MATH 249B. TI1TS SYSTEMS, ROOT GROUPS, AND APPLICATIONS

1. MOTIVATION

This handout aims to establish in the general case two key features of the split case: the
applicability of BN-pair formalism (a.k.a. “Tits systems”) and a theory of relative root
groups which permits a refined formulation of the relative Bruhat decomposition (corre-
sponding geometrically to the description of each locally closed Bruhat cell as an explicit
product variety of a Borel subgroup against an affine space). We also use root groups to
relate k-isotropic “k-simple factors” to irreducible components of ;. We saw with both
Weil restriction and special unitary groups in class (see §11.2) that relative root groups can
have dimension larger than 1, and that this can occur even in the absolutely simple case.

In the split case, much of this was explained in the handout on the geometric Bruhat
decomposition. Let’s recall the main argument concerning the refined Bruhat decomposition
in the split case. Let GG be a split connected reductive group over a field k. Choose a split
maximal torus T and a Borel k-subgroup B. Let W = Ng(T)(k)/T (k) = W(®(G,T)). The

Bruhat decomposition gives
= [[ B(k)n.B(k

weW
where n,, € Ng(T')(k) is a choice of representative of w. There is usually tremendous non-
uniqueness in expressions bn,,b’ for a given g € G(k), so for computations and other purposes
it is convenient to refine our description of these double cosets.
For any w € W, let ®f = {a € " |w'.a € P} and let D/, = dT— P/ be its complement.
Choose an enumeration of &7 for which @/ appears before ®F. Thus,

- H Ua X H Uangy = ( H Uy, - H (n, Uany).

acd, acdy acd, aedy,
But n'Usn, = Uy-1, C U for a € ®f, so
UnyU = ([ U)nw x U =[] Vs x nw [] Ua
acd!, acd, acedt

The same computation works on k-points, and if we include a factor of T' (which normalizes
U and is normalized by N(;(T )(k)) then we arrive at the description

B(k)n =[] Ua(k) x T(k)ny x ] Ualk)

acd’, acdt

via multiplication inside G(k). This really is a direct product decomposition, since we can
move n,, all the way to the left to arrive at the equivalent description

- [ Us-ralk) x T(k) x J] Ualk) Cnu(U™ x T x U)(k)

a€d!, aedt

inside a translate of the open cell associated to the pair (T, B).
In this description, the order of enumeration @/ might seem to matter in terms of the
image of [],cq, Ua(k) inside B(k). To explain why it is independent of the enumeration,

we shall use a dynamic technique from [CGP] whose proof rests on elementary properties of
1
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root systems: any closed set of roots W in a (possibly non-reduced) root system ®q is the
intersection ®yN A of &y with a subsemigroup A of the ambient Q-vector space V' generated
by @, so any such W is the set of roots in the subsemigroup of V' generated by W. This
latter condition on a subset W of @ is called being saturated (so any closed set of roots is
saturated).

For any saturated set of roots ¥ in the reduced root system ,®, we will see in Proposition
3.3 that for general G (without a split hypothesis) the associated root groups U, (a € V)
directly span in any order a common unipotent smooth connected k-subgroup Uy C G
(normalized by T'). This rests on a “direct spanning” construction from [CGP, §3.3] that
has absolutely nothing to do with the theory of reductive groups.

We can summarize the refined Bruhat decomposition in the split case as

B(k)noB(k) = U, (k) x T(k) x U+ (k).

where Uy := ],y Us (multiplication in any order) for any saturated subset W of ®(G,T).
As was noted in Remark 1.1 in the handout on the geometric Bruhat decomposition, #®/,
is the length ¢(w) of w relative to the set of reflections {r,}eea in W(G,T) giving a Coxeter
presentation, where A is the basis of ®*. This gives geometric meaning to the Bruhat cells
Bn,B = Ai(w) X n,B in the split case. A version of this in the general case is given on
k-points in Corollary 3.8 using a direct spanning property on k-points, and it is crucial in
many applications (such as the development of Bruhat-Tits theory).

2. RooT GrROUPS AND TITS SYSTEMS

Now let G be an arbitrary connected reductive group over a field k, and let S be a maximal
k-split torus. Let Sy be the maximal k-split torus and S’ = (SN G')%, (where G’ := 9(Q)),
so Sop x S" — S is an isogeny and under the decomposition X(S)q = X(Sy)q & X(5)q-
P = O(G, S) spans X(5")q making (X(5)q, rP) a root system. For the rest of the handout
we may as well assume ,® # (), which is to say S is not central in G, as otherwise there is
no content to anything that follows.

We begin by defining the root group U, C G associated to each a € ,®. Beware that in
general (unlike in the split case) this may have rather large dimension, and can even be non-
commutative; we will discuss the precise structure of such U, later. The crux of the matter
is the following general dynamical construction that has nothing to do with reductive groups
and was recorded earlier in the course when we prepared for the discussion of subgroups
directly spanned by root groups in the split case.

Proposition 2.1. Let G be a smooth connected affine k-group equipped with an action by
a split k-torus S, and let A C X(S) be a subsemigroup not containing 0. There exists a
unique S-stable smooth connected k-subgroup Ua(G) such that Lie(U4(G)) is the span of the
a-weight spaces for all a € AN ®(G,S). This k-subgroup is unipotent and contains any
S-stable smooth connected k-subgroup H C G such that all S-weights on Lie(H) occur in A.

Additional properties of U4 (G) will be reviewed as the need arises below.

Proof. This is [CGP, Prop. 3.3.6], where the notation H4(G) is used (as it is not assumed
there that 0 ¢ A, so H4(G) might not be unipotent). |
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For any a € X(S) — {0}, let (a) be the semigroup consisting of positive integral multiples
of a. For a € ;®, U, := Uy(G) is the smooth connected unipotent k-subgroup in G that
is normalized by S and for which Lie(U,) is the span of the weight spaces in Lie(G) for the
weights in (G, S) that are positive integral multiples of a. Moreover, U, contains every
smooth connected k-subgroup H C G normalized by S such that S acts on Lie(H) only with
weights that are positive integral multiples of a. In particular, Uy, C U, if 2a € ;.

Definition 2.2. The k-group U, is called the root group of G associated to a € P.

We may sometimes refer to such U, are relative root groups for emphasis (to distinguish
from the split case). Here is a more concrete description of U,. Let ., = kera (which
might not be smooth if a is divisible in X(S), and can happen when ,® has irreducible
factors of type C, or type BC, with n > 1) and let G, = Zg(.#,)°. By the handout
“Reductive centralizer”, G, is a connected reductive k-subgroup of G (visibly containing 5),
and ®(G,, S) has rank 1: it consists of the roots that are integer multiples of a (since we
used the centralizer of the entire kernel of a, not just (kera)?).

Lemma 2.3. As k-subgroups of G, we have U, C (G,.

Proof. The smooth connected root group U, is normalized by S. We have to show that
under the resulting S-action, the closed k-subgroup kera acts trivially on U,. Its effect on
the span Lie(U,) of the weight spaces inside g for the positive integral multiples of a in ,®
is certainly trivial.

But rather generally, the action on a smooth connected affine group by a multiplicative
type group is trivial when the action on the Lie algebra is trivial! This follows from a
calculation on infinitesimal neighborhoods of the identity, using the complete reducibility of
linear representations of multiplicative type groups. A proof is given in the self-contained
second paragraph of the proof of [CGP, Cor. A.8.11]. [ |

For A\, € X.(S) such that (a, A\,) > 0, we have Ug,(\.) C Uy, (A\a) = U, inside G,. This
inclusion is between smooth connected k-groups, and it is an equality on Lie algebras (as
®(G,, S) consists of the integer multiples of a inside ,®, and Lie(U, ) is the span of the positive
integral multiples of @ in ®). Thus, we get an equality as k-subgroups: U, = Ug,(\s)-

Now we obtain two nice consequences.

Proposition 2.4. If H C G is a closed k-subgroup scheme normalized by S then U, (\H =
Un (M) In particular, if H is smooth and connected then so is U, N H.

Since Pg,(+\,) are the two proper parabolic k-subgroups of G, we recover an alternative
description of U,:

Proposition 2.5. For the unique proper parabolic k-subgroup P, C G, = Zg(kera)® that
contains S and has a as an S-weight on its Lie algebra, Uy, = Xy i(Py).

Since Py, are the only two proper parabolic k-subgroups of GG, containing S, so each is
minimal, they each contain Zg, (S) = Z¢(S) as a Levi factor. In particular, U, is normalized
by Za(S) for any a € ®. The dynamic description U, = Ug,(\,) also implies that U, is
a k-split smooth connected unipotent group (a general property of the U(\) construction



4

[CGP, Prop.2.1.10]). When G is split, so ,® is a reduced root system, we recover the notion
of root group in the split theory.

The commutativity and vector group properties of relative root groups will be explored
later. For now, we use root groups to establish a link with the notion of Tits system. Recall
from the previous course:

Definition 2.6. A Tits system (or BN-pair) is a 4-tuple (¢, B, N, X) where ¢ is an abstract
group, B and N are subgroups, and ¥ C N/(BNN) is a subset such that the following four
axioms are satisfied:

(T1) BUN generates 4 and BN N is normal in N,

(T2) the elements of ¥ have order 2 in the quotient W := N/(B N N) and generate W,

(T3) for all 0 € ¥ and w € W, cBw C BwB U BowB (using any representatives for o
and w in N, the choices of which do not matter),

(T4) oBo € B for all ¢ € ¥ (which is equivalent to 0 Bo # B, since 02 =1 in W).

We refer the reader to §2 in Chapter IV of Bourbaki for the basic properties of Tits
systems. By Remark (1) in §2.5 of Chapter IV of Bourbaki, ¥ is uniquely determined by
(¢, B, N) (thereby explaining why such data is often called a BN-pair for ¢).

Theorem 2.7 (Borel-Tits). Let N = Ng(5), Z = Zg(S), and P a minimal parabolic k-
subgroup of G containing S. Let yA be the basis of the positive system of roots , @ = ®(P, S),

and let R = {r,|a € A} be the associated set of simple positive reflections. The 4-tuple
(G(k), P(k), N(k), R) is a Tits system with Weyl group ;W (= N(k)/Z(k)).

This is the standard Tits system associated to (G, S, P). Since P(k) N N(k) = Z(k), we
have N(k)/(P(k) N N(k)) =: ;W = W(,®). That is, the Weyl group of the standard Tits
system naturally coincides with W (G, S).

Proof. The relative Bruhat decomposition G(k) = [[,,¢, y P(k)n,P(k) implies axiom (T1).
Moreover, the quotient group N(k)/Z (k) = W = W (,®) is generated by R. This is axiom
(T2). To prove axiom (T4), for r = r, € R (with a € yA C ,®) it suffices to prove that
rP(k)r # P(k). Clearly rPr contains rU,r = U,(,) = U_,, so it suffices to prove that U_,(k)
is not contained in P(k). We will prove U_, N P = 1, so U_,(k) N P(k) = 1, which does
the job since U_,(k) # 1 (as the unipotent smooth connected k-group U_, is nontrivial and
k-split).

By Proposition 2.4, U_, N P is smooth and connected. But its Lie algebra is trivial since
®(P,S) = 1, ®T does not contain any S-weights that occur on U_,, so U_,N P = 1 as desired.

It remains to prove axiom (T3). That is, for r := r, (with a € zA) and w € ;W we claim
that

(%) rP(k){w,rw}P(k) C P(k){w,rw}P(k).

This is given in the proof of 21.15 in the 2nd edition of Borel’s textbook on linear algebraic
groups, and here we give a mild reformulation of that calculation.

Let A : GL; — S be a l-parameter k-subgroup such that P = Pg(\) = Zg(\) x Ug(N),
so the minimality of P implies that Zg(\) = Zg(S) = Z and Ug(N\) = Zur(P). Thus,
P =7 % %,1(P) and 1, @1t = ®(P,S) = (xP)a>0 = (xP)r0, S0 (@, A) > 0. More generally, a
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k-root b € @ is positive (i.e., it lies in ,®T) if and only if (b, \) > 0. If necessary, replacing
w with rw, we may (and we will) assume that w™!(a) is positive.

Now let U = Z,1(P) = Ug(N), so for G, := Zg(kera)® the root group U, is equal
to Ug,(\) = G, NU. Let S, = (kera)®,. As a is nondivisible in ;@ (since a € ,A!), an
element of ;® is a rational multiple of @ if and only if it is an integral multiple of a. Thus, the
containment G, C Z(S,) between smooth connected k-groups is an equality via comparison
of their Lie algebras.

Choose a 1-parameter k-subgroup A, : GL; — S, such that (b, \,) > 0 for all b € ;A —{a}.
Note that (a,\,) = 0, so G, = Zg(\a). Let V.= Ug(Aa), so Po(Aa) = Za(Aa) X Ug(Aa) =
G, x V and hence U = U, x V. We also noted above that P = Z x U. Since G, contains Z
as well as a representative of r = r, (by definition of r,), it follows that V' is normalized by
r and hence,

rP(k){w,rw}P(k) = Z(k)rU(k){w,rw}P(k) = Z(k)V (k)rU,(k){w, rw}P(k).
Thus,
rP(k){w,rw}P(k) C P(k)G,(k)wP(k).

For the parabolic k-subgroup P, := Pg,(\) = G, N P = Z x U, of the connected reductive
G, the Bruhat decomposition for G, (k) with respect to P,(k) implies that

Ga(k) = Z(k)Uu(k){1,7}Ua(),
rP(k){w,rw}P(k) C P(k){1,r}U,(k)wP(k).
But the positivity of w™!(a) implies that w™'U,w C P, so
rP(k){w,rw}P(k) C P(k){w,rw}P(k).
[ |

Remark 2.8. Since ;W = W (;,®) acts simply transitively on the set of minimal parabolic k-

subgroups of G containing S (denote this action as (w, P) — wo P), if P is such a k-subgroup

corresponding to a positive system of roots ;®* then for a suitable wq € ;W the k-subgroup

woo P corresponds to the positive system of roots —,®*. Writing P = Pg(\) = Zg(A\)xUg(A)

for some A € X, (S5), we have wyo P = Pg(—A). Thus, PNwyo P = Zg(\) = Zg(S) =: Z,

50 Z(k) € Nye,w wP(k)w™" C P(k)N woP(k)wy' = Z(k); ie., Z(k) = Nwe,w wP(k)w™".
For N := N¢(S) we have Z(k) = P(k) N N(k) due to the minimality of P, so

(| nP(kyn™" = P(k) N N(k).

neN (k)

This says that the Tits system in Theorem 2.7 is saturated in the sense of Exercise 5(a) in
§2 of Chapter IV in Bourbaki. The established property that P(k) is a semidirect product
of its subgroup Z(k) = P(k) N N (k) against a nilpotent subgroup Ug(A)(k) is expressed by
saying that that the Tits system is split.

In §2 of the handout on Tits systems, we saw that the connection to Tits systems in
the split case yields striking simplicity results for G(k)/Zs (k) in the split simply connected
case. That simplicity proof relied on an equality “G(k) = G(k)™” which says that G(k) is
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generated by the rational points of the split k-unipotent radicals of parabolic k-subgroups
of G (or equivalently, just for the minimal parabolic k-subgroups, since if ) C P is a
containment of parabolic k-subgroups then %, (P) C Z.x(Q), as we may check over k).
This property in the split case is not true in general, and its validity over global fields
lies quite deep (see §3 in the handout on Tits systems). Consequently, we do not discuss
simplicity results for G(k)/Zs(k) beyond the split case, and instead demonstrate the power
of the link with Tits systems via the following striking result.

Theorem 2.9. With notation as in Theorem 2.7, the following hold:

(i) There are 2#E subgroups of G(k) containing P(k), and any such subgroup equals Q(k)
for a unique parabolic k-subgroup @) containing P.
(ii) For parabolic k-subgroups @ and Q' of G, Q C Q' if and only if Q(k) C Q'(k).

Informally, this theorem says that “parabolic subgroups” of G(k) relative to its Tits system
structure (see §2.6 in Chapter IV of Bourbaki for this terminology) are in inclusion-preserving
bijective correspondence with the parabolic k-subgroups of G via the formation of rational
points. Note that we allow the case that k is finite, and in (ii) we don’t assume @) and @’
share a common split maximal k-torus.

Proof. Since (G(k), P(k), N(k), R) is a Tits system (with Weyl group W), by Theorem 3(b)
in §2.5 of Chapter IV in Bourbaki there is a natural bijection X +— G(k)x from the set of
subsets X C R to the set of subgroups of G(k) containing P(k), so there are exactly 2#%
subgroups of G(k) containing P(k).

Explicitly, in terms of the relative Bruhat decomposition G (k) = [[,,¢ w P(k)n. P (k) for
a choice of representative n,, € N(k) of each w € W, G(k)x is the union of the P(k)-
double cosets indexed by the elements of the subgroup Wx of ;W generated by X. Note
that the subgroup G(k)x is the unique subgroup of G(k) containing P(k) such that the
image of N(k) N G(k)x in ;W is ;Wx. (In particular, ;W determines X.) In general
kWX N kWX’ = kWXmX’7 SO G(k)X N G(k)X/ = G(k)XﬁX’. It follows that if G(]f)X g G(k)X/
then G(k)x = G(k)xnx and hence X = X N X' C X".

Any smooth closed k-subgroup @) of G' containing P is parabolic, and there are exactly
2#8 guch k-subgroups (corresponding to subsets I of yA). We shall now display them all.
For each subset I C A, we fix a cocharacter A\; € X,(5) such that (a, \;) > 0 for all a € A,
with equality if and only if a € I. Define P = Pg(Ar) = Zg(Ar)Ug(Ar). In view of how A
is defined in terms of P, by weight space computations in g we see that P = Py and P; C Py
when J C J'; in particular, P C P;. We will prove that if J # J' then P;(k) # Py(k) (so
Py # Py). Tt would then follow that the collection {P;|I C ,A} consists of 2#+& = 2#F
parabolic k-subgroups of G containing P, and the collection { P;(k) | I C A} consists of 2#%
subgroups of G (k) containing P (k). Hence, the former would be the collection of all parabolic
k-subgroups of GG containing P and the latter would be the collection of all subgroups of
G(k) containing P(k), so (i) would be proved.

Fix an I, and let Ny = N N P = Np,(S). We have noted above that I is determined
by the subgroup ;W; C W generated by {r.}scr C R, so it suffices to show that the
image of N(k) N P;(k) = Ny(k) in ;W is W, (and then P; = G(k);, due to the unique
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characterization of G(k)x noted above). This image N;(k)/Z(k) is the “relative Weyl group”
Np,(S)(k)/Zp,(S)(k) of (Pr,S), though P; isn’t reductive for I # ;A.

Let’s first show that the subgroup W(Zg(A;), S)(k) C W is generated by {7, }eer (i-e.,
it coincides with ;). Due to how A\; was defined (with I C yA), the root system ,®; :=
®(Zc(Ar), S) is the span of I inside @, with I moreover as a basis. Thus, W(Zg(\;), S)(k)
is generated by reflections {77, ;}se;. The natural inclusion W(Zg (A7), S)(k) < W inside
GL(X(S)q) carries 1/, ; to r, for each a € I, due to the well-known fact that for any nonzero
finite-dimensional vector space V over a field of characteristic 0 and any finite subgroup
F C GL(V), a reflection r € F' is uniquely determined by the line that it negates.

We have shown that ,W; C N;(k)/Z(k) via the inclusion of Zg(\;) into Pg(A\;) =
P, and to prove equality it suffices to show that these finite groups have the same size.
More specifically, using the natural identification of Zg(A;) with the maximal reductive
quotient P; = Pg()\;)/Uq(\;) of Pr and the isomorphism of S onto its maximal k-split
torus image S in P;, to complete the proof of (i) it suffices to show that the natural
map N;(k)/Z(k) — W (P, S)(k) is an isomorphism. The key point is that the inclusion
Ni(k)/Z(k) — W (P, S)(k) := (Np,(S)/Zp,(S))(k) is an equality. This is an analogue for
P of what we know for G, and the proof of that result for connected reductive groups was
entirely formal up to the known fact that all maximal k-split tori of P; are P;(k)-conjugate
(as Py is a parabolic k-subgroup of the connected reductive GG) and the following two facts:

Lemma 2.10. For any minimal parabolic k-subgroup P of Py containing S, Np,(S)N P =
Zp,(S). Moreover, the minimal parabolic k-subgroups of P are Pr(k)-conjugate.

Proof. The first assertion is inherited from the same for G in place of P; (as a parabolic k-
subgroup of P; is precisely a parabolic k-subgroup of G contained in P;, due to the parabol-
icity of Pr). For the second assertion, note that any parabolic k-subgroup of P; must contain
the normal split unipotent smooth connected k-subgroup Ug(\;). Thus, we get an inclusion-
preserving bijection between the sets of parabolic k-subgroups of P; containing S and those
of the connected reductive P; = P;/Ug(\;) containing the maximal k-split torus image of
S. Hence, the known k-rational conjugacy result for the reductive P; implies the same for
Py because P;(k) — P;(k) is surjective (as Ug()\;) is split unipotent). [

We may now recast our problem in terms of finite étale k-groups rather than groups of
k-points: we want N;/Z — W(Py,S) to be an isomorphism. This is a special case of a
general fact having nothing to do with reductive groups:

Lemma 2.11. Let H be a smooth connected affine group over a field k, U a normal unipotent
smooth connected k-subgroup, and H' = H/U. Let T be a k-torus in H and let T' be its image
in H'. The natural map Ng(T)/Zy(T) — Ny/(T")/Zy:/(T") between finite étale k-groups is
an isomorphism.

Proof. This is [CGP, Lemma 3.2.1] (which permits U = ker(H — H’) to be a bit more
general, but whose proof is self-contained relative to our situation). [ |

To prove assertion (ii) in Theorem 2.9, consider arbitrary parabolic k-subgroups ) and
Q' of G such that Q(k) C @Q'(k). Fix a minimal parabolic k-subgroup P contained in Q.
By the conjugacy of minimal parabolic k-subgroups of G, there exists g € G(k) such that
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gPg™' C @Q'. Hence, Q'(k) contains a G(k)-conjugate of P(k), so it is a “parabolic subgroup”
of G(k) relative to the Tits system structure. But P(k) and gP(k)g~" are contained in @’ (k),
so g € Q' (k) by Theorem 4(i) in §2.6 of Chapter IV of Bourbaki. Thus, P C @', so @) and
Q' are parabolic k-subgroups containing the common minimal parabolic k-subgroup P. But
then @ N Q' is another such k-subgroup yet its k-points coincide with those of Q(k), so (i)
implies that @ = QN Q' C Q. [ |

3. STRUCTURE OF ROOT GROUPS AND DIRECT SPANNING

To begin a deeper study of root groups, we first establish that U, equipped with its S-
action is a vector group with S acting through a, except for possibly when 2a € ,®. Even
in this multipliable cases, we can say something useful.

Throughout this section, we appeal to the largely self-contained [CGP, §3.3] for general
results concerning the action of a split torus on a smooth connected affine group (having
nothing to do with the reductive case).

Proposition 3.1. Let G be a connected reductive k-group, S a maximal k-split torus in G,
N = N¢(S), and Z = Zg(S). Let ;@ = ®(G,S). Choose a € 1 and let Uy, be the root
groups associated to +a.

If 2a & @ then U, is a vector group admitting a unique linear structure relative to which
the S-action is linear. If 2a € @ then (U,,U,) C Uy, Usy C Zy,, and U, /Us, is a vector
group admitting a unique linear structure relative to which the S-action is linear. In such
multipliable cases, the underlying k-scheme of U, is isomorphic to an affine space.

Proof. The centralizer Zg(ker a) has reductive identity component and contains U,. Since
Zg(S) C Zg(kera)®, so we may (and do) replace G with Zg(kera)®. Now A = {a}, the
Weyl group W is a group of order 2 generated by r,, and P := Z x U_, is a minimal
parabolic k-subgroup of G.

Since P is a root system, the only positive integral multiple of a, other than a, which
can be in ;@ is 2a. By construction, U, = Uy (G) and U, = Uney(G), so general dynamic
principles (see [CGP, Prop. 3.3.5]) ensure that if 2a € @ then (U,,U,) C U, C Zy,; likewise,
if 2a & ;P then we similarly conclude that U, is commutative. It then follows from [CGP,
Lemma 3.3.8] (a general result on smooth connected commutative unipotent groups equipped
with a sufficiently nontrivial torus action, having nothing to do with reductive groups) that
U, is a vector group in the non-multipliable case and that U,/Us, is a vector group in the
multipliable case, with these vector groups admitting a unique S-equivariant linear structure.

In particular, in the multipliable case U, is a Us,-torsor over the affine space U, /Us,. Since
U, is a vector group it follows (from the triviality of étale G,-torsors over affine schemes)
that U, — U,/Us, admits a section and hence the k-scheme U, is isomorphic to an affine
space. |

Remark 3.2. Let G be a smooth connected affine k-group, S a maximal k-split torus of GG, and
P a minimal parabolic k-subgroup of G containing S. Let N = Ng(S) and Z = Z5(S). By
minimality of P we have P = Pg(\) = Ug(\) X Zg(A) with Zg(A) = Z and Z,, 1 (P) = Ug(N)
for some A € X, (5).

Let G(k)* be the normal subgroup of G(k) generated by the k-rational points of the k-split
unipotent radicals of the parabolic k-subgroups of G. It is immediate from the preceding
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proposition that G(k)™ N N(k) maps onto the k-Weyl group W = N(k)/Z(
be a subgroup of G(k) that contains G(k)*, A4 := N(k)N¥, and & := P(k)N¥. Then
A maps onto (W. As Ug(N)(k) C B, we see that P(k) = Ug(\)(k) x Z(k) = BZ(k).
Moreover, for all n € A" we have P(k)nP(k) = ZnBZ (k) and 4 N (P(k)nP(k)) = $BnA.
It is seen from this, using the relative Bruhat decomposition of G(k), that G(k) = Y Z(k).
Now it is easily deduced from Theorem 2.7 and Remark 2.8 that the 4-tuple (¢, %, 4", R),
with R as in Theorem 2.7, is a Tits system with Weyl group ,W. We shall call this Tits
system a standard Tits system in ¢. Its rank (i.e., the cardinality of R) is equal to the
k-rank of 2(G).

The equality G(k) = ¢ - Z(k) implies that all maximal k-split tori (resp.,all minimal
parabolic k-subgroups) of G are conjugate to each other under ¢.

Recall that a subset U of ®(G, S) is saturated if the subsemigroup A of X(S) spanned by
U does not contain 0 and ¥ = AN, P. By [CGP, Prop.2.2.7], for any positive system of
roots ;®* in P, any closed set of roots U C & is saturated. The two most interesting
examples of saturated (even closed) subsets of ,® for our purposes are obtained as follows.
for any 1-parameter k-subgroup A : GL; — S we can take ¥ to be ,®,-o, and for any
linearly independent a,b € ® we can take W to be the set (a,b) of elements in ;P of the
form ma + nb for positive integers m and n.

We seek to construct a smooth connected unipotent k-subgroup Uy attached to any satu-
rated ¥, and to describe it as a direct span (in any order!) of suitable root groups. However,
if P is not reduced and ¢, 2c € ¥ then we have to be careful not to use both U, and Us. in
such a direct spanning (as Us. C U..).

Proposition 3.3. Let (G, S, ®) be as above.

(1) For any saturated subset W of 1, ® there is a unique S-stable smooth connected unipo-
tent k-subgroup Uy such that Lie(Uy) is the span of the subspaces Lie(U,.) for ¢ € V.
It is normalized by Zg(S), and directly spanned in any order by the subgroups U, for
c € U that are not divisible in V.

(2) For any parabolic k-subgroup P of G containing S, the subset W of 1 ® consisting of
a € @ such that —a ¢ ©(P,S) is saturated, and Xy, (P) = Uy.

=

). Now let ¢4

=

We will make the description of ¥ and Uy in (2) more explicit in Remark 3.4

Proof. To prove assertion (1), let A be the subsemigroup of X(S) generated by W. Then as
U is saturated, 0 ¢ A and AN P(G,S) = V. Let Uy = Uu(G) as in Proposition 2.1, which
ensures (since 0 ¢ A) that Uy is a smooth connected unipotent k-subgroup. To prove that
Z¢(S) normalizes Uy, we note that the description of U4 (G) makes sense without reference
to the maximality of S as a k-split torus in G, and is compatible with any extension of
the ground field. Thus, using scalar extension to ks implies that (Ug)g, is normalized by
Za(S)(ks), and hence Uy is normalized by Zg(S). The rest of assertion (1) follows easily
from [CGP, Theorem 3.3.11] applied to the smooth connected solvable k-group Uy = Us(G)
equipped with its natural action by S (using the disjoint union decomposition ¥ = [ ;
where the U; are the non-empty intersections of ¥ with half-lines in X(.5)q).

To prove assertion (2), we fix a A € X,(S5) such that P = Pg(X\). Thus, Zyx(P) = Ug(M).
But Uy = Ug(\) for ¥ = ,®,~¢ by uniqueness in (1), so (2) is proved. |
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Remark 3.4. Fix a positive system of roots ,®*, with A its basis, so we get the notion of
standard parabolic k-subgroup of G as those parabolic k-subgroups () containing S such that
DT C P(Q,5), or equivalently () contains the minimal parabolic k-subgroup Py O S such
that ®(P, S) = ®T. We know that the standard parabolic k-subgroups are in inclusion-
preserving bijection with the subsets I C A via the condition ®(,Pr,S) = ;T U[I]. As a
refinement of Proposition 3.3(2), we shall now describe %, 1 (xFPr) and a Levi factor directly
in terms of .

The closed set W of roots occurring as S-weights on Lie(%, x(xPr)) are precisely the
positive relative roots not in [I], which is to say those whose ,A-expansion is not supported
inside I. Thus, %, x(xFr) is directly spanned in any order by the relative root groups U,
for non-divisible ¢ € ,®* not contained in [I]. A Levi factor L; of ;P containing S must
contain contains Zg(S) and must contain the root groups U, for ¢ € [I], so Ly is generated
by those k-subgroups for Lie algebra reasons (in view of our description of %, x(xPr)); in
particular, such an L; containing .S is uniquely determined.

But we can describe L; in the form Zg(S) for an explicit subtorus S; C S as follows. Let

= (m kera)®, C S.

ael

Note that for every ¢ € [I] we have c|s, = 1, so the S;-centralizer in U, has full Lie algebra.
But such a torus centralizer in U, is smooth and connected, so S; centralizes U,.. (This
argument permits the possibility that ¢ is multipliable, in which case U, is generally non-
commutative!) In other words, the smooth connected k-subgroup Z;(S;) C G contains Lj.
We claim that the inclusion L; C Zs(Sy) is an equality, thereby completing our explicit
description

P] = Zg(S[) X U\pI

in terms of /.

Since Z;(Sy) is smooth and connected, it remains to check that the only nontrivial S-
weights occurring on its Lie algebra are the ones in [I]. That is, we claim that if a € ,® and
als, = 1 then a € [I] (the converse being obvious). Since [ is a linearly independent subset
of X(S)q, the characters of S that are trivial on S; are exactly those that are a Q-linear
combination of elements of I. But ;A is a basis of ,® containing I, so a relative root is in
the Q-span of I if and only if it is in the Z-span of I (i.e., lies in [I]).

For independent a, b € ,®, if we apply Proposition 3.3(1) to the saturated subset ¥ = (a, b)
then the construction of Uy and [CGP, Prop. 3.3.5] yield:
Corollary 3.5. We have
(Ua7Ub C Uab HUQ

where the direct spanning is taken with respect to an arbitrary enumeration {c;} of the set
of non-divisible elements of (a,b).

Remark 3.6. For a € @, let M, = m(u)Zs(S), where u is any nontrivial element of U, (k)
and the element m(u) € Ng(S)(k) is as in Lemma 4.2 of the handout on Cartan’s con-
nectedness theorem. It is easy to see using Proposition 3.1, Corollary 3.5, and Lemma 4.2
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from the handout on Cartan’s connectedness theorem that (Z¢(S)(k), (Ua(k), Mo(k))aco)
is a generating root datum (donnée radicielle génératrice) in G(k) in the sense of Bruhat
and Tits (see (6.1.1) in their initial big IHES paper on what came to be called Bruhat-Tits
theory). This is very useful in the calculations that underlie Bruhat—Tits theory.

Remark 3.7. Tt is natural to wonder if the reduced root system ,®’ consisting of non-
multipliable roots in the k-root system ,® coincides with the root system of a split con-
nected reductive k-subgroup of G containing S as a maximal torus. This issue arose in the
handout on Cartan’s connectedness theorem, where we settled the case of k-rank equal to 1.
The affirmative answer in general is give by Theorem 7.2 in the Borel-Tits IHES 27 paper
on reductive groups, and a much simpler proof is given by [CGP, Thm. C.2.30] (specialized
to the reductive case, where some technicalities simplify and the rank-1 calculations were
already carried out in the handout on Cartan’s connectedness theorem).

As an application of the direct spanning of the group Uy for saturated ¥ as in Proposition
3.3, we can prove:

Corollary 3.8. Let P be a minimal parabolic k-subgroup of G containing S, and ,®+ =
O(P,S). Forw e ;W =W (,®), define

df ={a €, ®" v lac @1}, O =, —dF.
For a representative n,, € Ng(S)(k) of w € ()W, we have
P(E)nwP(k) = Ug: (k) x Zg(S)(k) x nuU, o+ (k).

In view of the direct spanning property of the groups U, and U, 4+, this is proved by the
exact same computation as reviewed in the split case in §1. Of course, unlike in the split
case, in the general case there is no combinatorial recipe for the dimensions of the affine
spaces Uy, or U, o+ since the dimensions of the root groups U, are unknown!

4. SIMPLE FACTORS

We proved in class (see Theorem 8.2.5) that if G is a connected semisimple k-group and
{G;} is its set of minimal nontrivial smooth connected normal k-subgroups then: {G;}
is finite, the G;’s pairwise commute, each G; is k-simple (i.e., has no nontrivial smooth
connected proper normal k-subgroup), and the multiplication map

HGi—>G

is a central isogeny. The essential case in the proof was the k-split case (such as over ky),
from which the general case was descent by Galois descent from Gy, .

In the split case we saw an additional property: if T C G is a split maximal k-torus and
T; = TNG,; (a split maximal k-torus of G;; see Lemma 4.1 below) then via the decomposition
X(T)q = [IX(T})q, the root systems ®(G;,T;) are the irreducible components of ®(G,T).
In particular, G is absolutely simple if and only if ®(G,T)) is irreducible. We shall establish
an analogue in general, but must be attentive to the fact that some G; might be k-anisotropic
(and so do not contribute to ,®; they will lie in Zg(S5)!). As a preliminary step, we record
two lemmas.
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Lemma 4.1. Let G be a connected reductive k-group and N a smooth connected normal
k-subgroup of G (so N is connected reductive). Let S be a maximal k-split torus of G, and
T a mazimal k-torus of G. Then Sy := (SN N)%, is a mazimal k-split torus of N, and
T NN is a maximal torus of N.

Proof. By the G(k)-conjugacy of all such S and the normality of N in G, the dimension of
Sy is independent of S. Thus, for the assertion concerning S it suffices to find one S for
which Sy is maximal as a k-split torus in N. Pick a maximal k-split torus S” in N, so it lies
in a maximal k-split torus S” of G. Clearly S} = S’ by maximality of S” in N, so we are
done.

Next, we show that T'N N is a maximal k-torus of N. For this purpose we may extend
scalars so that k = k, and then we can apply the preceding case to see that (7N N )04 1s a
maximal torus of N. It then remains to check that T°'N N is smooth and connected. Since
T = Zg(T), clearly T x (T'N N) is the centralizer of 7 in 7' x N. But a torus centralizer in
a smooth connected affine group is always smooth and connected, so we are done. [ |

Lemma 4.2. For any smooth connected normal k-subgroup M in a connected reductive k-
group H and for any mazximal k-torus T in M, there is an almost direct product decomposition
T =T -7 where T" = T NZ(M) is a mazimal k-torus in 2(M) and Z is the mazximal
subtorus of T' that centralizes M .

Proof. By Galois descent we may assume k = kg, so by the split theory such M is generating
by some of the (commuting) simple factors of H and a subtorus of the maximal central
k-torus of H. Since T' compatibly decomposes as an almost direct product of the maximal
central torus and maximal tori in each of the simple factors, the assertion is evident. [ |

Here is the main result:

Proposition 4.3. Let G be a connected reductive k-group, S a maximal k-split torus, and
@ = (G, S). Let S’ be the mazimal k-split torus (SN 2(G))°y of 2(G). Assume S" # 1,
or equivalently S is non-central in G. For each irreducible component U of @, let Ny be the
nontrivial smooth connected k-subgroup generated by {U,}acw-
(1) The k-group G is generated by Zg(S) and the Ny 's.
(2) Each Ny is semisimple and normal in G.
(3) The mazimal k-split torus Sy := (SN Ny)%, of Ny is nontrivial, [[ Sw — S’ is an
isogeny, and the k-root system of Ng with respect to Sy is naturally identified with
U wvia the natural isomorphism X(S")q ~ [[¢ X(Sv)q-
(4) Each k-isotropic normal connected semisimple k-subgroup of G contains some Ny.
(5) No Ny contains a nontrivial smooth connected proper normal k-subgroup.

Proof. Each k-subgroup Ny is clearly normalized by Zg(S), and Lie algebra considerations
imply that G is generated by Z5(S) and the Ny’s. For a choice of ¥ and roots a € ¥ and
be ®— V¥, U, commutes with U, by Proposition 3.5 since ma + nb ¢ @ for any positive
integers m and n. Since G is generated by Z5(S) and the root groups {Us }yee, we see that
Ny is a (smooth connected nontrivial) normal k-subgroup of G, so Ny is reductive.
Applying Lemma 4.2 to G and its normal subgroup Ny and a maximal k-torus T of G
containing .S, the almost direct product decomposition of T" passes to one on maximal split
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subtori (with the help of Lemma 4.1) we see that S is an almost direct product of the
maximal k-split torus (Sg N Z(Ng))%, of Z(Ny) and the maximal k-subtorus of S that
centralizes Ny. Thus, (S,U,) = (Sy,U,) € Z(Ny) for all a € U, yet (S,U,) = U, by the
known S-equivariant structure of U, in the non-multipliable case and of Uy, and U,/Us, in
the multipliable case (see Proposition 3.1), so Ny is perfect (thus semisimple) and S¢ # 1.
We have established (1), (2), and the first assertion in (3).

Recall that a smooth connected normal k-subgroup of a smooth connected normal k-
subgroup of G is normal in G (as follows from the general structure of smooth connected
normal subgroups of connected reductive groups over k, via irreducible components of root
systems). Thus, a minimal nontrivial smooth connected normal k-subgroup N of G cannot
contain a smooth connected proper k-subgroup that is normal in N.

Let N be a non-commutative smooth connected normal k-subgroup of G, so the k-subgroup
P(N) of N is nontrivial and perfect and normal in G. Thus, if such an N is minimal among
the non-commutative smooth connected normal k-subgroups of GG then it is perfect and hence
is contained in Z(G) (which is itself perfect). But S is an almost direct product of S” and
the maximal k-split central torus of G. Each Ny lies in Z(G) by perfectness, so the k-root
system of G with respect to S is identified with that of Z(G) with respect to S’. We may
therefore replace G with 2(G) (and S with S # 1), so G is semisimple and S’ = S. In
particular, by the split theory over kg, every nontrivial normal smooth connected k-subgroup
of G is semisimple.

Let {N;}icr be the set of minimal nontrivial smooth connected normal k-subgroups of
G = 2(G), so every N, is semisimple. By the split theory over k;, such N; are almost direct
products of Gal(k,/k)-orbits among the minimal normal smooth connected kg-subgroups of
Gk,. This description over kg implies the following properties if the N;’s: they pairwise
commute, the product homomorphism

WN:HNZ—>G

el

is a central isogeny, and every normal smooth connected k-subgroup of G is generated by
{N,}jes for a unique subset J C I. Note also that no NNV; contains a nontrivial smooth
connected proper normal k-subgroup, due to the minimality of N; in GG. We shall eventually
see that the k-isotropic IV;’s are precisely the Nyg's.

For i € I, let S; = (SN N;)%,, a maximal k-split torus of N;. Let I* be the set of i € [
such that N; is k-anisotropic. Thus, S; = 1 precisely for i € I*, and the pair (N;,S;) has
a non-empty k-root system for i € I — I* (since otherwise the nontrivial split torus S; is
central in the semisimple N;, an absurdity). We claim that S is an isogenous quotient of the
maximal E-split torus [[,.;_;: S; of N. Choose a maximal k-torus 7" of G' containing S, so
by Lemma 4.1 we see that T; := T N N; is a maximal k-torus of N; that contains S;. The
product [] 7; is a maximal k-torus of N, so its image in G = 7(N) is a maximal k-torus of G.
This forces [[ 7; — T to be surjective, so the maximal split k-subtorus [[,.; Si = [,c;_p: Si
of [[7; maps onto the maximal split k-subtorus S of T

The isogeny [[,c; j:Si — S implies that: N; C Zg(S) for every i € I*, 7 induces an
injective homomorphism of X, ([[;c;_;¢Si) = [Lics_pz X«(S;) into X,(S) whose image is a
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subgroup of finite index, and I — I* is non-empty. Thus, for any subset J C I*, the k-
subgroup N, := (N;);es is k-anisotropic (because we can apply the preceding considerations
to Np in the role of G to deduce that Ny is k-anisotropic).

For any A € [[,c;_: X.(Si), the restriction of  to Uy () is an isomorphism onto Ug(mo\)
since the kernel of 7 is central (forcing kerm C Zy())). Hence, the set of root groups of
G relative to S is the (disjoint) union of the set of root groups of V; relative to S; over all
i € I —I*. Thus, ® is the direct sum of the non-empty k-root systems ®; := ®(N;, S;) for
i € I — I' compatibly with the decomposition X(S)q = [T.c;_z: X(Si)q.

We claim that for each i € I — I* the k-root system ®; in X(S;)q # 0 is irreducible.
Granting this, {®;},c;_p# is the set of irreducible components of the root system ,® in the
Q-vector space X(5)q = [L;c;_s: X(Si)q and (by minimality) the nontrivial perfect normal
k-subgroup Ng, of N; must exhaust N; for each i € I — I*. This would establish (3) and (4),
as well as (5). Thus, we can replace (G, S) with the k-isotropic (Ny,, Sy, ) for each ig € I — I*
separately. Now the k-isotropic connected semisimple G has no nontrivial smooth connected
normal k-subgroup apart from itself. In such cases it suffices to prove that the non-empty
root system ,® is irreducible.

Let ¥ be an irreducible component of ,®; our aim is to prove that ¥ = ,®. Since Ny
is a nontrivial smooth connected normal k-subgroup of G, Ny = G. Suppose there exists
b € ® — U, so the nontrivial smooth connected unipotent k-group U, centralizes Ny = G
and hence is central in GG. This contradicts that G is reductive, so ¥ = ;®. [

The preceding proof yields immediately:

Corollary 4.4. Assume G is semisimple. Let {®;} be the set of irreducible components of
k®, and let {N}} be the set of k-anisotropic minimal nontrivial normal connected semisimple
k-subgroups of G. The multiplication homomorphism

TV < [[Ne, = G

1s a central isogeny, and every normal connected semisimple k-subgroup N of G is an almost
direct product among the N}’s and the Ng,’s.

The main point of this corollary is that the isotropic minimal nontrivial smooth con-
nected normal k-subgroups of Z(G) are constructed from the root groups for the roots in
an irreducible component of ,®.



