MATH 249B. SIMPLE ISOGENY FACTORS OVER A FIELD

1. INTRODUCTION

Recall that a connected semisimple group G over a field k is called k-simple if GG is nontrivial
and has no nontrivial smooth connected proper normal k-subgroup. We say that G is
absolutely simple if G is k-simple (in which case Gk is K-simple for every extension K /k, as
it is sufficient to check for algebraically closed K, and by a “spreading out and specialization”
argument if X O k and G has a nontrivial smooth connected proper normal K-subgroup
then the same holds for Gy). In class we proved the “split” case of the following important
result:

Theorem 1.1. Let G be a nontrivial connected semisimple group over a field k. The set
{Gi}ier of minimal nontrivial normal smooth connected k-subgroups of G is finite, they
pairwise commute, and the multiplication homomorphism

is a central isogeny. In the split case each G; is split and absolutely simple.

Moreover, every normal smooth connected k-subgroup N C G is the central quotient image
Ny of [Lic, Gi for a unique subset J C I, with and N; N G; is finite for alli € I —J. In
particular, each G; is k-simple.

In §2 we give the Galois descent arguments to deduce the general case from the split case.
The most crucial aspect of the proof of Theorem 1.1 in the split case was to show that if
G is split with an irreducible root system then G is absolutely simple. We also saw in class
that for general connected semisimple G, if it is simply connected or of adjoint type then f
is an isomorphism. This has an interesting consequence:

Corollary 1.2. Let G be a connected semisimple k-group that is either simply connected or
of adjoint type. There exists a pair (k'/k,G') consisting of a finite étale k-algebra k' and a
smooth affine k' -group G’ whose fiber over each factor field of k' is connected semisimple and
absolutely simple such that there is a k-homomorphism f : G ~ Ry x(G").

The triple (k' /k,G', f) is unique up to unique isomorphism; i.e., if (k" /k,G") is another
such pair equipped with an isomorphism G ~ Ry (G") then the resulting composite isomor-
phism

Rk (G') ~ Ry (G”)
arises from a unique pair (o, @) consisting of a k-algebra isomorphism o : k' ~ k" and a
group isomorphism ¢ : G' ~ G" over «.

The case of trivial G corresponds to the case k' = 0 (with G’ the trivial group scheme over
Spec(0) = ), but a reader who is uneasy about that may feel free to assume G # 1.

Before we prove this corollary, we explain its importance. For any connected semisimple
k-group G, there is a central isogenous cover by a simply connected GG and a central isoge-
nous quotient G/Zg of adjoint type. The corollary says that both extremes are canonically
described in terms of a finite étale Weil restriction involving absolutely simple connected

semisimple groups (over finite separable extensions of k). This underlies the essential role of
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absolutely simple connected semisimple groups (i.e., those whose Dynkin diagram over k; is
irreducible) in the study of general connected reductive groups over fields.

Proof. In view of the uniqueness assertions all over the place, by Galois descent it suffices
to treat the case k = k,. But then every finite étale k-algebra is a direct product of copies
of k and the Weil restrictions are direct products of the fiber groups over the factor fields.
Hence, the content of the assertion is that G is a direct product of k-simple factors (k-simple
is the same as absolutely simple since every connected semisimple k-group is split) and that
such a decomposition unique up to rearrangement.

Put in other words, our task over k = k, is to show that if [[ G; = [] G is an isomorphism
with factors that are connected semisimple and k-simple then the isomorphism arises from
a unique pair («, ¢) consisting of a bijection « : I ~ J and isomorphisms ¢; : G; ~ G’a(i) for
all i € I. (The case of empty I or J corresponds to the case G = 1, in which case I and .J
must both be empty, but a reader who finds that unsettling may assume I and J are both
non-empty.) This existence and uniqueness property is immediate from the isomorphism
property of f in Theorem 1.1 in the simply connected and adjoint type cases, along with
the explicit description of all smooth connected normal k-subgroups of GG in terms of the
k-simple “factors”. [ |

2. PROOF OF THEOREM 1.1

We now carry out the Galois descent arguments to prove Theorem 1.1 in general, given its
validity in the split case. Let {H;};ecs be the finitely many simple factors of Gy,. These all
arise over some common finite Galois extension k’/k inside kg, and for each o € Gal(ks/k)
the canonical isomorphism o*(Gy,) ~ G, carries o*(H;) onto H,(; for a unique o(j) € J.
This defines a Gal(k,/k)-action on the finite set J for which the open subgroup Gal(k;/k’)
acts trivially, so it is a continuous action.

Let I be the set of Gal(ks/k)-orbits in J, and for each ¢ € I (i.e., this is a Galois orbit
in J) let G; C G be the Galois descent of the smooth connected normal k-subgroup of Gy,
generated by the H,’s for j € 7. It is clear by working over k; that the G;’s pairwise commute,
and the multiplication map [[ G; — G is a central isogeny because over k; it is dominated
by the central isogeny [[ H; — Gi,.

The explicit description of all smooth connected normal kg-subgroups of G, in terms of
the H,’s, along with the Galois-stability characterization of those such ks-subgroups of Gy,
that arise from a k-subgroup of G, yields that every smooth connected normal k-subgroup
N of G is generated by the G;’s that it contains. Likewise, for the smooth connected normal
k-subgroup N’ generated by all other G;’s (so N" and N commute with each other) it follows
that the multiplication map N x N’ — (G is a central isogeny. Hence, N N Gy is finite when
Gy ¢ N.

The description of all possibilities for N implies that if N # 1 then N contains some G;.
Hence, these G;’s are indeed the minimal nontrivial smooth connected normal k-subgroups
of G.

It remains to show that each G; is k-simple. Suppose N C G; is a nontrivial smooth
connected normal k-subgroup. Such an N commutes with G for all ¢/ # i (as that holds
even for G;), so N is normalized by G; for all i’ and hence is normalized by G (as the Gy
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collectively generated (). That is, N is normal in G. The minimality of G; then forces
N = Gy, so k-simplicity is proved.



