
Math 249B. Root datum for split reductive groups
The link between (split) connected reductive groups and combinatorial objects called root data

was first discovered in the theory of compact Lie groups and the structure theory of complex
semisimple Lie algebras, where the slightly coarser notion of root system was used. Roughly speak-
ing, root systems keep track of group-theoretic information “up to central isogeny” whereas the root
datum keeps track of information up to isomorphism. (The root datum viewpoint is also necessary
for keeping track of the maximal central torus. But this was not regarded as an important piece
of information in the early days of Lie groups, since a central torus is not particularly interesting
from a representation-theoretic perspective.)

We begin with a discussion of root groups and then establish the root datum axioms for roots
arising from a split connected reductive group. Then we establish some interesting consequences
of the link to root systems.

1. Root groups and root data

Throughout this section, G is a connected reductive group over a field k and T is a maximal
k-torus that we assume to be k-split. We have seen in the homework for the previous course that in
many natural examples, there is no such T (e.g., unit groups of nontrivial central division algebras
over k). Those G admitting such a T are called k-split. Since every maximal k-torus remains
maximal after a ground field extension, and every torus splits over a finite Galois extension, loosely
speaking every connected reductive k-group is a “Galois-twisted form” of a split one. Hence, the
classification of connected reductive groups comes in two parts: the combinatorial classification in
terms of root data in the split case, which we will begin to discuss below, and a Galois cohomological
part to keep track of how “twisted” a given group is from a split one (involving the structure of
automorphism groups of split connected reductive groups, which is best understood with the aid of
root data, along with Galois cohomological methods).

Remark 1.1. Everything we do below will rest on the choice of T . Now of course it is typically
not true (when k 6= ks) that every maximal k-torus in k-split; already for GLn this fails when k
has degree-n finite separable extension fields. But it is true that all k-split T are G(k)-conjugate.
This is by no means obvious, and its proof rests on the structural understanding of the subgroup
structure obtained via root data. Hence, one can keep in mind that at the end of the story all
such choices of T will turn out to be “created equal”, and so in the end we will get results that are
intrinsic to G up to G(k)-conjugation (which is best possible, in some sense). For our purposes,
the choice of T will simply be fixed throughout the discussion.

The following terminology will be convenient:

Definition 1.2. The roots of the pair (G,T ) are the non-trivial weights for T under its adjoint
action on g = Lie(G). In other words, it is the set Φ(G,T ) ⊂ X(T ).

For each a ∈ Φ(G,T ) we know that the corresponding weight space ga in g is 1-dimensional, and
so we have a weight space decomposition

g = t⊕
(
⊕a∈Φ(G,T )ga

)
with lines ga, where t = Lie(T ). In particular, Φ(G,T ) = ∅ if and only if G = T , which is to say
that G is commutative (or equivalently, by reductivity, solvable). It is the non-solvable case which
is the most important one, and we want to T -equivariantly “exponentiate” each ga to a copy of Ga

in G. Ultimately this rests on a concrete calculation with SL2. First we prove the general result,
and then we see what it says for SLn.
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Proposition 1.3. For each root a of (G,T ), there is a unique smooth connected k-subgroup Ua ⊆ G
normalized by T such that the subspace Lie(Ua) equipped with its T -action is ga. Moreover, Ua ' Ga

as k-groups.

The k-group Ua is called the root group in G attached to a ∈ Φ(G,T ). Beware that it is crucial
(in positive characteristic) to assume that Ua is T -normalized, not merely that its Lie algebra is
T -stable under the adjoint action. Otherwise one can make counterexamples using the graph of
Frobenius in Ga×Ga (viewed inside the unipotent radical of a Borel subgroup of SL3, for example).

Proof. Consider the unique codimension-1 torus Ta = (ker a)0
red in T killed by the nontrivial char-

acter a of T . The first task is to control all possibilities for Ua by proving that if H ⊆ G is a
T -normalized smooth connected k-subgroup for which Lie(H) = ga then H is contained in the k-
group D(ZG(Ta)) that we know to be k-isomorphic to SL2 or PGL2. This is a geometric problem,
so we may temporarily assume k = k.

The Lie algebra condition forces H to be 1-dimensional, so H is either Ga or GL1 (since k = k).
The latter case is impossible, since then H would be a torus normalized by T , yet the T -action on H
would then be trivial (since T is connected and Aut(GL1) = Z/2Z), contradicting the nontriviality
of the T -action on Lie(H) = ga. Hence, H is unipotent.

Next we claim that the Ta-action on H must be trivial, so H ⊆ Ga := ZG(Ta). Since H = Ga,
for any t ∈ T (k) the conjugation action of t on H is given by an algebraic group automorphism of
Ga, and the only such automorphisms are the nonzero constant scalings. In other words, t acts by
some χ(t) ∈ k×. But then the induced action on Lie(H) = Lie(Ga) is easily seen to also be scaling
by the same χ(t) on this line, yet Lie(H) = ga inside g by hypothesis, so χ(t) = a(t). In particular,
if t ∈ Ta(k) then its action on H is trivial. Since H is unipotent and Ga/D(Ga) is a torus (being
connected reductive and commutative), the containment of H in Ga forces H ⊆ D(Ga) as desired.

Now we return to the situation over a general field k, knowing that the only possibilities for
Ua, if any is to exist at all, are to be found inside the k-subgroup D(Ga) that we know to be
k-isomorphic to SL2 or PGL2. In fact, the proof of existence of such a k-isomorphism arranged it
so that any desired 1-dimensional k-split torus in D(Ga) is carried to the diagonal torus in SL2 or
PGL2. There is a natural such k-torus: Sa := T ∩ D(Ga)! Indeed, since Ta × D(Ga) → Ga is a
central isogeny, and the scheme-theoretic preimage of T under this map is Ta × (T ∩D(Ga)). This
preimage is a torus (as for any central isogeny between connected reductive groups), so its direct
factor T ∩D(Ga) is a torus, necessarily 1-dimensional and k-split due to the k-isogeny to the k-split
T .

Pick an isomorphism φ from D(Ga) onto SL2 or PGL2 such that Sa goes over to the diagonal
torus D. Since T = Sa · Ta and Ta centralizes D(Ga), a k-subgroup of D(Ga) is T -normalized if
and only if it is Sa-normalized, and then the action of T on its Lie algebra is uniquely determined
by the action of Sa on the Lie algebra (as Ta must act trivially there). Hence, we have reduced
everything to a very special case: G is either SL2 or PGL2 and T is the diagonal torus D!! This is
so concrete that the rest will be a pleasant calculation.

By direct calculation with sl2 and pgl2, the non-trivial weights for the adjoint D-action are easily
seen (check!) to be the characters

a+ :

(
t 0
0 t−1

)
7→ t2, a− :

(
t 0
0 t−1

)
7→ t−2

in X(D) in the SL2-case, and the characters

a+ :

(
t 0
0 1

)
7→ t, a− :

(
t 0
0 1

)
7→ t−1
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in the PGL2-case, with respective weight spaces given respectively by the Lie algebras of the “upper
triangular” unipotent subgroup U+ and the “lower triangular” unipotent subgroup U−. In both
cases, by inspection we see that U± are in fact normalized by D, and U± ' Ga as k-groups. Thus,
the existence part of the problem is settled, and it remains to prove uniqueness. In particular, now
we may and do assume that k = k, so any possibility which exists must be a copy of Ga inside our
group.

Any possibility U for Ua yields a k-subgroup D n U that is 2-dimensional, smooth, connected,
and solvable, so by dimension reasons it must be a Borel subgroup that contains D. But the
elementary Bruhat decomposition for SL2(k) and PGL2(k) with k = k yields that the two Borel
subgroups B± = D n U± are the only ones containing D. This forces U ⊆ B±, so U = U± for
dimension reasons. Then correspondingly ga = Lie(U) = ga± , so the Lie algebra condition on U
inside g picks out exactly one of the two possibilities as the only one which can work, and we have
seen that this possibility really does work. �

Example 1.4. Let G = SLn and T = D the diagonal torus. Then for each 1 ≤ i 6= j ≤ n let Uij be
the k-subgroup uij : Ga ↪→ G defined by setting uij(x) to be the matrix whose diagonal entries are 1
and all other entries vanish except for the ij-entry which is x. This is easily seen to be a k-subgroup
of G that is normalized by D, with t = diag(t1, . . . , tn) acting by t · uij(x) · t−1 = uij((ti/tj)x).
Thus, the space Lie(Uij) ⊂ sln is a T -weight space for the nontrivial weight aij(t) = ti/tj . (Note
that for n = 2 and (i, j) = (1, 2), we get t1/t2 = t21 since t2 = 1/t1 due to being in SL2.) This
already gives us a collection of weight spaces filling up the entire dimension of sln away from the
diagonal part t, so we have found all of the roots, as well as the root groups.

Another fun example is G = Sp2n for a suitable “diagonal” T . This is worked out from scratch
in §9.6.5 of the 2nd edition of the book Pseudo-reductive groups.

Having assembled the set of roots Φ(G,T ) and the T -normalized root group Ua ' Ga inside G
for each root a, we next introduce the coroots. This will be a collection of nontrivial cocharacters
a∨ : GL1 → T which again arise from special arguments with SL2 and PGL2:

Proposition 1.5. For each a ∈ Φ(G,T ), there is a unique k-homomorphism a∨ : GL1 → Sa :=
T ∩D(ZG(Ta)) such that a ◦ a∨ ∈ End(GL1) = Z is 2; i.e., a(a∨(t)) = t2. That is, relative to any
k-isomorphism ua : Ga ' Ua, we have

a∨(t)ua(x)a∨(t)−1 = ua(t
2x).

In the PGL2-case the map a∨ is a degree-2 isogeny, and in the SL2-case it is an isomorphism.

Note that the choice of ua really does not matter, since any two are related by composition with
Autk(Ga) = k×, which clearly preserves the proposed condition.

Proof. The problem is intrinsic to the k-split pair (D(ZG(Ta)), Sa) that we have seen is k-isomorphic
to (SL2, D) or (PGL2, D), and by composing such an isomorphism with a representative of the non-
trivial class in the Weyl group of D if necessary we may arrange that the a-root group Ua goes over
to the upper-triangular unipotent subgroup U+. So now the problem is an entirely concrete one
about U+ and D inside SL2 and PGL2. In particular, we may and do use the choice ua(x) = ( 1 x

0 1 ).
The existence of a∨ is now by inspection: a∨(t) =

(
t 0
0 t−1

)
in the SL2-case and a∨(t) =

(
t2 0
0 1

)
in the

PGL2-case. For uniqueness it suffices to check on k-points, and that is safely left to the reader. �

Definition 1.6. The set of coroots of (G,T ) is the subset Φ∨(G,T ) ⊂ X∗(T ) consisting of the
cocharacters a∨ for all a ∈ Φ(G,T ).



4

By construction, (−a)∨ = −a∨. We will see soon that a∨ determines a, but if you think about
it briefly this is not immediately obvious from the definitions. Before we take up a more detailed
study of coroots, we wish to give another description of them. Let D ⊂ SL2 and D ⊂ PGL2 denote
the diagonal split maximal k-tori (of dimension 1). Note that PGL2 = GL2/Gm naturally acts on
SL2, and more specifically PGL2(k) = GL2(k)/k× acts on the k-group SL2 via conjugation. The
resulting homomorphism

PGL2(k)→ Autk-gp(SL2)

is injective. Indeed, if g ∈ GL2(k) centralizes SL2 then computation with its action on D shows
that g is diagonal, so we may scale g to be ( c 0

0 1 ). The conjugation action of g on u(x) = ( 1 x
0 1 ) ∈ U+

satisfies gu(x)g−1 = u(cx), so triviality of this action forces c = 1 (so the original g lies in k×).
This action plays a key role in:

Proposition 1.7. Let (G,T ) be a split reductive pair over a field k, and choose a ∈ Φ(G,T ). There
exists a central k-isogeny f : SL2 → D(Ga) satisfying f(D) = Sa = T

⋂
D(Ga) and f : U+ ' Ua,

and the D(k)-action on SL2 is simply transitive on the set of such f . In particular, all such f

induce the same k-isogeny D → Sa, and under the isomorphism Gm ' D defined by c 7→ ( c 0
0 1/c )

the resulting k-homomorphism Gm → Sa ↪→ T is the coroot a∨.
Moreover, f 7→ Lie(f)( 0 1

0 0 ) ∈ ga − {0} is a bijection from the set of such f onto the set of bases
of ga.

Note that the requirement f(U+) = Ua (as opposed to f(U+) = U−a) is what distinguishes a
and −a. Also, this result shows that to specify f without any ambiguity is exactly the same as
to choose a basis of ga; such a choice is a special case of an important general structure called a
pinning that will be studied later (to eliminate conjugation ambiguities when passing between split
connected reductive groups and root data).

Proof. The construction of a∨ used such an f , so we fix one such f0 and need to consider an arbitrary
f satisfying the desired conditions. Since f is a central isogeny, so ker f ⊂ ZSL2 = µ2, we have either
ker f = 1 or ker f = µ2. But SL2/µ2 = PGL2 6' SL2 (e.g., compare scheme-theoretic centers), so
necessarily f has degree 1 when D(Ga) ' SL2 and f has degree 2 when D(Ga) ' PGL2. Referring
to these two cases as the “SL2 case” and “PGL2 case” respectively, we have that ker f = 1 in the
SL2 case and ker f = µ2 in the PGL2 case. Thus, in these respective cases the isogeny f : D → Sa is
identified with an endomorphism of Gm with respective degrees 1 and 2 (using fixed k-isomorphisms
of D and Sa with Gm).

For d > 0 the only degree-d endomorphisms of Gm are t 7→ t±d. Thus, there are at most two
possibilities for f : D → Sa, related through inversion (on the source or target). Hence, to show
that this map between tori is uniquely determined as we vary f , we just have to rule out the
possibility that f and f0 are off by inversion on D.

Equivalently, if we define the k-isomorphism λ : Gm ' D by λ(t) = ( t 0
0 1/t ) then for µ := f0 ◦λ ∈

X∗(Sa) we need to rule out the possibility f ◦ λ = −µ. Suppose to the contrary that f ◦ λ = −µ.
In GL2 we have

λ(t)

(
x y
z w

)
λ(t)−1 =

(
x t2y

t−2z w

)
,

so USL2(λ) = U+. The good behavior of the “U(λ)” construction under quotient maps gives that
f(U+) = f(USL2(λ)) = UD(Ga)(f ◦ λ), so

UD(Ga)(−µ) = f(U+) = Ua = f0(U+) = UD(Ga)(µ).
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But in general the dynamic method for any 1-parameter subgroup µ of a linear algebraic group H
gives that the multiplication map

UH(−µ)× ZH(µ)× UH(µ)→ H

is an open immersion, so UH(−µ)
⋂
UH(µ) = 1. Hence, the above equality relating µ and −µ is

impossible (since Ua 6= 1), so the uniqueness of f |D is proved.
Now that f is uniquely determined on D, we take into consideration the effect of precomposition

with the action of D(k) on SL2. Upon fixing isomorphisms U+ ' Ga and Ua ' Ga, f : U+ ' Ua is
identified with an automorphism of the k-group Ga. Such an automorphism is a degree-1 additive
polynomial, which is to say x 7→ bx for b ∈ k×. The induced map on Lie algebras is multiplication
by b, so the natural map of sets

Isomk-gp(U+, Ua)→ Isomk(Lie(U+),Lie(Ua)) = ga − {0}

is bijective (the last step being evaluation on ( 0 1
0 0 ) ∈ sl2). Precomposition with conjugation by

( c 0
0 1 ) ∈ D(k) has the effect of replacing b with bc, so this D(k)-action is simply transitive on the

set of all k-isomorphisms U+ ' Ua. By using this action, our problem is now reduced to showing
that a k-homomorphism f : SL2 → H to any linear algebraic group H is uniquely determined by
its restriction to the Borel subgroup B+ = D n U+.

More generally, if f : H ′ → H is a homomorphism between linear algebraic groups over k and
H ′ is connected, then f is uniquely determined by its restriction to a parabolic k-subgroup P .
Indeed, if F : H ′ → H is a second homomorphism such that F |P = f |P then the map of k-schemes
H ′ → H defined by h′ 7→ f(h′)F (h′)−1 is right P -invariant, so it factors through a k-scheme map
q : H ′/P → H. But H ′/P is a smooth connected proper k-scheme with a k-point and H is affine
of finite type over k, so q must be a constant map to q(1) = 1. That is, F = f . �

An interesting consequence of the method of proof of Proposition 1.7 is:

Corollary 1.8. For any field k, the injective maps

PGL2(k) ↪→ Autk-gp(SL2), PGL2(k) ↪→ Autk-gp(PGL2)

are bijective. In particular, all k-automorphisms of PGL2 are inner, and the same holds for SL2 if
and only if k× = (k×)2.

Proof. Since the maps in question are injective, by Galois descent it suffices to check the equality
over ks (as then passing to Gal(ks/k)-invariants on both sides over ks gives the result over k).
Hence, we may and do assume k = ks, so all maximal k-tori in a connected linear algebraic k-group
H are in the same H(k)-conjugacy class (see Proposition 3.6 in the handout on Lang’s theorem
and dynamic methods). It follows that for any k-automorphism φ of H and fixed maximal k-torus
T ⊂ H, the composition of φ with a suitable H(k)-conjugation carries T into itself. Thus, in our
situations with SL2 and PGL2 equipped with their respective diagonal maximal k-tori D and D,
we can focus our attention on those automorphisms φ which carry D or D into itself.

Consider the resulting automorphism of D or D induced by φ. This is the identity or inversion,
as we may check by identifying this torus with Gm. Composing φ with conjugation by ( 0 1

−1 0 )
if necessary, we may arrange that φ restricts to the identity on the diagonal torus. Hence, its
action on the character group is the identity, thereby preserving the two roots, so by the unique
characterization of the root groups it follows that φ must carry each root group into itself. In

particular, φ restricts to an automorphism of the upper triangular root group U+ or U
+

(depending
on whether we are in the SL2 case or PGL2 case).
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This root group U is k-isomorphic to Ga, so Aut(U) → GL(Lie(U)) = k× is bijective. But the
natural action by D(k) ⊂ PGL2(k) is trivial on the diagonal torus (of SL2 and PGL2) and preserves
U , making ( c 0

0 1 ) act on Lie(U) as multiplication by c. We conclude that the composition of φ with

the action of a unique element of D(k) brings us to an automorphism that is the identity on both
the diagonal torus and on U , hence on the Borel k-subgroup B that they generate. But we saw at
the end of the preceding proof that the only such automorphism is the identity. �

The first step towards understanding the injectivity of a 7→ a∨ is to give an alternative way to
think about coroots in terms of the finite Weyl group W (G,T ) = (NG(T )/T )(k) = NG(T )(k)/T (k)
(latter equality by Hilbert 90, since T is k-split!). For each root a, the pair (D(Ga), Sa) is k-
isomorphic to (SL2, D) or (PGL2, D), and in particular has a Weyl group of order 2. All elements
of D(Ga) centralize the codimension-1 torus Ta, so since T = Ta ·Sa we see that any representative
na ∈ D(Ga) of the non-trivial class in W (D(Ga), Sa) actually normalizes all of T and does not
centralize it! That is, we have an injective homomorphism

W (D(Ga), Sa) ↪→W (G,T ).

We let wa ∈ W (G,T ) denote the image of the nontrivial element in this order-2 subgroup. Under
the natural faithful action of W (G,T ) on T , this element acts trivially on Ta and acts via inversion
on Sa since it is represented by an element of ND(Ga)(Sa) not centralizing Sa. Thus, on X(T )Q it
acts trivially on a hyperplane and via negation on a complementary line, so it is a reflection.

We define sa ∈ End(X(T )) to be the endomorphism induced by wa; note that w−a = wa,
s−a = sa.

Proposition 1.9. Let 〈·, ·〉 : X(T ) × X∗(T ) → End(GL1) = Z be the natural perfect pairing
〈χ, λ〉 = χ ◦ λ between finite free Z-modules. Then

sa(x) = x− 〈x, a∨〉a.

There will be more work to do in order to show that a∨ determines a.

Proof. By definition sa is the action of wa induced on X(T ). But wa acts trivially on Ta ⊂ ker a,
and it acts by inversion on the subtorus Sa = a∨(Gm) that is an isogeny complement to Ta. Thus,
the isomorphism X(T )Q ' X(Sa)Q × X(Ta)Q induced by the isogeny Sa × Ta → T implies that
sa(a) = −a and sa fixes a hyperplane pointwise, so it is a reflection on X(T )Q. Since it negates
a 6= 0, necessarily sa(x) = x − `a(x)a for a unique nonzero linear form `a on X(T )Q. Writing
`a = 〈·, x′a〉 for x′a ∈ X∗(T )Q, our problem is to prove that x′a = a∨.

Under the perfect duality pairing, the dual automorphism s∨a on the dual lattice X(T )∨ = X∗(T )
is also induced by na-conjugation on T (check!), so it negates the line X∗(Sa)Q through a∨ (since
Sa = a∨(Gm)). But it is easy to directly compute the dual of x 7→ x − 〈x, x′a〉a, namely λ 7→
λ− 〈a, λ〉x′a, and evaluating it on λ = a∨ gives

−(a∨) = s∨a (a∨) = a∨ − 〈a, a∨〉x′a = a∨ − 2x′a,

so x′a = a∨. �

Proposition 1.10. The surjective map of sets Φ(G,T )→ Φ∨(G,T ) defined by a 7→ a∨ is bijective.

Proof. Consider roots a and b such that a∨ = b∨ in X(T ). Consider the element wawb ∈W (G,T ) ⊂
GL(X(T )). This is the product sasb, and from the explicit formulas

sa(x) = x− 〈x, a∨〉a, sb(x) = x− 〈x, b∨〉b = x− 〈x, a∨〉b
it is easy to compute

sasb(x) = x+ 〈x, a∨〉(a− b).
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Working in X(T )Q, consider an eigenvector v of sasb, so sasb(v) = cv. Thus, cv = v−〈v, a∨〉(a−b).
If c 6= 1 then v is a multiple of a− b, yet a− b is fixed by sasb because

〈a− b, a∨〉 = 〈a, a∨〉 − 〈b, a∨〉 = 〈a, a∨〉 − 〈b, b∨〉 = 2− 2 = 0.

This would force v to also be fixed by sasb, contradicting that c 6= 1. In other words, c = 1 after all.
That is, the only eigenvalue of sasb is 1, which is to say that sasb is unipotent. But sasb lies in the
finite subgroup W (G,T ) on the automorphism group of X(T ), so unipotence forces this operator
to be the identity.

We conclude that sa and sb are inverse to each other. Yet each is a reflection, hence of order
2, so in fact sa = sb. But inspection of the above explicit formulas for these reflections (using the
assumption of equality of the associated coroots) gives that `(x)a = `(x)b for all x ∈ X(T ) and the
nonzero linear form ` = 〈·, a∨〉. Hence, a = b. �

Proposition 1.11. For each root a, the reflection sa : x 7→ x − 〈x, a∨〉a on X(T ) preserves the
finite set of roots Φ(G,T ). Also the dual reflection

s∨a : λ 7→ λ− 〈a, λ〉a∨

on the dual lattice X∗(T ) preserves the finite set of coroots Φ∨(G,T ).

Proof. By our preceding calculations, the actions of sa and its dual are exactly the natural actions
induced by the action of wa on T . Thus, the first assertion is a consequence of the obvious fact
that the action of NG(T ) on T permutes the set Φ(G,T ) of nontrivial T -weights on Lie(G). For
the second assertion, it is likewise suffices to prove that the NG(T )-action on T permutes the set
of coroots. For any root a and any n ∈ NG(T ) representing w ∈W (G,T ), w.a∨ is a cocharacter of
nSan

−1 = Sw.a (equality since Sa := T ∩D(ZG(Ta)) and Ta := (ker a)0
red). It is easy to check that

it satisfies the property in Proposition 1.5 for the root w.a (verify!), so it must be (w.a)∨. �

Definition 1.12. A root datum is a 4-tuple (X,R,X∨, R∨) consisting of a pair of finite free Z-
modules X and X∨ equipped with a perfect duality pairing 〈·, ·〉 : X ×X∨ → Z and a pair of finite
subsets R ⊂ X and R∨ ⊂ X∨ such that there exists a bijection a 7→ a∨ satisfying the axioms:

(1) For all a ∈ R, 〈a, a∨〉 = 2.
(2) For all a ∈ R, the dual endomorphisms sa,a∨ of X and sa∨,a of X∨ defined by

sa,a∨(x) = x− 〈x, a∨〉a, sa∨,a(x∗) = x∗ − 〈a, x∗〉a∨

satisfy sa,a∨(R) = R and sa∨,a(R
∨) = R∨.

Note that we allow R = ∅ with X 6= 0 (tori!), and the first axiom forces a, a∨ 6= 0 as well as
the fact that sa,a∨ and sa∨,a respectively negate the lines through a and a∨ and pointwise fix the
hyperplanes orthogonal to a∨ and a (working over Q, say); i.e., pointwise fix the kernel hyperplanes
to each in the dual Q-vector space. Hence, each is a reflection. In particular, since sa,a∨(a) = −a,
we see that R is stable under negation. Also, the axioms are entirely symmetric: the 4-tuple
(X∨, R∨, X,R) is also a root datum (using the inverse bijection a∨ 7→ a).

There is a subtlety lurking here: we did not impose the specification of the bijection a 7→ a∨

as part of the definition. Rather, this was simply assumed to exist in some way. Most textbooks
impose the bijection as part of the structure of a root datum, and the entire basic theory can be
developed in this way. But it is more elegant to not impose this, which we can do thanks to:

Proposition 1.13. In a root datum, the bijection a 7→ a∨ is uniquely determined. Writing sa :=
sa,a∨ and sa∨ = sa∨,a = s∨a , we also have sa(b)

∨ = sa∨(b∨) for all a, b ∈ R.
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Proof. This is Lemma 3.2.4 in “Pseudo-reductive groups” (2nd ed.); the proof is an elementary
argument in linear algebra, relying on a small calculation via the axioms given in [SGA3, XXI,
1.1.4]. More specifically, the argument in “Pseudo-reductive groups” shows that whatever bijection
a 7→ a∨ can exist between R and R∨ satisfying the axioms for a root datum, the functional 〈·, a∨〉
on the Q-span of R is uniquely determined independently of that bijection. If a 7→ a∗ is a second
such bijection, then for any a ∈ R the functionals 〈·, a∨〉 and 〈·, a∗〉 on the Q-span of R coincide.
We have a∗ = b∨ for some b ∈ R, and want to know that b = a. But the equality 〈·, a∨〉 = 〈·, b∨〉
on the Q-span of R forces a = b by [SGA3, XXI, 1.1.4]. �

The entire preceding analysis shows that to any split pair (G,T ) we have associated a root datum

R(G,T ) = (X(T ),Φ(G,T ),X∗(T ),Φ∨(G,T )),

under which the reflections sa ∈ End(X(T )) are induced by the elements wa ∈ W (G,T ). Thus,
the subgroup of W (G,T ) generated by the reflections sa is intrinsic to the root datum, and it is
denoted W (R(G,T )). (In Corollary 2.11 we will show that these groups coincide.)

Let (G,T ) be a split connected reductive group over a field k. Inside the finite group W (G,T ),
we built a subgroup W (R(G,T )) that is intrinsic to the root datum. The finiteness of this subgroup
is a general combinatorial fact unrelated to algebraic groups. This is the final part of:

Proposition 1.14. Let (X,R,X∨, R∨) be a root datum, and Q ⊂ X the Z-span of R. Also define
the linear map f : X → X∨ by f(x) =

∑
a∈R〈x, a∨〉a∨, and X0 = ker f .

(1) For each a ∈ R, 〈a, f(a)〉 6= 0 and f(a) = (1/2)〈a, f(a)〉a∨.
(2) The kernel X0 coincides with the common annihilator

⋂
a∈R ker〈·, a∨〉 ⊂ X, and the natural

map Q⊕X0 → X is injective with image of finite index.
(3) The subgroup W (R) ⊂ GL(X) generated by the reflections {sa}a∈R is finite.

The group W (R) in (3) is the Weyl group of the root datum; it is trivial precisely when R
is empty. The “isogeny decomposition” Q ⊕ X0 of X in (2) is analogous to the central isogeny
G → (G/D(G)) × (G/Z) for a connected reductive group G and its maximal central torus Z; see
Example 2.1.

Proof. For any b ∈ R, the reflection sb permutes the finite set R, so we can apply a “change of
variables” a 7→ sb(a) and use the formula sb(a)∨ = sb∨(a∨) from Proposition 1.13 to get

f(b) =
∑
a∈R
〈b, a∨〉a∨ =

∑
a∈R
〈b, sb∨(a∨)〉sb∨(a∨).

Since sb∨(a∨) = a∨ − 〈b, a∨〉b∨, so

〈b, sb∨(a∨)〉 = 〈b, a∨〉 − 〈b, a∨〉〈b, b∨〉 = −〈b, a∨〉,
we find that

f(b) = −f(b) + (
∑
a∈R
〈b, a∨〉2)b∨,

so f(b) = cbb
∨ with cb ∈ (1/2)Z≥4 since 〈a, a∨〉2 = 4. (Once we prove later that (−a)∨ = −a∨ for

any root datum, by combining the equal terms for each {a,−a} in the sum over R defining f , it
will follow that cb ∈ Z≥2.) Applying 〈b, ·〉 to the identity f(b) = cbb

∨, we get cb = (1/2)〈b, f(b)〉.
This proves (1).

The image of f clearly lies in the Q-span V ′ ⊂ X∨Q of the elements of R∨, and the formula in (1)

shows that the image of fQ exhausts V ′. More specifically, if V = QQ ⊂ XQ denotes the Q-span
of R then (1) shows that fQ(V ) = V ′. Thus, the resulting isomorphism (X/X0)Q ' V ′Q = f(Q)Q
implies that the map Q ⊕ X0 → X becomes surjective after extending scalars to Q. Hence,
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to prove (2) the problem is entirely one of comparison of Q-dimensions. But the isomorphism
(X/X0)Q ' V ′Q = f(Q)Q gives that dimV ′ ≤ dimQQ = dimV , with equality if and only if the

result in (2) holds. We can run through the entire argument with the dual root datum (using the
map f ′ : X∨ → X analogous to f) to get the reverse inequality dimV ≤ dimV ′, so (2) is proved.

Finally, to prove (3) we consider the decomposition XQ = V ⊕ (X0)Q provided by (2). Since
(X0)Q is annihilated by the coroots, the reflections sa on XQ restrict to the identity on (X0)Q and
also preserve the Q-span of the roots. Thus, W (R) maps isomorphically to its image in GL(V ),
which is a subgroup of V that acts through permutations on a finite Q-spanning set R of V . This
injects W (R) into the permutation group of the finite set R, so W (R) is finite. �

Corollary 1.15. For each a ∈ R and q ∈ Q such that qa ∈ R inside XQ, we have (qa)∨ = (1/q)a∨.
In particular, (−a)∨ = −a∨ for all a ∈ R. In general, the only possibilities for q are {±1,±2,±1/2}.

A root datum is reduced if the only elements of R linearly dependent with each a ∈ R are {±a}.
For example, we know that the root datum arising from a split connected reductive group is always
reduced.

Proof. Consider the linear map f : X → X∨ from Proposition 1.14. For a ∈ R and q ∈ Q
such that qa ∈ R, let’s compute both sides of the identity f(qa) = qf(a). The left side is
(1/2)〈qa, f(qa)〉(qa)∨ = (q2/2)〈a, f(a)〉(qa)∨, whereas the right side is (q/2)〈a, f(a)〉a∨. But we
know that 〈a, f(a)〉 6= 0, so we get (qa)∨ = (1/q)a∨ as claimed. Taking q = −1 gives (−a)∨ = −a∨
for all a ∈ R.

Since 〈a, (qa)∨〉 ∈ Z and (qa)∨ = (1/q)a∨, we see that 2/q ∈ Z. Likewise, since 〈qa, a∨〉 ∈ Z, we
have 2q ∈ Z. It follows that the numerator and denominator of q (in reduced form) must divide 2,
so this leaves only the possibilities q ∈ {±1,±2,±1/2}. �

Let Q be the span of R in X, Q′ the span of R∨ in X∨, and define the annihilators

X0 =
⋂

a′∈R∨
ker〈·, a′〉, X ′0 =

⋂
a∈R

ker〈a, ·〉,

so Q⊕X0 is a finite-index subgroup of X and (by consideration of the dual root datum) Q′ ⊕X ′0
is a finite-index subgroup of X∨. The lattices Q and Q′ contain the most interesting information
(the roots and coroots), and the duality pairing between them is perfect over Q (since XQ and X∨Q
are in duality, with (X0)Q the annihilator of V ′ := Q′Q and (X ′0)Q the annihilator of V := QQ).

However, Q and Q′ generally are not in perfect duality over Z. For example, if G = SL2 and T is
the diagonal maximal torus then inside X = X(T ) ' Z we have Q = 2X but Q′ = X∨.

2. Applications of root data

We already have enough to begin seeing how the combinatorial root datum is convenient for
analyzing some basic properties of split reductive groups.

Example 2.1. Consider the root datum R(G,T ) = (X,R,X∨, R∨) associated to a split connected
reductive group (G,T ) over a field k, so X = X(T ). The group X ′0 ⊂ X∨ = X∗(T ) consists of the
cocharacters λ : Gm → T such that a ◦ λ is trivial for all roots a, which is to say that λ(Gm) acts
trivially on g. (Equivalently, X ′0 is the annihilator of Q in X∨.) This in turns says exactly that the
smooth connected subgroup ZG(λ(Gm)) in G has full Lie algebra, which is to say that λ is valued
in ZG. Hence, X ′0 = X∗(Z) where Z ⊂ T is the maximal central k-torus in G. In particular, G
is semisimple if and only if Q has finite index in X. Meanwhile, the coroots a∨ : Gm → T are
constructed to be valued in D(Ga) ⊂ D(G), so Q′ ⊂ X∗(T ) where T := T

⋂
D(G) is a maximal

k-torus of D(G) (as proved in class early in the course).
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Since surjections carry maximal tori onto maximal tori, the isogeny Z × D(G) → G with Z a
torus shows that the maximal tori of D(G) have codimension dimZ in the maximal tori of G. But
X ′0 = X∗(Z) has rank dimZ, so it follows that the common Z-ranks of Q and Q′ coincide with
the dimensions of the maximal tori of D(G). Hence, the inclusion Q′ ⊂ X∗(T ) must have finite
index and so the coroots span a finite-index subgroup of the cocharacter group of T . This shows
that X∗(T ) is the saturation of Q′ in X∗(T ) = X∨ and the coroot groups a∨(Gm) generate T .
Lie algebra considerations show that the group generated by the maximal torus T and the root
groups Ua exhausts D(G), and inspection of SL2 and its quotient PGL2 shows that each D(Ga) is
generated by the roots groups U±a. But a∨(Gm) ⊂ D(Ga), so we conclude that D(G) is generated
by the root groups.

The natural map Q → X(T ) defined by restriction of characters is injective and hence (by
Z-rank reasons) a finite-index inclusion because the composite map

Q→ X(T ) = Hom(X∗(T ),Z)→ Hom(Q′,Z)

is exactly the natural lattice pairing between Q and Q′ that is perfect over Q. This proves that
the roots of (G,T ) restrict to a spanning set of a finite-index subgroup of X(T ), and that X∗(T )
is the saturation Q′sat of Q′ in X∨ (so X(T ) is the quotient of X modulo the annihilator of R∨).
In particular, we can compute the root datum R(D(G),T ) purely combinatorially in terms of
R(G,T ). Namely, since X0 is identified with the annihilator (Q′)⊥ of the Z-span Q′ of the coroots,

R(D(G), T
⋂

D(G)) = (X/(Q′)⊥, R,Q′sat, R
∨).

Example 2.2. Let’s work out the case G = GLn with T = Gn
m the split diagonal torus. In this

case D(G) = SLn and naturally X = X(T ) = Zn with Φ = Φ(G,T ) the set of differences ei − ej of
distinct standard basis vectors (corresponding to the characters aij : diag(t1, . . . , tn) 7→ ti/tj). The
set Φ∨ ⊂ X∨ = Zn of coroots consists of the differences a∨ij = e∗i − e∗j in the dual lattice, so the

root lattice Q =
∑

i 6=j Z(ei− ej) ⊂ X consists of the vectors in Zn whose coordinates sum to 0 and
the common annihilator X0 ⊂ X of the coroots is the diagonal Z ⊂ Zn.

The character groups for the corresponding diagonal maximal tori T ∩D(G) ⊂ SLn and T/ZG ⊂
PGLn are X/X0 = Zn/∆(Z) and Q respectively, and the kernel µn of SLn → PGLn is the center.
Adding up coordinates modulo n identifies coker(Q → X/X0) with Z/nZ, whose Gm-dual is
ZSLn = µn as we know must be the case.

Under the Isogeny Theorem that functorially relates split reductive groups to root data (see
Remark 2.12), it follows from the computations in Example 2.1 that the finite-index inclusion
X → (X/(Q′)⊥)⊕(Q⊥)∗ corresponds to the central isogeny D(G)×Z → G. Likewise, the inclusion
Q⊕(Q′)⊥ → X corresponds via the Isogeny Theorem to the central isogenyG→ (G/Z)×(G/D(G)).
The possible failure of Q and Q′ to be in perfect duality over Z (i.e., Q → Q′∗ may not be
an isomorphism) thereby corresponds to the fact that the central isogeny of semisimple groups
D(G) → G/Z is generally not an isomorphism (e.g., for G = GLn with n > 1, the associated
central isogeny SLn → PGLn is not an isomorphism).

Example 2.1 illustrates the interest in a combinatorial datum that is weaker than a root datum:
the Q-vector space V spanned in XQ by the finite set R of nonzero elements and its dual V ′ spanned
in X∨Q by the coroots. These satisfy the axioms in the following definition.

Definition 2.3. A root system is a finite-dimensional Q-vector space V equipped with a finite
spanning set R of nonzero elements such that for each a ∈ R there exists a∨ ∈ V ∗ satisfying:

(1) a∨(R) ⊂ Z and a∨(a) = 2,
(2) sa,a∨(R) ⊂ R, where sa,a∨(v) = v − 〈v, a∨〉a.
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The dimension dimV is the rank of the root system.

Remark 2.4. It is a matter of convention as to whether one should allow (V,R) = (0, ∅) to be a root
system. Bourbaki allows this, but some references do not. We allow it so that we can associate a
root system (and root datum) to the trivial algebraic group. Obviously this is not important.

As we saw for root data, for any root system it is automatic that each sa,a∨ is a reflection that
negates a (so R is stable under negation). Also, for any root system, the assignment a 7→ a∨ is
an injection of R into V ∗ − {0}. To see this, we first note that the group W generated by the
reflections sa,a∨ is finite because it lies in GL(V ) and permutes the finite spanning set R of V (so
W injects into the permutation group of the finite set R). Consequently, the injectivity argument
in the proof of Proposition 1.10 can be applied in the root system setting. The finite group W is
called the Weyl group of the root system. In the proof of Proposition 1.14 we saw that the Weyl
group of any root datum maps isomorphically onto the Weyl group of the associated root system.
The link between root systems and root data can be run backwards in a limited sense:

Proposition 2.5. Let (V,R) be a root system, and define X to be the Z-span Q of R and X∨ to
be its dual lattice in V ∗ (so X∨ contains the set R∨ = {a∨}a∈R). The 4-tuple (X,R,X∨, R∨) is a
root datum.

Proof. The only non-obvious requirement for the axioms of a root datum to be satisfied is that
sa∨,a preserves R∨. Unsurprisingly, we claim that necessarily sa∨,a(b

∨) = sa,a∨(b)∨ for all a, b ∈ R.
To prove this, fix a Q-valued positive-definite symmetric bilinear form (·, ·) on V that is invariant
under the action of the finite Weyl group W of the root system. This identifies V with V ∗, and
by design the elements sa,a∨ ∈ W leave the bilinear form invariant. Thus, sa,a∨ must preserve
the hyperplane Ha orthogonal to the line Qa, yet it negates this line and hence must have all
eigenvalues equal to 1 on Ha. But sa,a∨ has finite order, so its effect on Ha must be the identity.
That is, sa,a∨ can be recovered from the geometry: it must be the orthogonal reflection

x 7→ x− (x, 2a/(a, a))a

in the line Qa. This says that a∨ = 2a/(a, a) under the identification of V ∗ with V defined by (·, ·).
It may seem that we are almost going in a circle (and not making any progress), since the

bilinear form (·, ·) was chosen to be W -invariant, and W was defined in terms of the reflections
sa,a∨ that depend on the specification of the coroots a∨. Nonetheless, we can in fact now prove
that sa,a∨(b)∨ = sa∨,a(b

∨). The linear form sa,a∨(b)∨ ∈ V ∗ goes over to

2sa,a∨(b)

(sa,a∨(b), sa,a∨(b))
=

2sa,a∨(b)

(b, b)
= sa,a∨(2b/(b, b)),

so the problem is to check that the linear identification of V ∗ with V carries sa∨,a(b
∨) over to

sa,a∨(2b/(b, b)). By definition,

sa∨,a(b
∨) = b∨ − 〈a, b∨〉a∨ 7→ 2b

(b, b)
− 〈a, b∨〉 · 2a

(a, a)
∈ V,

and sa,a∨(2b/(b, b)) = 2b/(b, b)− 〈2b/(b, b), a∨〉a, so we are reduced to checking that

〈a, b∨〉
(a, a)

?
=
〈b, a∨〉
(b, b)

.

But we have already seen that 〈x, c∨〉 = (x, 2c/(c, c)) for all c ∈ R and x ∈ V , so the desired identity
is clear. �
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An immediate consequence, via Proposition 1.13, is the following basic fact, for which we em-
phasize that no Euclidean structure has been specified (and hence it goes beyond the uniqueness
in many expositions of the theory of of root systems).

Corollary 2.6. For any root system (V,R), the map R → V ∗ defined by a 7→ a∨ is uniquely
determined by the properties in the axioms (so we may write sa rather than sa,a∨).

In Bourbaki LIE VI, it is root systems and not root data which are studied. This is akin to the
dichotomy between central isogeny classes of split connected semisimple groups and isomorphism
classes of split connected reductive groups: all of the real work is at the level of the root system, but
the root datum is necessary to keep track of things at a level finer than isogenies. Loosely speaking,
passage from a root datum to its associated root system is akin to replacing the study of a connected
reductive group with the study of the central isogeny class of its derived group. Likewise, in the
theory of Lie algebras over C one has gln = C ⊕ sln (so it hardly seems worthwhile to consider
gln in the structure theory) but at the level of algebraic groups GLn is not the direct product of
its central Gm and SLn. Isogenies also matter in representation theory; e.g., in characteristic 0
some irreducible representations of SLn do not factor through PGLn, even though their Lie algebras
coincide. Hence, it is in the study of Lie groups and algebraic groups, rather than their Lie algebras,
that the usefulness of the root datum (as opposed to the root system) becomes apparent.

By Proposition 2.5, we can view Corollary 1.15 as really being a statement about root systems:
in any root system (V,R), if a ∈ R and c ∈ Q satisfies ca ∈ R then c ∈ {±1/2,±1,±2}. This
fact is proved in virtually every exposition of the theory of root systems, generally via Euclidean
geometry by extending scalars to R and using a W -invariant inner product; e.g., see Proposition
8(i) in §1.3 of Bourbaki LIE VI. Many expositions of root systems require the specification of an
inner product (·, ·) as part of the framework for the definitions (taking V to be an R-vector space)
and work directly with orthogonal reflections relative to the inner product (so a∨ is defined to be
2a/(a, a), subject to integrality conditions in the axioms). It seems more elegant (as in Bourbaki)
to axiomatize these concepts without reference to a Euclidean structure, even though the choice of
such an auxiliary structure is certainly convenient in proofs (as we saw in the proof of Proposition
2.5).

Remark 2.7. Remarkably, under a mild restriction, the W -invariant inner product on a root system
(viewed over R, say) is unique up to R×-scaling (from which the analogous uniqueness holds over
Q or any field of characteristic 0). To make this precise, we need a new concept. Observe that if
(V,R) and (V ′, R′) are two root systems, then (V ⊕ V ′, R

∐
R′) is a root system, called the direct

sum of the two given root systems. Note that the Weyl group of such a direct sum is identified
with W (R)×W (R′).

A root system (V,R) reducible if it is isomorphic to a direct sum of two nonzero root systems, and
is irreducible if V 6= 0 and it is not reducible. In §1.2 of Bourbaki LIE VI the notion of irreducibility
is studied, and it is proved there (allowing V to be over any field of characteristic 0) that (i) (V,R)
is irreducible as a root system if and only if V is absolutely irreducible as a representation of the
finite group W (R), (ii) every root system is uniquely (up to relabeling) a direct sum of irreducible
root systems. (The logically-inclined reader will verify that this is consistent with considering (0, ∅)
as a root system.)

Clearly if a root system is reducible then Weyl-invariant inner products can be chosen inde-
pendently from each other on the different irreducible components. But in the irreducible case it
makes sense to ask about the uniqueness up to scaling. Such uniqueness is immediate from Schur’s
Lemma, in view of the absolute irreducibility of the W (R)-action in the irreducible case (as this
ensures that any two W (R)-equivariant isomorphisms V ' V ∗ are scalar multiples of each other).
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Curiously, in view of Corollary 2.6, for any (V,R) there is a canonical positive-definite symmetric
W (R)-invariant bilinear form on V :

BR(v, v′) =
∑
a∈R
〈v, a∨〉〈v′, a∨〉.

This is visibly symmetric, it is W (R)-invariant due to the identity sb(a)∨ = sb∨(a∨), and it is
positive-definite because R∨ spans V ∗ in any root system. (See Proposition 3 in §1.1 of Bourbaki
LIE VI for another argument.) See §1.12 of Bourbaki LIE VI for further discussion of this bilinear
form.

Example 2.8. Let (G,T ) be a split connected semisimple k-group, with root datum (X,R,X∨, R∨),
and let Q be the lattice spanned over Z by R and Q′ the Z-span of R∨ in V ∗. We call Q the
root lattice and P := (Q′)∗ (the vectors on which the coroots take values in Z) the weight lattice.
Note that Q and P are completely determined by the root system (V,R) (so they are insensitive to
central isogenies in G). The reason that P is called the “weight lattice” is that in the application
to complex semisimple Lie algebras, it turns out to be precisely the elements of V = Lie(T )∗ that
can arise as “highest weight” vectors in irreducible representations of g.

The root system (V,R) provides the pair Q ⊂ P of Z-lattices in V , which in turn are upper
and lower bounds on the possibilities for X, since Q ⊂ X ⊂ P . The Existence, Isomorphism,
and Isogeny Theorems (see Remark 2.12) imply that split connected semisimple k-groups G up to
isomorphism correspond to isomorphism classes of triples (V,R,X) where (V,R) is a root system
and X is an intermediate group between P and Q. Since the scheme-theoretic center ZG is exactly
the common kernel of all roots on T , it follows that the finite étale Cartier dual to ZG is exactly
the constant k-group X/Q. Hence, the case X = Q corresponds to the condition ZG = 1, and is
called adjoint (because the kernel of AdG : G → GL(g) turns out to always be ZG, so the case
ZG = 1 is precisely when the adjoint representation faithfully represents G on g). Likewise, the case
X = P corresponds to the center being “as large as possible”, though it is by no means obvious for
each root system (V,R) that such a case is necessarily realized by some split semisimple G over k.
The key to proving the Existence Theorem is to construct, for each irreducible root system, a split
connected semisimple (G,T ) for which X(T ) = P ; such G are called simply connected (because
they turn out to satisfy a mapping property that is similar that of simply connected Lie groups).
In general P/X is called the fundamental group of G because its Cartier dual turns out to be the

automorphism group of the (unique) simply connected central covering G̃→ G, and P/Q is called
the fundamental group of the root system (V,R) (so it coincides with the fundamental group of G
in the adjoint case).

Remark 2.9. Although split connected reductive groups only give rise to reduced root data, and
so many texts ignore the non-reduced case, the latter are important! First of all, in the study of
connected reductive k-groups G which are not necessarily split but do contain a non-trivial k-split
torus (perhaps not maximal as a k-torus), one associates a so-called relative root datum which is
a root datum that can be non-reduced. These already show up in the classification of connected
semisimple R-groups which are not split and have non-compact group of R-points. The same
happens over all fields that aren’t separably closed.

In the classification of root data via root systems, the only “irreducible” cases for which there
are roots which are non-trivially divisible in the character lattice X are “simply connected” type C,
which correspond to symplectic groups (so in fact non-reducedness is a somewhat rare occurrence,
but it cannot be entirely ignored). For example, SL2 has its roots that are divisible by 2 in the
character lattice, but for PGL2 this does not happen.
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In the classification of irreducible root systems (as in Bourbaki LIE VI), for each n ≥ 1 there
is (up to isomorphism) a unique rank-n irreducible root system that is non-reduced. It is called
BCn because it is a union of the root systems Bn and Cn (within the same n-dimensional V ). This
non-reduced root system arises “in nature” via the exceptional (purely inseparable) non-central
isogeny SO2n+1 → Sp2n in characteristic 2 that carries an orthogonal transformation of a (2n+ 1)-
dimensional (V, q) to the induced automorphism of the associated symplectic space (V/V ⊥, Bq) of

dimension 2n, where V ⊥ is the defect line for Bq on V . This exceptional isogeny puts the roots
of both groups within the common Q-vector space associated to compatible maximal tori, thereby
yielding BCn.

There is much more, such as relating the root datum to the subgroup structure. We end with the
proof (conditional on results in the theory of root systems) that the containment W (R(G,T )) ⊆
W (G,T ) is an equality (i.e., W (G,T ) is generated by the reflections sa). This rests on:

Proposition 2.10. A Borel subgroup B in G containing T is uniquely determined by the set Φ(B)
of roots a such that ga ⊆ Lie(B): it is generated by T and the root groups Ua for all such a.

Proof. We may choose a regular cocharacter λ ∈ X∗(T ) such that B = B(λ) := T n UG(λ) (since
such a λ exists over k and X∗(Tk) = X∗(T ) due to T being k-split). Hence,

Lie(B) = Lie(T )⊕ (⊕〈a,λ〉>0ga).

It follows that if a ∈ Φ(G,T ) and ga ⊂ Lie(B) then 〈a, λ〉 > 0. But for any such a we have Ua ' Ga

on which any λ(t) (t ∈ Gm) acts as scaling by a(λ(t)) = t〈a,λ〉 with 〈a, λ〉 > 0. Thus, the functorial
characterization of UG(λ) gives that Ua ⊆ UG(λ). Varying over all such a, the k-subgroups Ua in
UG(λ) have Lie algebras that directly span Lie(UG(λ)), so the smooth connected k-subgroup they
generate must equal UG(λ) (as UG(λ) is connected). But B(λ) = T n UG(λ), so B(λ) is generated
by T and the root groups Ua for those roots a whose weight space is contained in Lie(B(λ)). �

Within the theory of root systems, there is the concept of a positive system of roots (see §1.6–§1.7
in Bourbaki LIE VI): these can be defined in several non-obviously equivalent ways, one of which is
the sets of roots cut out by a condition 〈a, λ〉 > 0 for a linear form λ on XQ that is non-vanishing
on all roots (see Corollary 1 in §1.7 of Bourbaki LIE VI). It is a general fact that the Weyl group
of the root system simply transitively permutes the set of such positive systems (see Theorem 2(i)
in §1.5 of Bourbaki LIE VI). Such positive systems Φ+ in Φ(G,T ) are exactly the sets of roots that
occur in the Lie algebra of a Borel subgroup containing T .

Corollary 2.11. Let (G,T ) be a split connected reductive group over a field k. The inclusion of
groups W (R(G,T )) ⊂W (G,T ) is an equality.

Proof. Choose w ∈ W (G,T ). By the definitions, clearly Φ(w.B) = w.Φ(B). Since W (R(G,T ))
acts (simply) transitively on the set of all positive systems of roots in Φ(G,T ), there exists w′ in the
subgroup W (R(G,T )) such that w.Φ(B) = w′.Φ(B), so Φ(w−1w′.B) = Φ(B). By Proposition 2.10
this forces w−1w′.B = B, and hence (by Proposition 1.13 in the handout on basics of reductivity
and semisimplicity) w = w′! �

Not only have we proved that the Weyl group of (G,T ) is exactly the Weyl group of the associated
root datum (or root system), but we also showed that the set of Borel subgroups containing T is
in natural bijective correspondence with the set of positive systems of roots in the root system.

Remark 2.12. The next step is to formulate and prove the Existence, Isomorphism, and Isogeny
theorems which characterize isomorphism classes of k-split pairs (G,T ) up to the (T/ZG)(k)-action
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on G in terms of root data, as well as characterize isogenies between two such pairs in terms of the
root data. (Beware that typically T (k)/ZG(k) is smaller than (T/ZG)(k) when ZG is not a torus,
such as G = SLn with k× 6= (k×)n.) This can also be refined via an additional structure called a
pinning which removes interference of the (T/ZG)(k)-action on G.

To prove the Existence theorem one “just” has to find a split semisimple group realizing each
reduced irreducible root system, with X = P . Special linear and symplectic groups are types A
and C respectively, and spin groups of split quadratic forms (built via Clifford algebras) give types
B and D. For some exceptional root systems there are constructions based on octonion algebras,
Jordan algebras, and so on. I believe that there is no known construction for E8 in all characteristics
other than the uniform method which applies to all reduced irreducible root systems.


