
Math 249B. Examples of relative roots

1. Introduction

In §6 of the handout on the relative Bruhat decomposition, it is shown that if k′/k is a
finite separable extension of fields and G′ is a connected reductive k′-group then

G := Rk′/k(G′)

is a connected reductive k-group and the functor Rk′/k defines bijections from the set of
maximal k′-tori (resp. parabolic, resp. Borel k′-subgroups) of G′ to the set of maximal k-tori
(resp. parabolic, resp. Borel k-subgroups) of G, with the bijection for parabolic subgroups
inclusion-preserving in both directions. In particular, if G′ is split then G is quasi-split and
the Borel k-subgroups of G have the unique form Rk′/k(B′) for Borel k′-subgroups B′ ⊂ G′.

The effect of Rk′/k on tori corresponds to induction for Galois lattices, so Rk′/k(Gm) has
as its maximal split k-subtorus the evident copy of Gm. Hence, if S ′ is a split k′-torus of
dimension d then the k-torus Rk′/k(S ′) of dimension [k′ : k]d has maximal split k-subtorus
S of dimension d. In §6 of the handout on the relative Bruhat decomposition we also
showed that assigning to each maximal split k′-torus S ′ ⊂ G′ the maximal split k-subtorus
S ⊂ Rk′/k(S ′) is a bijection between the sets of maximal split tori in G and G′. For example,
if G′ is split with maximal k′-tori of dimension d then G has maximal k-tori of dimension
[k′ : k]d whereas its maximal split k-tori have dimension d.

One reason for interest in separable Weil restriction is that the simply connected central
cover of any connected semisimple k-group has the form

∏
i Rki/k(Gi) for a canonically as-

sociated finite étale k-algebra k′ =
∏
ki (for fields ki) and connected semisimple ki-groups

Gi that are absolutely simple and simply connected for each i. Hence, the core cases to
understand for the structure of connected semisimple groups are the effect of finite separable
Weil restriction and the possibilities in the absolutely simple case.

In this handout, we first explore the effect of finite separable Weil restriction on root
systems and root spaces, and then turn our attention to two classes of absolutely simple con-
nected semisimple k-groups that are Galois-twisted forms of type A: the units with reduced-
norm 1 in central simple k-algebras, and special unitary groups for certain non-degenerate
hermitian spaces relative to quadratic Galois extensions of k.

2. Weil restriction

Let S ′ be a split k′-torus, and S the maximal split k-subtorus of the k-torus Rk′/k(S ′) (so
if S ′ is a maximal split k′-subtorus of G′ for (k′/k,G′, G) as in §1 then S is a maximal split
k-torus in G, and we want to relate the sets Φ(G,S) ⊂ X(S) and Φ(G′, S ′) ⊂ X(S ′)).

Consider the natural map

θ : X(S ′)→ X(S)

defined by a′ 7→ a := Rk′/k(a′)|S; this makes sense because Rk′/k(a′) : Rk′/k(S ′)→ Rk′/k(Gm)
must carry S into the maximal split subtorus Gm ⊂ Rk′/k(Gm). The map θ is bijective
because compatibility with direct sums in S ′ reduces this to S ′ = Gm and a′ the identity
k′-endomorphism of Gm, in which case a is clearly the identity k-endomorphism of Gm.
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Proposition 2.1. Assume S ′ is a maximal split k′-torus in G′ for (k′/k,G′, G) as in §1. The
bijection θ carries Φ(G′, S ′) onto Φ(G,S), and for each a′ ∈ Φ(G′, S ′) and the corresponding
a ∈ Φ(G,S) the identification of k-vector spaces

g = ker(G(k[ε])→ G(k)) = ker(G′(k′[ε])→ G′(k′)) = g′

carries ga onto g′a′. In particular, all root spaces in g have dimension [k′ : k].

The bijection g ' g′ of k-vector spaces is also compatible with Lie brackets; for a proof,
see A.7.5–A.7.6 in [CGP].

Proof. It is harmless to make a ground field extension K/k such that K ⊗k k
′ is a field.

Taking K = k(x) if k is finite, we may assume k is infinite. Thus, S(k) is Zariski-dense in
S, and likewise for S ′(k′) ⊂ S ′. Consequently, we can keep track of weight spaces for S and
S ′ by studying the actions of S(k) and S ′(k′). In particular, ga is the set of X ∈ g such
that AdG(s)(X) = a(s)X for all s ∈ S(k). Likewise, g′a′ is the set of X ′ ∈ g′ such that
AdG′(s′)(X ′) = a′(s′)X ′ for all s′ ∈ S ′(k′).

By definition of the adjoint representation in terms of conjugation of dual-number points
and definition of the identification of g and g′, via the inclusion S(k) ↪→ Rk′/k(S ′)(k) = S ′(k′)
we have AdG′(s) = AdG(s). Hence, ga is the set of X ′ ∈ g′ such that AdG′(s)(X ′) = a(s)X ′.

Writing X ′ uniquely as a sum of its components along the S ′-weight spaces in g′, which is
also an S(k)-equivariant decomposition (via the inclusion of S(k) into S ′(k′)), it suffices to
check that a′|S(k) = a (valued in k× ⊂ Rk′/k(Gm)(k) = k′×). But the very definition of a in
terms of a′ makes this equality obvious (since applying the functor of k-points after applying
Rk′/k is naturally identified with applying the functor of k′-points). �

3. Central simple algebras

Let A be a central simple algebra over k of dimension N2, so A ' Matd(D) for some d|N
and a central division algebra D over k of dimension m2 for m = N/d. Let G be the algebraic
group of units in A with reduced norm equal to 1; i.e., for any k-algebra R the group G(R)
consists of the units u ∈ (R⊗k A)× such that Nrd(u) = 1 in R×, where Nrd : A→ A1

k is the
multiplication morphism given by the reduced norm. (See Exercise 5 in HW4 of the previous
course.)

One usually writes SLd(D) to denote G. This is a Galois-twisted form of SLdm = SLN ,
and its Lie algebra is naturally identified with the kernel of the reduced trace in A (using
commutator in the associative algebra A for the Lie bracket); see Exercise 1(ii) in HW7 of
the previous course.

The central subring inclusion k ↪→ D defines a k-algebra inclusion Matd(k) ↪→ Matd(D)
along which the restriction of Nrd is detm. In particular, this yields a k-subgroup inclusion
ι : SLd ↪→ G.

Proposition 3.1. Let S ⊂ SLd be the split diagonal k-torus. Via ι this is a maximal split
k-torus in G, and Φ(G,S) = Φ(SLd, S). For a ∈ Φ(G,S) = Φ(SLd, S) corresponding to the
ij-entry for i 6= j, ga is identified with the ij-entry space D inside g ⊂ A = Matd(D).

Moreover, ZG(S) ⊂ (D×)m is the group of points (ξ1, . . . , ξm) such that
∏

Nrd(ξj) = 1.
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Informally, the large dimensions for the root spaces and ZG(S) are related to the additive
and unit groups of D, but it doesn’t make sense to speak of Weil restriction to k of Ga or
Gm from Spec(D) since D is non-commutative (away from the uninteresting case D = k).

Proof. The effect of S-conjugation on the k-algebra Matd(D) = Matd(k)⊗k D has no effect
on the D-tensor factor, being concentrated on Matd(k) (where it is the standard action).
The gives the expected weight-space decomposition for S acting through conjugation on A×,
so likewise on its derived group that is G (as we may check over ks, where D splits).

Since D×/Gm is k-anisotropic, due to the k-anisotropicity of the centrally isogenous
SL1(D) (as D is a central division algebra; see Exercise 1(i) in HW8 of the previous course),
once we establish the asserted description of ZG(S) it will follow that S is maximal split
inside ZG(S). Hence, it remains to prove that ZG(S) as as described. But the proposed
description is a smooth connected group (as we may check over ks, where D splits) that
is certainly contained inside the smooth connected k-group ZG(S), so to prove equality it
suffices to compare Lie algebras.

Dropping the “SL”-condition at the cost of an extra 1-dimensional central Gm, it suffices
to check that the S-centralizer in the Lie algebra A of A× coincides with the “diagonal”
subalgebra Dm. But this is clear since we have identified weight spaces for S in A for the
weights in Φ(SLd, S), and those together with Dm already span the entire Lie algebra (so
there is no room for a larger subspace of S-invariants). �

4. Special unitary groups

Let k′/k be a quadratic Galois extension. Denote the nontrivial Galois automorphism as
z 7→ z. We will build special unitary groups over k relative to k′/k, and see that typically
these have relative root system that is non-reduced (and even occurs for k = R, so this
phenomenon impacts the structure theory of semisimple Lie groups and Lie algebras over
R).

Let V ′ = k′n with n ≥ 2, and choose a positive integer q such that n ≥ 2q. Let h :
V ′ × V ′ → k′ be the sesquilinear map defined by

h(~x, ~y) =

q∑
i=1

(xiyq+i + xq+iyi) + h0((x2q+1, . . . , xn), (y2q+1, . . . , yn))

where

h0 =
n∑

i=2q+1

cixiyi

with c2q+1, . . . , cn ∈ k×. Assume the quadratic form qh0 =
∑n

i=2q+1 cixixi on k′n−2q that is

valued in k is k-anisotropic. Regarding (k′n−2q, qh0) as a quadratic space over k, it has even
dimension 2(n− 2q) and is automatically non-degenerate.

Clearly

h(~y, ~x) = h(x, ~y);
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we say h is hermitian. In terms of the language of matrices for sesquilinear forms, h has the
matrix

[h] =

 1q

1q

C


where

C = diag(c2q+1, . . . , cn).

As in Exercise 3 of HW7 of the previous course, the k-group G = SU(h) ⊂ Rk′/k(SL(V ′)) is
a Galois-twisted form of SLn, so the absolute root system for G is An−1.

Note that the subgroup of G “supported” in the lower-right (n− 2q)× (n− 2q) corner is a
copy of the connected reductive k-group SU(h0) ⊂ SO(qh0) (containment shown in Exercise
3(iii) of HW7 of the previous course). Thus, the assumed k-anisotropicity of the quadratic
space qh0 over k implies that the connected reductive k-group SU(h0) is k-anisotropic (as we
know SO(qh0) must be k-anisotropic).

Consider the q-dimensional split k-torus S ⊂ G consisting of points

λ(t) =

t t−1

1n−2q


for t = (t1, . . . , tq) ∈ Gq

m viewed as a diagonal matrix in the evident manner. A basis of
X(S) is given by the projections ai : λ(t) 7→ ti. As a Lie subalgebra of Lie(Rk′/k(SL(V ′))) =
sl(V ′) = sln(k′) over k, the Lie algebra g of G consists of those M ′ ∈ sln(k′) satisfying
M ′t[h] + [h]M ′ = 0. Using that C = εC, we find that such M ′ are the block matrices over
k′ given by

M ′ =

 Y X CU

X ′ −Y t
CV

−C−1V t
C −C−1U t

C W


where X,X ′, Y ∈ Matq(k

′), W ∈ Matn−2q(k
′), and U, V ∈ Matq×(n−2q)(k

′) satisfy

X
t

= −X, X ′t = −X ′, W t
= −CWC−1, Tr(W ) = Tr(Y )− Tr(Y ).

(The fourth condition says exactly that M ′ ∈ sln(k′), and note that applying trace to
the third condition gives Tr(W ) is negative of its own conjugate, as forced by the fourth
condition.) It follows that the strictly lower triangular parts of X and X ′ are determined
by their respective strictly upper triangular parts, and their diagonals are valued in k. In
particular, the diagonal entries for X and X ′ are 1-dimensional over k whereas the off-
diagonal entries are 1-dimensional over k′ (so 2-dimensional over k).

The structure of the S-weight spaces works out as follows (allowing i = j below!):

• the ij-entry for Y has weight ai − aj,
• the ij-entry for X has weight ai + aj,
• the ij-entry for X ′ has weight −ai − aj,
• the ij-entry for −Y t

has weight −ai + aj,

• the ith row of CU and ith column of −C−1U t
C has weight ai,

• the ith row of CV and ith column of −C−1V t
C has weight −ai
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• all entries for W have S-weight 0.

Note that for the entries of X and X ′ we may restrict attention to the upper triangular
part (including the diagonal). In particular, within the upper-left 2q× 2q block all S-weight
spaces for nontrivial weights are k′-lines (so 2-dimensional over k′) except for the weights
±2ai that are 1-dimensional over k.

Let T0 = ker(Nk′/k : Rk′/k(Gm)→ Gm) be the anisotropic norm-1 subtorus of Rk′/k(Gm),
so the formula for h gives that T q

0 embeds into U(h) within the diagonal of the upper-left
2q× 2q part by a formula as for S except that we do not involve any inversion. To lie inside
G ⊂ Rk′/k(SLn) we need to work with the subtorus

S0 = {(t1, . . . , tq) ∈ T q
0 |

∏
tj = 1}.

This subtorus commutes with S and meets S in S0[2] ' µq−1
2 . It follows from Lie algebra

considerations with smooth connected k-groups that

ZG(S) = (S0 · S)× SU(h0),

so ZG(S)/S = (S0/S0[2]) × SU(h0) is k-anisotropic, so S is a maximal split k-torus in G.
Note that the S-weights ±2ai are divisible (by 2) in the set of nontrivial S-weights on g
precisely when ±ai occurs as an S-weight, which is precisely when n > 2q. More specifically,
the upper-left 2q×2q part of G contributes the set of S-weights constituting a Cq root system
in the q-dimensional space X(S)Q (with long roots ±2ai).

Since ZG(S)/S 6= 1 in all cases away from (n, q) = (2, 1), G is always non-split except
when (n, q) = (2, 1) (the quasi-split SU(2) is split). Moreover, G is quasi-split if and only
if ZG(S) is a torus, or equivalently ZG(S)/S is a torus, which is to say that the connected
semisimple group SU(h0) is a torus; this happens precisely when n = 2q, 2q + 1.

Example 4.1. In the special case n = 2q, ZG(S) is a torus containing S with codimension
q − 1. Hence, in such cases G is quasi-split but not split when q > 1, and the absolute root
system An−1 = A2q−1 whereas Φ(G,S) is the root system Cq of rank q.

If instead n = 2q + 1 then in addition to the Cq from the upper-left 2q × 2q part, we get
additional (short, multipliable) roots ±ai whose weight spaces are each a copy of k′.

Example 4.2. To get a grip on the non-reducedness of the root system, let’s focus on BC1-
cases to see what is going on: we consider n = 3 and q = 1. This makes h a hermitian form
in 3 variables,

h(~x, ~y) = x1y2 + x2y1 + cx3y3,

where c ∈ k×. Inside Rk′/k(SL3), the k-torus S = Gm consists of points diag(t, 1/t, 1), with
X(S) = Za for a : diag(t, 1/t, 1) 7→ t.

The smooth connected subvariety U consisting of points1 w −cv
1
v 1


with v, w ∈ Rk′/k(Ga) satisfying

w + w + cvv = 0
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is a 3-dimensional k-subgroup normalized by S (easy) on which the group law is given by

(v1, w1) · (v2, w2) = (v1 + v2, w1 + w2 + cv1v2),

so U is non-commutative. The Lie algebra Lie(U) is the span of the 1-dimensional weight
space for 2a and the 2-dimensional weight space for a. In terms of the notion of “relative
root group” to be defined later, U is the a-root group (its Lie algebra also supports the
2a-weight space).

Setting v to be 0 gives a 1-dimensional k-subgroup U2a ' Ga whose Lie algebra is the
2a-weight space, and U/U2a ' Rk′/k(Ga) is commutative for which the S-action on the Lie
algebra has a as its only weight.

There is no S-equivariant homomorphic section to U → U/U2a, so this is a seriously
non-commutative situation (i.e., far from a semi-direct product) For example, one might try
imposing the condition w = −cvv/2 (as then w + w + cvv = 0), but this does not give a
homomorphic section.

In general, when n > 2q, we see that Φ(G,S) = BCq for which the weight spaces for
the shortest roots ±ai have dimension 2(n − 2q). For n > 2q + 1 these large dimensional
spaces are not secretly lines over extension fields of k. That is, such large dimensions are
not explained by the intervention of a Weil restriction from a finite separable extension field
(in contrast with the case n = 2q + 1, or in general with the non-multipliable weights, for
which the weight spaces are k′-lines arising from the intervention of Rk′/k via the inclusion
of SU(h) inside Rk′/k(SL(V ′))).

Note that by inspection, (X(S)Q,Φ(G,S)) is always a rank-q root system, whereas the
absolute root system has rank n−1 with n ≥ 2q. Hence, both the absolute and relative root
systems are irreducible (though the latter is typically non-reduced) and there is typically a
huge gulf between their ranks. As n− 2q grows, it is the weight spaces for multipliable roots
that account for ever more of the dimension.


