. (We
consider the generality in which k′ may not be a field because for field extensions L/k the
finite étale L-algebra k′ ⊗k L is usually not a field even when k′ is a field, and we will be
especially interested in L = ks.) Concretely, if

∏
k′i is the decomposition of k′ into factor

fields k′i then X ′ =
∐
X ′i over Spec(k′) =

∐
Spec(k′i) for an affine finite type k′i-scheme X ′i

for each i. Then X := Rk′/k(X ′) =
∏

Rk′i/k
(X ′i), as may be readily checked via functorial

considerations: if A is a k-algebra then

X(A) = X ′(k′ ⊗k A) =
∏
i

X ′i(
∏

k′i ⊗k A) =
∏
i

Rk′i/k
(X ′i)(A).

In case X ′ is a k′-group scheme, each X ′i is a k′i-group scheme, and likewise for smoothness.
Clearly X is naturally a k-group scheme when X ′ is, and if X ′ → Spec(k′) has geometri-

cally connected (resp. smooth) fibers then X is geometrically connected (resp. smooth) over
k. Indeed, since we set things up in the generality with k′ a finite étale k-algebra that isn’t
necessarily a field, it is harmless to first apply a scalar extension to ks and thereby replace k
with ks and replace k′ with k′⊗k ks (a finite étale ks-algebra that is typically not a field even
if k′ is a field!) so that k = ks. Hence, k′ = kn is a product of copies of k, and X ′ =

∐
X ′i is
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a disjoint union of n affine k-schemes of finite type. Thus, X = Rkn/k(
∐
X ′i) =

∏
X ′i over

k. By inspection, the right side is geometrically connected (resp. smooth) over k when each
X ′i is so.

Let G′ =
∐
G′i be a smooth affine k′-group with connected fibers. Then G := Rk′/k(G′) is

a smooth connected affine k-group. If G′ is reductive (resp. a torus) then the same holds for
G, as we see by inspecting Gks as a product in accordance with the above calculation. The
same holds for solvability, and if H ′ is a smooth closed k′-subgroup of G′ that is fiberwise
parabolic then Rk′/k(H ′) is a parabolic k-subgroup of G since it suffices to check this over
ks (where the product decompositions make it evident). Thus, the same holds for the Borel
property. This brings us to:

Lemma 6.1. Let G′ be a smooth affine k′-group with connected fibers. The maps T ′ 7→
Rk′/k(T ′) and P ′ 7→ Rk′/k(P ′) are bijections between the sets of fiberwise maximal k′-tori and
fiberwise parabolic k′-subgroups of G′ and the sets of maximal k-tori and parabolic k-subgroups
of G. The same holds for “Borel” in place of “parabolic”. Moreover, P ′ ⊆ Q′ inside G′ if
and only if Rk′/k(P ′) ⊆ Rk′/k(Q′) inside G, and if H ′ is a smooth closed k′-subgroup of G′

with H := Rk′/k(H ′) ⊂ G then Rk′/k(ZG′(H ′)) = ZG(H).

Proof. In view of the generality of the bijectivity assertions, Galois descent reduces the
verifications to the case over ks (replacing k′ with k′ ⊗k ks). Make sure you see why this is
correct!

As a consequence, we may now assume k = ks, so k′ is a product of copies of k and the
Weil restrictions are compatible direct products. Thus, the centralizer assertion at the end
is obvious and the other assertions come down to the fact that in a direct product of smooth
affine groups, maximal tori and parabolic subgroups are built via direct products along
the factors. To verify this it suffices to check over k (why?), so then geometric conjugacy
considerations reduce the torus case to the obvious fact (check!) that a direct product of
maximal tori is a maximal torus.

The same argument applies to Borel subgroups (via the characterization of Borel subgroups
as solvable with complete coset space), and for the case of parabolicity (over k) we just have
to check that if {Gi} are smooth connected affine groups over k = k and P is a parabolic
subgroup of G =

∏
Gi then P =

∏
Pi for parabolic subgroups Pi of Gi. We can certainly

pass to the quotient by Ru(G) =
∏

Ru(Gi) so that each Gi is reductive. Then we have the
dynamical description P = PG(λ) for some cocharacter λ : GL1 → G =

∏
Gi. Letting λi be

the ith component of λ, clearly PG(λ) =
∏
PGi

(λi). �

Somewhat more delicate is the interaction of maximal split tori with Weil restriction, as
the trick of scalar extension to ks cannot be applied without ruining our situation.

Proposition 6.2. Let G′ be a smooth affine k′-group with connected reductive fibers G′i,
where k′ =

∏
k′i for fields k′i finite separable over k. Let S ′ =

∐
S ′i be a fiberwise maximal

split k′-torus in G′. Then the maximal split k-subtorus S inside Rk′/k(S ′) is a maximal split
k-torus in G = Rk′/k(G′), and conversely if S is a maximal split k-torus in G then the image
of Sk′ ↪→ Gk′ � G′ is a fiberwise maximal split k′-torus in G′. These operations are inverse
bijections between the sets of maximal split tori in G and G′.
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In this result, the map Rk′/k(X ′)k′ → X ′ over k′ (applied for X ′ = G′) “corresponds” to the
identity map on Rk′/k(X ′); on points valued in a k′-algebra A′ it is the map X ′(k′⊗kA

′)→ X ′

induced by the k′-algebra map k′ ⊗k A
′ → A′ carrying c′ ⊗ a′ to c′a′.

Proof. Since we have a good rational conjugacy theorem over fields for maximal split tori,
we first note that it does suffice to treat the factor fields of k′ over k separately (check!),
so we may and do assume k′ is a field. If we begin with S ′ and make S in accordance
with the given procedure (which we do not yet know to be maximal as a split k-torus in
G) then we claim that the image of Sk′ ↪→ Gk′ � G′ is S ′. This latter composite map is
the same as Sk′ → S ′ ↪→ G′ (check!), so for the purpose of identifying the image we can
replace G′ with S ′ and then even reduce to the case G′ = GL1. In this case, S is the evident
copy of GL1 inside Rk′/k(GL1) (informally corresponding to k× ⊂ k′×). Indeed, this can be
seen via rationalized Galois lattice considerations since the induction of the 1-dimensional
trivial character through an inclusion of finite groups contains a single copy of the trivial
representation (by Frobenius reciprocity over Q). Thus, the assertion comes down to the
claim that the natural map

Tk′ ↪→ Rk′/k(Tk′)k′ � Tk′

is surjective for T = GL1, and computing on functorial points shows that this is the identity
map (with T allowed to be any affine k-scheme of finite type whatsoever).

Having shown that S ′ is the image of Sk′ in the quotient G′ of Gk′ , consider a split k-torus
S containing S. Thus, Sk′ contains Sk′ , so the image of Sk′ contains S ′. But Sk′ is a fiberwise
split k′-torus, so by the maximality of S ′ it follows that Sk′ has image S ′ inside G′ too. This
quotient map Sk′ � S ′ corresponds by adjointness of Weil restriction and base change to
a k-homomorphism S → Rk′/k(S ′). By construction, this is compatible with how each sit
inside G = Rk′/k(G′) (check!), so we see that S is a split k-subtorus of Rk′/k(S ′). By S was
chosen to be the maximal split k-subtorus of Rk′/k(S ′), so the inclusion S ⊆ S is an equality.
Hence, S is maximal inside G. This proves that the proposed recipe S ′ 7→ S makes sense
as a map from the set of fiberwise maximal split k′-tori in G′ to the set of maximal split
k-tori in G. But all maximal split k-tori in G are G(k)-conjugate to each other, and via the
visible equality G(k) = G′(k′) it follows that every maximal split k-torus in G arises from
some such S ′. Moreover, since we have shown that S ′ is the image of Sk′ under Gk′ � G′,
such an S ′ is unique. �

7. The calculation

Now we focus on the example G = Rk′/k(SLn)/µn. Let D be the diagonal split maximal
k-torus in SLn as a k-group, so the preceding section ensures that T := Rk′/k(Dk′)/µn is a
maximal k-torus in G with S := D/µn as a maximal split k-torus in G. We claim that the
inclusion T ⊂ ZG(S) is an equality. This can be done by bare hands, or alternatively we
note that since G is quasi-split (a Borel k-subgroup is Rk′/k(B′)/µn for a Borel k′-subgroup
of SLn) we know that ZG(S) has to be a k-torus (so maximality of T forces T = ZG(S)).

Our aim is to compute H1(k, ZG(S)). The reader who is unfamiliar with fppf cohomology
should now assume char(k) doesn’t divide n, so µn is smooth over k. Hence, we have an
exact sequence

1→ µn → Rk′/k(Dk′)→ ZG(S)→ 1
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of commutative affine k-groups of finite type. We have H1(k,Rk′/k(Dk′)) = H1(k′, Dk′) by
Shapiro’s Lemma, and this vanishes by Hilbert 90 since Dk′ is a split k′-torus. Hence,

H1(k, ZG(S)) = ker(H2(k, µn)→ H2(k,Rk′/k(Dk′))).

Again using Shapiro’s Lemma, the final H2 is identified with

H2(k′, Dk′) = {(ci) ∈ Br(k′)n |
∑

cj = 0},

and by Hilbert 90 we know H2(k, µn) = Br(k)[n]. In this way, we have

H1(k, ZG(S)) = ker(Br(k)[n]→ Br(k′)n)

using the diagonal mapping of Br(k) into Br(k′)n. (Make sure you see why this identification
of the kernel is correct.) Thus, H1(k, ZG(S)) is identified with the kernel of the inclusion
of Br(k)[n] into Br(k′), which is the n-torsion in the kernel of the restriction map Br(k) →
Br(k′).

For example, if k is a non-archimedean local field and k′/k is a finite extension whose
degree is divisible by n then this kernel is nontrivial, and in the global field setting we
similarly get nontrivial kernel in many cases.


