MATH 249B. STRUCTURE OF SOLVABLE GROUPS OVER FIELDS

INTRODUCTION

Consider a smooth connected solvable group G over a field k. If k is algebraically closed then
G =T x %,(G) for any maximal torus T" of G. Over more general k, an analogous such semi-direct
product structure can fail to exist.

For example, consider an imperfect field k of characteristic p > 0 and a € k— kP, so k' := k(al/ P)
is a degree-p purely inseparable extension of k. Note that k., := k' @y, ks = ks(a'/P) is a separable
closure of k', and k" C k,. The affine Weil restriction G = Ry /5(G) is an open subscheme of
Ry /i (A}g,) = Aﬁ, so it is a smooth connected affine k-group of dimension p > 1. Loosely speaking,

G is “k’™ viewed as a k-group”. More precisely, for k-algebras R we have G(R) = (k' ®; R)*
functorially in R. The commutative k-group G contains an evident 1-dimensional torus 7' ~ Gy,
corresponding to the subgroup R* C (kK ®j; R)*, and G/T is unipotent because (G/T)(ks) =
(kL)*/(ks)* is p-torsion. In particular, T is the unique maximal torus of G. Since the group
G(ks) = k. has no nontrivial p-torsion, G contains no nontrivial unipotent smooth connected
k-subgroup. Thus, G is a commutative counterexample over k to the analogue of the semi-direct
product structure for connected solvable smooth affine groups over k.

The appearance of imperfect fields in the preceding counterexample is essential. To explain this,
recall Grothendieck’s theorem that over a general field k, if S is a maximal k-torus in a smooth affine
k-group H then Sj is maximal in Hz. Thus, by the conjugacy of maximal tori in G, G =T x U
for a k-torus T' and a unipotent smooth connected normal k-subgroup U C G if and only if the
subgroup %,(Gy) C Gy, is defined over k (i.e., descends to a k-subgroup of G). In such cases,
the semi-direct product structure holds for G over k using any maximal k-torus 7' of G (and U is
unique: it must be a k-descent of %,(Gr)). If k is perfect then by Galois descent we may always
descend %, (G7y,) to a k-subgroup of G. The main challenge is the case of imperfect k.

Our exposition in §1-84 is a refinement of Appendix B of [CGP]. The general solvable case
is addressed in §5, where we include applications to general smooth connected affine k-groups.
Throughout the discussion below, k is an arbitrary field with characteristic p > 0.

1. SUBGROUPS OF VECTOR GROUPS

The additive group is denoted G, and the multiplicative group is denoted Gy,, always with the
base ring understood from context.

Definition 1.1. A wvector group over a field k is a smooth commutative k-group V that admits an
isomorphism to G} for some n > 0. The Gy,-scaling action arising from such an isomorphism is a
linear structure on V.

Observe that the G -action on V' arising from a linear structure induces the canonical k*-action
on Lie(V) (e.g., if char(k) = p > 0 then the composition of such a Gy,-action on V' with the p-power
map on Gy, does not arise from a linear structure on V' when V' # 0).

Example 1.2. If W is a finite-dimensional k-vector space then the associated vector group W

represents the functor R ~~ R ®; W on k-algebras and its formation commutes with any exten-

sion of the ground field. Explicitly, W = Spec(Sym(WW*)) and it has a unique linear structure
1
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relative to which the natural identification of groups W (ks) ~ Wy, carries the linear structure
over to the k[ -action on Wy, arising from the ks-vector space structure; call this the canonical
linear structure on W. (We can use k instead of ks in this characterization when k is infinite, as
W (k) is Zariski-dense in W for infinite k.) For finite-dimensional k-vector spaces W and W, the
subset Homy (W, W’) C Homy_g, (W, W) consists of precisely the k-homomorphisms respecting the
canonical linear structures.

When linear structures are specified on a pair of vector groups, a homomorphism respecting
them is called linear. Over a field of characteristic 0 there is a unique linear structure and all
homomorphisms are linear. Over a field with characteristic p > 0 the linear structure is not unique
in dimension larger than 1 (e.g., a.(x,y) := (az + (a — aP)yP,ay) is a linear structure on G2,
obtained from the usual one via the non-linear k-group automorphism (z,y) + (x + vy, y) of G2).
For a finite-dimensional k-vector space W, a linear subgroup of W is a smooth closed k-subgroup
that is stable under the Gp-action. By computing with ks-points and using Galois descent, it is
straightforward to verify that the linear subgroups of W are precisely W’ for k-subspaces W' C W.

Definition 1.3. A smooth connected solvable k-group G is k-split if it admits a composition series
G=GpD>G1D---DG,=1

consisting of smooth closed k-subgroups such that G;; is normal in G; and the quotient G;/G; 1
is k-isomorphic to G, or Gy, for all 0 < i < n. (Such G; must be connected, so each G; is also a
k-split smooth connected solvable k-group.)

In the case of tori this is a widely-used notion, and it satisfies convenient properties, such as:
(i) every subtorus or quotient torus (over k) of a k-split k-torus is k-split, (ii) every k-torus is
an almost direct product of its maximal k-split subtorus and its maximal k-anisotropic subtorus.
However, in contrast with the case of tori, it is not true for general smooth connected solvable G
that the k-split property is inherited by smooth connected normal k-subgroups:

Example 1.4 (Rosenlicht). Assume k is imperfect and choose a € k — kP. The k-group
U :={y =z — aa®}

is a k-subgroup of the k-split G = G2 and it becomes isomorphic to G, over k(a'/?) but there is
no non-constant k-morphism f : A,lC — U, let alone a k-group isomorphism G, ~ U. Indeed, the
regular compactification U of U has a unique point coyy € U — U, and the regular compactification
of G, is P} via x + [z, 1], so any non-constant map f extends to a (finite) surjective map P} — U
that must carry [1,0] to coy, an absurdity since k(coy) = k(a'/P) # k.

Tits introduced an analogue for unipotent k-groups of the notion of anisotropicity for tori over
a field. This rests on a preliminary understanding of the properties of subgroups of vector groups,
so we take up that study now. The main case of interest to us will be imperfect ground fields,
due to the fact that every unipotent smooth connected group over a perfect field is split (proved in
Lecture 20 of the first course).

Definition 1.5. A polynomial f € k[z1,...,z,] is a p-polynomial if every monomial appearing in
f has the form cijx?] for some ¢;; € k; that is, f =) fi(x;) with fi(x;) = Z]- cijxfj € k[z;]. (In
particular, f;(0) = 0 for all i. Together with the identity f = > fi(z;), this uniquely determines
each f; in terms of f. Note that f(0) =0.)

Proposition 1.6. A polynomial f € k[z1,...,x,] is a p-polynomial if and only if the associated
map of k-schemes G} = G, is a k-homomorphism.
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Proof. This is elementary and is left to the reader. O
A nonzero polynomial over k is separable if its zero scheme in affine space is generically k-smooth.

Proposition 1.7. Let f € k[xy,...,x,] be a nonzero polynomial such that f(0) = 0. Then the
subscheme f~1(0) C G is a smooth k-subgroup if and only if f is a separable p-polynomial.

Proof. The “if” direction is clear. For the converse, we assume that f~!(0) is a smooth k-subgroup
and we denote it as G. The smoothness implies that f is separable. To prove that f is a p-
polynomial, by Proposition 1.6 it suffices to prove that the associated map of k-schemes G} — G,
is a k-homomorphism. Without loss of generality, we may assume that k is algebraically closed.
For any o € G(k), f(z + a) and f(x) have the same zero scheme (namely, G) inside G}}. Thus,
flx 4+ a) = c(a)f(z) for a unique c¢(a) € k*. Consideration of a highest-degree monomial term
appearing in f implies that ¢ = 1. Pick 8 € k™, so f(B + a) — f(58) = 0 for all @« € G(k). Thus
f(B+x)— f(B) vanishes on G, so f(B+x)— f(5) = g(B)f(x) for a unique g(5) € k. Consideration
of a highest-degree monomial term in f forces g(5) = 1. O

Corollary 1.8. Let G C G} be a smooth k-subgroup of codimension 1. Then G is the zero scheme
of a separable nonzero p-polynomial in k[x1, ..., zy].

Proof. Since G is smooth of codimension 1 in G}, it is the zero scheme of a separable nonzero

polynomial f € k[xy,...,z,]. By Proposition 1.7, f is a p-polynomial. O

Lemma 1.9. If f : U — U is a surjective homomorphism between smooth connected unipotent
k-groups and U’ is k-split then so is U.

This result was proved in §20 of the first course; we include a proof here for convenience of the
reader.

Proof. Let {U]} be a descending composition series of U’ over k with successive quotients U] /U],
isomorphic to G,. Then the k-groups U; = f(U/) are a composition series for U and U;/U;41 is a
quotient of Uj/Uj,; = G,. It therefore suffices to show that for any surjective k-homomorphism
q: Gy — G with G # 1, necessarily G ~ G,. Clearly ¢ is an isogeny. If ker ¢ is not étale then
ker ¢ has nontrivial Frobenius kernel. But the Frobenius kernel of G, is «,,, so ¢ factors through
G./ap, ~ G,. Hence, by induction on degq we can assume ker g is étale. By Proposition 1.7, the
smooth k-subgroup kerq C G, must be the zero scheme of a 1-variable separable p-polynomial
f = ¢t (socy#0). But f: Gy — G, is then an isogeny and its kernel {f = 0} coincides with
ker ¢, so f identifies G = G,/ ker ¢ with Ga,. O

Definition 1.10. If f = >"" , fi(z;) is a p-polynomial over k in n variables with f;(0) = 0 for all
i, then the principal part of f is the sum of the leading terms of the f;.

Lemma 1.11. Let V' be a vector group of dimension n > 1 over k, and let f : V — G, be a
k-homomorphism. Then the following are equivalent:
(1) there exists a non-constant k-scheme morphism f': A,lC — V such that fo f' =0;
(2) for every k-group isomorphism h : G} ~ V', the principal part of the p-polynomial f o h €
klxi,...,z,] has a nontrivial zero in k;
(3) there exists a k-group isomorphism h : G ~ V' such that f o h “only depends on the last
n — 1 coordinates” (i.e., ker(f o h) contains the first factor of GY).

In this lemma, it is not sufficient in (2) to consider just a single choice of h. For example, if k
is imperfect and a € k — kP, then f := y? — (z + aaP) has principal part y? — axP with no zeros
on k* — {0}. Composing f with the k-automorphism (z,y) — (x,y + 2P) yields the polynomial
y? 4+ 2P° — (x + aaP) whose principal part is y? + 2P”, which has zeros on k2 — {0}.
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Proof. We will show that (1) = (2) = (3) = (1).

For (1) = (2), assume that (1) holds and let ¢ = h™'o f. Let ¢; : G, — G, be the ith
component of ¢, and a;t* denote the leading term of p;(t), with s; = 0 when ¢; = 0. For some 1
we have s; > 0, since some ¢; is non-constant (as ¢ is non-constant, because of the same for f’).
Let Y7, cia? ™" be the principal part of f o h, so

0= f(h(gp(t))) = ZCiafmitsiPmi + ..
i=1

since fohop = fohoh™lof' = fof' =0. Let N = max;{s;p"™} > 0. Define b; = qa; if s,p™ = N
(so b; #0), and b; = 0 if s;p™ < N. Since the coefficient of the term of degree N in f(h(¢(t)))
must be zero, we have Y 1" | ¢;b¥ " — 0 with b; € k and some b; is nonzero, so (2) holds.

To prove (2) = (3), assume (2) holds and let h : G} ~ V be any k-group isomorphism. We may
assume f # 0, so the principal part of f o h is nonzero. The proof will proceed by induction on the
sum d of the degrees of nonzero terms of the principal part Y " | c;z? " of foh. If ¢, =0 for some
r, we are done by interchanging x, and z;. So we may assume that all ¢; are nonzero and, upon
permuting the coordinates, that m; > --- > m, > 0. By (2), there exists (ai,...,a,) € k" — {0}
such that Y 7" | c;a? ™ = 0. Let 7 > 0 be minimal such that a, # 0. Define the k-group isomorphism
B G~ G by B (y1,...,yn) = (21,...,2,) with

T1=Y1y-- s, Tr—1 = Yr—1,

My —Mp 4] me—mn

Ty = QrYr, Tr4l = Yr+1 + ar+1y£ yeroosTn = Yn + anyi7

Thus, f ohoh'is a p-polynomial with principal part

n

Z Ciyfm + Z Ciafw P = Z Cz‘yfw
i#r i=1 i#r
since Y 1 | ¢;al ™ = 0. The sum of the degrees of the nonzero terms of the principal part of fohoh/
is strictly smaller than d since ¢, # 0, so the induction hypothesis applies.

Finally, we assume (3) and prove (1). Let h : G} — V be a k-isomorphism such that ker(f o h)
contains the first factor of GI'. Define ¢ : G, — G2 by ¢(t) = (¢,0,0,...,0). Finally, let f' = hop.
Then fo f'= fohoy=0. 0

Lemma 1.12. If a p-polynomial ", cixfmi over k has a zero in K™ —{0} for a Galois extension
K /k then it has a zero in k™ — {0}.

Proof. The proof is by induction on n. The terms may be ordered so that m; > mg > ---. If
n = 1, then since clalfml =0 with a1 € K* we see that ¢; =0, so clx’l’ml has a zero in k*.

Now suppose n > 1 and that > " | ciafmi = 0 with a; € K not all zero. Let a = (a1,...,a,). If
an = 0 then the theorem is true by the induction hypothesis. If a,, # 0, we may assume a, = 1
by replacing a; with a;/af, ~* for all i. For all o € Gal(K/k), the point a — o(a) is a zero of
> cim?mi. If not all a; belong to k then a — o(a) # 0, so since a,, — o(a,) = 0 we may again apply
the inductive hypothesis. ]
Lemma 1.13. Let V be a vector group over k, K/k a Galois extension, and f : V — G, a k-

homomorphism. The equivalent conditions (1), (2), and (3) of Lemma 1.11 hold over K if and only
if they hold over k.

Proof. 1t is clear that if (1) holds over k then it also holds over K. On the other hand, by Lemma
1.12, (2) is true over k if it is true over K. g
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Lemma 1.14. Every smooth p-torsion commutative affine k-group G embeds as a k-subgroup of a
vector group over k. Moreover, G admits an étale isogeny onto a vector group over k, and if G is
connected and k = k then G is a vector group over k.

Proof. We first construct the embedding into a vector group over k, and then at the end use this
to make the étale isogeny. Consider the canonical k-subgroup inclusion G < Ry, (Gy/) for any

finite extension field &’/k. Since Ry /1 (Ga) =~ G;[f/:k], it is harmless (for the purpose of finding an
embedding into a vector group over k) to replace k with a finite extension. If Gy embeds as a
subgroup of G over k, the embedding descends to a finite extension k’/k inside k. Hence, for
the construction of the embedding into a vector group we can now assume that k is algebraically
closed.

The component group G/G° is a power of Z/pZ. Thus, since G is commutative and p-torsion,
the connected-étale sequence of G splits. That is, G = G° x (Z/pZ)" for some n > 0. The finite
constant k-group Z/pZ is a k-subgroup of G,, so we can assume that G is connected. We shall prove
that G is a vector group. Since k = k and the unipotent G is nilpotent, it has a composition series
whose successive quotients are G,. By induction on dim G, it suffices to prove that a commutative
extension U of G, by G, over k is a split extension if p- U = 0.

Let W5 be the additive k-group of Witt vectors of length 2, so there is a canonical exact sequence
of k-groups

0—- G, — Wy — G, — 0.

It is a classical fact (see [Ser, Ch. VIL.9, Lemma 3]) that every commutative extension U of G, by
G, over k is obtained by pullback of this Witt vector extension along a (unique) k-homomorphism
f: Gy — G,. In other words, there is a unique pullback diagram

0 G, U G, 0
b
0 Ga W2 Ga 0

and we claim that if U is p-torsion then f = 0 (so the top row is a split sequence). Clearly
f(U) c Walp], but the maximal smooth k-subgroup of Wa[p] is the kernel term G, along the
bottom row. Hence, f/(U) is killed by the quotient map along the bottom row, so f = 0.

Now return to the setting of a general ground field k, and fix a k-subgroup inclusion of G into a
vector group V, say with codimension c¢. Choose a linear structure on V' (in the sense of Definition
1.1). Then W — Lie(W) is a bijection between the set of linear subgroups of V' and the set of
linear subspaces of Lie(V'). Hence, if we choose W so that Lie(WW) is complementary to Lie(G) then
the natural map G — V/W is an isomorphism on Lie algebras, so it is an étale isogeny. Since W
is a linear subgroup of V, the quotient V/W is a vector group over k. ]

Proposition 1.15. Let Vi,...,V,, be k-groups isomorphic to G,, and let V =[], Vi. Let U be a
smooth k-subgroup of V' such that Uy, as a ks-subgroup of Vi, is generated by images of ks-scheme
morphisms A}CS — Vi, that pass through 0.

There exists a k-group automorphism h : V ~V such that h(U) is the direct product of some of
the V; inside V. In particular, U is a vector group over k and is a k-group direct factor of V.

Proof. The proof is by induction on n and is trivial for n = 1. Now consider n > 1. The case
U =V is trivial, so we can assume dimU < n — 1. First assume that dimU =n —1 > 0. By
Corollary 1.8, U is the kernel of a k-homomorphism f : V — G,. By hypothesis, there exists a
non-constant kg-scheme morphism A,lﬂs — Uy,, so by Lemma 1.11 (applied over ks) and Lemma
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1.13 there exists a k-group automorphism A’ of V' such that A’'(U) D Vi. But then 2'(U) = Vi x U’
where U’ denotes the projection of A'(U) into V' =[], Vi. Applying the induction hypothesis to
V' and U’, we are done.

Suppose now that dimU < n — 1, and let U’ denote the projection of U into the product V'
as defined above. By the inductive hypothesis, after relabeling Vs, ..., V,, there exists a k-group
automorphism h; : V' — V' such that hi(U’) = [[;_, V; for some r < n. Setting

h/:idvl Xh : V>V,
we then have h'(U) C []i_, Vi, and we can again apply induction. The proof is now complete. [

Corollary 1.16. In a smooth p-torsion commutative affine k-group G, every smooth k-subgroup
that is a vector group s a k-group direct factor.

Proof. This is a consequence of Proposition 1.15, provided that G is a k-subgroup of a vector group.
Such an embedding is provided by Lemma 1.14. O

The following proposition is a useful refinement of Lemma 1.14.

Proposition 1.17. Let k be an infinite field of characteristic p > 0 and let U be a smooth p-
torsion commutative affine k-group. Then U is k-isomorphic to a k-subgroup of codimension 1 in
a k-vector group. In particular, U is isomorphic (as a k-group) to the zero scheme of a separable
nonzero p-polynomial over k.

This proposition is also true for finite k if U is connected since then U is a vector group; see
Corollary 2.8.

Proof. By Lemma 1.14, U can be identified with a k-subgroup of a k-vector group V. Let m =
dimV —dimU. If m < 1 then we are done by Corollary 1.8, so we assume m > 1. We will show
that U can be embedded in a k-vector group W with dim W = dim V' — 1, which will complete the
argument via induction on m. The vector group W will arise as a quotient of V.

The k-linear subspace Lie(U) in Lie(V') has codimension m. Fix a choice of linear structure on
V' (in the sense of Definition 1.1). Since m > 2, the Zariski closure G,.U (C V') of the image of
the multiplication map G, x U — V is a closed subscheme of V' with nonzero codimension. By
irreducibility of V', the union Lie(U) U (G,.U) inside V is a proper closed subscheme of V.

Since V (k) is Zariski-dense in V' (as k is infinite), there exists v € V (k) with

v ¢ Lie(U) U (G,.U).
Let L C V be the k-subgroup corresponding to the line kv C V(k). Consider the canonical k-
homomorphism ¢ : V. — W := V/L, and let ¢» = ¢|y. We shall prove kert = 1, from which it
follows that ¢ identifies U with a k-subgroup of W.

It suffices to show that Lie(v)) is injective (so ker) is étale) and that 1| vk 18 injective. The
map Lie(¢)) has kernel L N Lie(U) = {0}, so it is indeed injective. If ¢|U® is not injective then
the line L would lie in G,.U since .U is stable under the G,-multiplication on V. But the point

v € L(k) does not lie in (G,.U)(k), due to how we chose v, so indeed ¢|U(E) is injective. O

2. WOUND UNIPOTENT GROUPS

A smooth connected unipotent k-group U is analogous to an anisotropic torus if U does not
contain G, as a k-subgroup. This concrete viewpoint is inconvenient for developing a general
theory, but eventually we will prove that it gives the right concept. A more convenient definition to
get the theory of such U off the ground requires going beyond the category of k-groups, as follows.
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Definition 2.1. A smooth connected unipotent k-group U is k-wound if every map of k-schemes
Al — U is a constant map to a point in U(k). Equivalently, U(k) = U(k[z]).

By considering translation by k-points, it is equivalent to say that every map of pointed k-schemes
(A}, 0) — (U,1) is constant.

Remark 2.2. An analogous definition for tori using A'—{0} recovers the usual notion of anisotrop-
icity: if F is any field (possibly of characteristic 0) and T is an F-torus, then the condition
T(F[x,1/z]) = T(F) (i.e., the constancy of any F-scheme map G,, — T, or equivalently the
triviality of any map of pointed F-schemes (Gy,,1) — (7,1)) characterizes F-anisotropicity of 7.

Indeed, F-anisotropicity is equivalent to the vanishing of Homp_gp (G, T), so we just need to
check that in general a map of pointed F-schemes (Gy,,1) — (7,1) is a homomorphism. By
extending scalars we may assume F = F, so T is a power of Gy,, and this reduces us to the
case T = Gy,. An endomorphism of the pointed F-scheme (Gy,, 1) is the “same” as an element
u € Flz,1/x]* satisfying (1) = 1, and such units are precisely u = z" for n € Z.

The main reason that we go beyond the category of k-groups in Definition 2.1 is due to the
intervention of a non-homomorphic conjugation morphism ¢’ that arises in the proof of Proposition
3.2 below. The interested reader can easily check that all appearances of maps from A' in §1-§2
can be replaced with homomorphisms from G, without affecting the proofs there.

Remark 2.3. The definition of “wound” makes sense in characteristic 0, where it is only satisfied
by U = 1 (since a nontrivial smooth connected unipotent group in characteristic 0 contains G,
as a subgroup over the ground field). Thus, although we only work with ground fields of positive
characteristic, it is convenient in practice (for handling some trivialities) to make the convention
that “wound” means “trivial” for smooth connected unipotent groups in characteristic 0.

Whereas anisotropicity for a torus over a field is insensitive to purely inseparable extension of
the ground field but is often lost under a separable algebraic extension of the ground field, the k-
wound property behaves in the opposite manner: we will prove that it is insensitive to a separable
extension on k (such as scalar extension from a global field to a completion), but it is often lost
under a purely inseparable extension on k.

Example 2.4. Assume k is imperfect and choose a € k — kP. The k-group U = {y? = = — aaP}
becomes isomorphic to G, over the purely inseparable extension k(al/ P) but by Example 1.4 it is
k-wound. Observe that the isogeny y : U — G, is étale, so applying an étale isogeny can destroy
the wound property. (Although y is étale, its extension to a degree-p finite flat covering U — P,lC
between regular compactifications is not étale: explicitly, at the point at infinity the ramification
index is 1 but the residue field extension is k(a'/?)/k.) Hence, for problems involving wound
unipotent groups one must be more attentive to the use of isogenies than is usually necessary when
working with tori.

Note that the wound k-group U is a k-subgroup of the k-split group G2. In the opposite di-
rection, there also exist nontrivial k-split quotients of k-wound groups modulo smooth connected
k-subgroups. For instance, in [Oes, Ch.V, 3.5] there is an example over any imperfect field &
of a 2-dimensional k-wound smooth connected p-torsion commutative affine group G admitting a
1-dimensional (necessarily k-wound) smooth connected k-subgroup G’ such that G/G’ ~ G, as
k-groups.

Example 2.5. Assume k is infinite. By Corollary 1.8, smooth p-torsion commutative affine k-
groups G are precisely the zero schemes of separable nonzero p-polynomials f over k. Since G is
connected if and only if it is geometrically irreducible (as for any k-group scheme of finite type), we
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see that GG is connected if and only if f is irreducible over k, as well as if and only if f is absolutely
irreducible over k. Assume G is connected.

If the principal part fprin of f has no zero on k" — {0} then by Lemma 1.11 it follows that G
is k-wound. The converse is false, as we saw following the statement of Lemma 1.11. However, if
fprin has a zero on k™ — {0} then the calculation in the proof of (2) = (3) in Lemma 1.11 (taking
h to be the identity map of G[') shows that we can find a p-polynomial F' € k[z1,...,z,] having
zero scheme k-isomorphic to G as a k-group (so F' is absolutely irreducible over k) with the sum of
the degrees of the monomials appearing in Fjp, strictly less than the corresponding sum for fprin.
Continuing in this way, we eventually arrive at a choice of f having zero scheme G (as a k-group)
such that fyrin has no zeros on k™ — {0}. In this sense, the zero schemes of absolutely irreducible
p-polynomials f over k£ for which f,in has no nontrivial k-rational zero are precisely the p-torsion
commutative k-wound smooth connected unipotent k-groups (up to k-isomorphism).

Theorem 2.6. Fvery smooth connected p-torsion commutative affine k-group U is a direct product
U=V xW of a vector group V and a smooth connected unipotent k-group W such that Wy, is
ks-wound. In this decomposition, the subgroup V' 1is uniquely determined: Vi, is generated by the
images of ks-scheme morphisms ¢ : A}CS — Uk, passing through the identity.

Proof. By Galois descent, there is a unique smooth connected k-subgroup V of U such that Vj, is
generated by the images of ks-scheme morphisms ¢ : A,ICS — Uy, that pass through the identity. By
Lemma 1.14, we can identify U with a k-subgroup of a vector group over k. Thus, by Proposition
1.15, V' is a vector group over k and (by Corollary 1.16) we have U = V' x W as k-groups for some
k-subgroup W of U. Since U is a smooth connected unipotent k-group, so is its direct factor W.
Clearly, Wy, is ks-wound (due to the definition of V).

Now we prove that V in this decomposition is unique. Consider any decomposition of k-groups
U = V' x W, where V' is a vector group over k and W’ is a smooth connected unipotent k-
subgroup of U such that W,;S is ks-wound. The image of any ks-scheme morphism ¢ : A}% — U,
passing through the identity is contained in Vk’s because otherwise the composite of ¢ and the
canonical projection Uy, — WI::S would be a non-constant kg-scheme morphism from A}Cs to W,;S
(contradicting that W, is assumed to be ks-wound). Hence, V' C V', so V! =V x V{ with V{ the
image of the vector group V’ under the projection U — W. Since Wy, is ks-wound and V' is a
vector group, V{ = 0. That is, V' = V. O

In Theorem 2.6, the group W as an abstract k-group is unique up to isomorphism, since it is
identified with the quotient U/V modulo the uniquely determined k-subgroup V. However, the
decomposition of U as V x W is not unique when V. W £ 0. That is, there may be more than
one k-homomorphic section to U — U/V = W, or in other words Homg (W, V') may be nontrivial.
For example, over an imperfect field consider U = G2 x U where U is as in Example 1.4. Clearly
Homy, (U, G2) is nontrivial.

Corollary 2.7. A smooth connected p-torsion commutative affine k-group U is k-wound if and
only if Uy, 1s ks-wound, and also if and only if there are no nontrivial k-homomorphisms G, — U.
The k-group U is a vector group over k if and only if Uy, is a vector group over k.

Proof. This is immediate from Theorem 2.6. (|

Corollary 2.8. If k is perfect then a smooth connected p-torsion commutative affine k-group is a
vector group.

Proof. By Corollary 2.7, we may assume that k is algebraically closed. This case is part of Lemma
1.14. O
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To get results on k-wound groups beyond the commutative p-torsion case, we need to study
smooth connected p-torsion central k-subgroups in a general smooth connected unipotent k-group
U. This is taken up in the next section. We end this section with some examples.

Example 2.9. Let k£ be a field and let G be a commutative smooth connected affine k-group
containing no nontrivial unipotent smooth connected k-subgroup. The commutativity ensures that
there exists a unipotent smooth connected k-subgroup %, ,(G) in G containing all other such k-
subgroups, and by Galois descent %y, 1(G)r, = Zu k., (G, ). Assume %, ,(G) = 1. (By the argument
near the start of the Introduction, such a G with %, (G) # 1 is Ry ,(T") for any nontrivial purely
inseparable finite extension k’/k and a nontrivial k’-torus 7".)

For the maximal k-torus 7" in G, consider the smooth connected commutative unipotent quotient
U = G/T. We claim that U is k-wound. Since %, i, (Gk,) = Zur(G)r, = 1, we may assume k = ks,
so T is k-split. By definition, we need to prove that any map of k-schemes f : A,1f — U is constant.

Consider the pullback G X7 A1 This is a T-torsor over A}, so it is trivial since T is split and
PlC(Al) = 1. A choice of splitting defines a k-scheme morphism f A1 — G over f, so it suffices
to prove that f is constant. Using a translation, we may assume f ( ) = 1. We claim that for
any smooth connected commutative k-group C and any k-scheme morphism h : A,lC — C satisfying
h(0) = 1, the smooth connected k-subgroup of C' generated by the image of h is unipotent. Applying
this to G would then force f: 1 since Z,, 1(G) = 1, so we would be done.

To prove our claim concerning C' we may assume k = k, so C' is a direct product of a torus and
a unipotent group. Using projections to factors, it suffices to treat the case C = Gy,. In this case
h is a nowhere-vanishing polynomial in one variable with value 1 at the origin, so h = 1.

Example 2.10. Here is an example (due to Gabber) of a 2-dimensional non-commutative wound
smooth connected unipotent group U over an arbitrary imperfect field & of characteristic p > 0.
Choose a € k — kP, and consider the smooth connected k-subgroups of G2 defined by

G={z= a4+ ayPQ}, C* = {z =" + ayP)}.

Their closures in Pz are regular with a unique point at infinity, and this point is not k-rational,
so these groups are wound. We will construct a non-commutative central extension U of G by
C~, so U must be a k-wound smooth connected unipotent k-group. (The construction will work
“universally” over the polynomial ring F,[a], yielding the desired k-group via base change.)

Define the k-morphism f : G — C* by (x,y) — (2P, 2yP) and consider the symmetric bi-
additive 2-coboundary b = —df : G x G — C7 defined by

b(g.9") = flg+9") — flg) = f(g) = (22 + 2P’ 2y? + 2'y?)
for points g = (z,y) and ¢’ = (2/,y) of G. The related map b~ : G x G — C~ defined by
b ((,0), (@ 9)) = (e — 22, 2y’ — o)

is easily checked to be an alternating bi-additive 2-cocycle, so if p # 2 then b~ is not symmetric.
Thus, if p # 2 then the associated k-group U with underlying scheme C~ x G and composition law

(c.9)(c.g)=(c+c +b7(9,9).9+7
is a non-commutative central extension of G by C~ (with identity (0,0) and inversion —(c,g) =
(_Cv _g))
To handle the case p = 2, we consider a variant on this construction. For any p and ¢ € F2 —F,,
consider the bi-additive map b : G x G — C™ over F2[a] defined by be(g,9") = b(g,¢9") =
b(¢Pg,g’). This is easily seen to be a 2-cocycle that is not symmetric, so it defines a non-commutative
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central extension U of G by CT over F2la] (Us = CT x G as F2[a]-schemes, equipped with the
composition law (¢, ¢)(c,¢') = (c+ + be(g9,4'),9 + ¢'), identity (0,0), and inversion —(c,g) =
(—c—bc(g,—g),—9g)). Taking p =2, so Ct = C~ and each ( is a primitive cube root of unity, we
have (7! = ¢ + 1 and be41 = be +b=0b; —df, so for each ¢ we obtain an isomorphism of central
extensions Uy ~ Uc4q via (¢, g9) — (c+ f(g),9). Letting o be the nontrivial automorphism of Fy,
upon fixing ¢ we have built an Fy[a]-isomorphism [o] : Us =~ Usq1 = 0*(U¢) corresponding to the
automorphism (¢, g) — (c¢+ f(g),g) of C~ x G. By inspection, the automorphism o*([o]) o [o] of U
is the identity map. Thus, o] defines a descent datum on the central extension U, relative to the
quadratic Galois covering Spec(F4[a]) — Spec(F2[a]). The descent is a non-commutative central
extension of G by C~ over Fa[a], so it yields the desired k-group by base change.

3. THE cCkp-KERNEL

In a smooth connected unipotent k-group U, any two smooth connected p-torsion central k-
subgroups generate a third such subgroup. Hence, the following definition makes sense.

Definition 3.1. The maximal smooth connected p-torsion central k-subgroup of U is the cckp-
kernel.

Note that if U # 1 then its cckp-kernel is nontrivial, since the latter contains the cckp-kernel of
the last nontrivial term of the descending central series of U. By Galois descent and specialization
(as in the proof of [CGP, 1.1.9(1)]), the formation of the cckp-kernel commutes with any separa-
ble extension on k. However, its formation generally does not commute with purely inseparable
extension on k; see Exercise U.2(ii).

Proposition 3.2. Let U be a smooth connected unipotent k-group, and let k'/k be a separable
extension. Let F' denote the cckp-kernel of U. Then U is k-wound if and only if U is k'-wound,
and the quotient U/F is k-wound whenever U is k-wound. Also, the following conditions are
equivalent:

(1) U is k-wound,

(2) U does not have a central k-subgroup k-isomorphic to G,

(3) the cckp-kernel F' of U is k-wound.

This proposition implies that U is k-wound if and only if U admits no nontrivial k-homomorphism
from G,. Such a characterization of the k-wound property is analogous to the characterization of
anisotropic tori over a field in terms of homomorphisms from Gy, over the ground field.

Proof. Obviously (1) = (2). By Theorem 2.6, (2) and (3) are equivalent. Also, by specialization (as
in the proof of [CGP, 1.1.9(1)]), if Uk is not K-wound for some separable extension K /k then the
same holds with K/k taken to be some finite separable extension. Thus, to prove the equivalence
of (1), (2), and (3) and the fact that Uy is k’-wound whenever U is k-wound, it suffices to show
that if Uy, is not ks-wound then the cckp-kernel F' of U is not k-wound.

Let ¢ : A,lgs — Uy, be a non-constant ks-scheme morphism. Composing with a U (k;)-translation
if necessary, we may assume ¢(0) = 1. We may choose such a ¢ so that go(A,lfs) is central. Indeed,
suppose ¢(A} ) is non-central, so U is not commutative and there exists g € U (k) not centralizing
@(A} ). The ky-scheme morphism ¢’ : A} — Uy, defined by ¢'(x) = g~ o(x) 'gp(x) (which is
generally not a homomorphism even when ¢ is a homomorphism) carries 0 to 1, so it is then non-
constant, and its image lies in derived group 2(Uy,) = Z(U)y,. The k-subgroup Z(U) has smaller
dimension than U and is nontrivial since the smooth connected k-group U is not commutative.
Hence, by iteration with the descending central series of U, the required non-constant ¢ with
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go(A,lqs) central is eventually obtained. We may also assume that go(A,lgs) is p-torsion by replacing
the original ¢ with p® - ¢ for some e > 0.

The nontrivial ks-subgroup generated by go(A,lis) lies in the ccksp-kernel of Uy, ; i.e., it lies in Fj,.
Thus Fj, is not kg-wound, so by Corollary 2.7 the k-group F' is not k-wound.

It remains to show that if U is k-wound then U/F is k-wound. For this we may, in view of the
preceding conclusions, assume that k = k. Suppose that U is k-wound and U/F is not k-wound.
Thus, there exists a central k-subgroup A of U/F that is k-isomorphic to G,. Let m denote the
canonical homomorphism U — U/F. The k-subgroup scheme 7~1(A) in U is an extension of A by
F', so it is smooth, connected, and unipotent.

We claim that 7= (A) is central in U. If not, we get a non-constant k-scheme morphism ¢ : A} —
F (contradicting that U is k-wound) as follows. Choose g € U(k) not centralizing 7~ !(A) (recall
k = ks), identify G, with A = 771(A)/F, and define ¢ : 771(A)/F — F by oF + grg lz~L
Thus, 7~ (A) is central in U. Similarly, 771(A) is p-torsion because otherwise we would get a
non-constant k-scheme morphism ¢ : Al — F via ¢(zF) = 2P. We have shown that 771(A) lies
in the cckp-kernel F of U, so the given inclusion F' C 7—1(A) is an equality. Hence, A = 1, which
is absurd since A ~ G,,. O

Corollary 3.3. Let U be a k-wound smooth connected unipotent k-group. Define the ascending
chain of smooth connected normal k-subgroups {U;}i>o as follows: Uy = 1 and Uj41/U; is the
cckp-kernel of the k-wound group U/U; for all i > 0. These subgroups are stable under k-group
automorphisms of U, their formation commutes with any separable extension of k, and U; = U for
sufficiently large 1.

Moreover, if H is a smooth k-group acting on U then H carries each U; into itself.

Proof. Well-posedness of the definition (e.g., that U/U; is k-wound) and compatibility with separa-
ble extension on k follow from Proposition 3.2. By dimension considerations, U; = U for sufficiently
large i since the cckp-kernel of a nontrivial smooth connected unipotent k-group is nontrivial.
Finally, if H is a smooth k-group acting on U then we need to prove that H carries each U; into
itself. For this we may extend scalars to ks, so k is separably closed. Then the H-stability of Uj;
is equivalent to the H (k)-stability of U;, and this latter property is a special case of each U; being
stable under all k-automorphisms of U. ]

As an application of the structure of k-wound groups we can unify the definitions of “wound”
for unipotent groups and “anisotropic” for tori (see Remark 2.2):

Corollary 3.4. A unipotent smooth connected k-group U is k-wound if and only if U(klz,1/z]) =
U(k). More generally, if h € klx] is nonzero and separable then U is k-wound if and only if
U(k[2][1/h]) = U(k).

Proof. The equality U(k[z,1/h]) = U(k) clearly forces U to be k-wound. For the converse, suppose
U is k-wound, so Uy, is ks-wound (Proposition 3.2). Thus, to prove that U(k[x][1/h]) = U(k) we
may replace k with ks (by Galois descent). Hence, now h = c¢[[(z — a;) for ¢ € k* and pairwise
distinct a; € k. For each i, the k-wound property implies U (k((z — a;))) = U(k[z — a;]) by [Oes, V,
8] (whose proof rests on the existence of a composition series for the k-wound U with successive
quotients that are commutative p-torsion wound hypersurface groups; see Corollary 3.3, Proposition
1.17, and Example 2.5). Writing h = (z — a;)q¢;, inside k((x — a;)), we have k[z][1/h] Nk[z — a;] =
Klz][1 /qi). Thus, U(k(z][1/h]) = (), U(klz][1/ai)) = U(klz]) since ged,(g:) = 1, and U(k(z]) = U(k)
since U is k-wound. g
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Remark 3.5. It is well-known that if F' is a non-archimedean local field and T is an F-torus
then T'(F') is compact if and only if 7" is F-anisotropic. (To prove compactness of T'(F) for F-
anisotropic 7', identify X(7TF,) with a quotient of a direct sum of copies of the regular representation
of Gal(F'/F) over Z for a finite Galois splitting field F'/F of T. This identifies T" with an F-
subgroup of R, F(Gm)" for some N > 1. By F-anisotropicity, T lies in (T}, / ), where T}, /P 1
the F-torus ker(Rp/p(Gm) — Gm) of “norm-1 units”. Since T},/F(F) = 0}, we are done.)

There is a similar equivalence in the unipotent case, as follows. We restrict attention to unipotent
smooth connected U over a local function field k, since in characteristic 0 the split condition
always holds for unipotent groups and hence compactness cannot hold when the unipotent group
is nontrivial. Over such k, the equivalence of k-woundness for U and compactness for U (k) is [Oes,
VI, §1] (whose proof ultimately reduces to an explicit calculation with wound hypersurface groups
over k = Fy((t)), using the “principal part” criterion at the end of Example 2.5).

Remark 3.6. The separability condition on h in Corollary 3.4 cannot be relaxed For example, if
p=2and a € k — k? then the k-wound group U = {y? = z — ax?} is a smooth plane conic with
U(k) # 0, so U is k-rational. Explicitly, U ~ Speck[t,1/(t?> — a)] via t = (1/(t*> — a),t/(t* — a)).

We will now prove a structure theorem that is analogous to the unique presentation of a torus
over a field as an extension of an anisotropic torus by a split torus.

Theorem 3.7. Let U be a unipotent smooth connected k-group. There exists a unique k-split
smooth connected normal k-subgroup Ugpliy C U such that U/Ugpit is k-wound.

The subgroup Ugplic contains the image of every k-homomorphism from a k-split smooth connected
unipotent k-group into U. Also, the kernel of every k-homomorphism from U into a k-wound smooth
connected unipotent k-group contains Ugplir, and the formation of the k-subgroup Uy, is compatible
with any separable extension of k.

Proof. The proof is by induction on dimU. If U is k-wound then Uy := {1} satisfies the re-
quirements and is unique as such. Assume that U is not k-wound, and let A be a smooth central
k-subgroup isomorphic to G, (Proposition 3.2). Let H = U/A. By induction, there exists a
smooth connected normal k-subgroup Hgpli in H with the desired properties in relation to H (in
the role of U). Let Uy be the corresponding subgroup of U containing A. It is k-split, and
U/Usplit, ~ H/Hgpit is k-wound.

Let U’ be a smooth connected unipotent k-group having a composition series

U'=UoU{>---

with successive quotients k-isomorphic to G,, and let ¢ : U’ — U be a k-homomorphism. There
exists a minimal ¢ such that ¢(U]) C Uspiit. If @ > 0 then there is induced a k-homomorphism
G, ~ U/_,/U/ — U/Uspit with nontrivial image. This contradicts that U/Ugyy is k-wound.
Thus, ¢ = 0; i.e., p(U’) C Ugpit. It follows in particular that Ugy, is unique. Also, for any
k-homomorphism ¢ : U — U” into a k-wound smooth connected unipotent k-group U” we have
©(Uspiit) C S’;ht = {1}. This says that ker ¢ contains Ugpj;.

The last assertion of the theorem follows from Proposition 3.2. Indeed, if k’'/k is a separable
extension and U’ := Uy then (Ugpit)r C US’plit and the k’-split quotient US’plit [ (Uspiit) i 1s a k'
subgroup of the k’-group (U/Uspiit)r that is k’-wound (by Proposition 3.2). This forces Us’plit =

(Usplit ) k' O

Example 3.8. An elementary non-commutative example of Theorem 3.7 over any imperfect field
k of characteristic p > 0 is obtained via a central pushout construction, as follows. Let U3 C GLg3
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be the standard upper triangular unipotent subgroup. Its scheme-theoretic center is the group
Z ~ G, consisting of points
1 0 =z
u(z)=10 1 0
0 01
Viewing U3 as a central extension of G2 by Z, let U be the pullback along the inclusion y : U’ — G2
where U’ is a 1-dimensional k-wound group as in Example 2.4. A straightforward calculation shows
that U is a non-commutative 2-dimensional smooth connected k-subgroup of Us that is neither
split nor wound (since it contains a central Z = G, and admits the wound quotient U’). Thus,
Z = Ugpiiy and the sequence 1 - Z — U — U/Z — 1 cannot split since Z is the center of U and
U/Z is commutative.

Corollary 3.9. A unipotent smooth connected k-group U is k-split if and only if U ~ A} as k-
schemes for somen = 0. It is also equivalent for there to be a dominant k-morphism V = Ag—Z —
U for a generically smooth closed subscheme Z C Az.

Before we prove this corollary, we make some observations. The dominance condition on AZ —
Z — U forces Z # A¢, and by Remark 3.6 we cannot remove the generic smoothness condition on
Z. Also, Corollary 3.9 has no analogue for tori, since any torus 7" over any field F' is unirational (by
using an isogeny-splitting of the inclusion of F-tori T' < Ry ,p(TF) for a finite separable splitting
field F'/F of T). Finally, the proof of sufficiency below for the second criterion in Corollary 3.9
uses Bertini’s Theorem in the affine setting over ks but the only Z that we actually use in later
applications is a (possibly empty) union of hyperplane slices in distinct coordinate directions, for
which linear algebra works equally well in place of Bertini’s Theorem.

Proof. First assume that U is k-split, and let n = dimU. We seek to prove that U ~ A as
k-schemes. The cases n < 1 are obvious, so we may assume n > 1. Thus, there is a k-split
smooth connected normal k-subgroup U’ C U such that U/U’ ~ G,. By induction, U’ ~ Azfl
as k-schemes. We claim that the U’'-torsor U — G, = A}C for the étale topology is trivial. More
generally, for any affine k-scheme X the cohomology set H' (X, U’) classifying U'-torsors for the
étale topology on X is trivial. Indeed, using a composition series for U’ over k reduces this to
the case of H!(X¢, Ga), and by étale descent theory for quasi-coherent sheaves this coincides with
H!(Xzar, ©) = 0. We conclude that as k-schemes, U ~ U’ x (U/U’) ~ A%, as desired.

For the converse, suppose there is a dominant k-morphism f: V = Ag — Z — U for a generically
smooth closed subscheme Z C AZ- To prove that U is k-split, we may replace U with the k-wound
quotient U/Uspiit from Theorem 3.7 to reduce to the case that U is k-wound. In such cases we seek
to prove that U = 1, so it suffices to prove that the dominant f is a constant map into U(k). It is
harmless to extend scalars to ks, so V (k) is Zariski-dense in V. Since Z is generically smooth and
Z # A¢, by Bertini’s Theorem over k there exists a dense open locus Q2 in the 2(d — 1)-dimensional
quasi-projective variety Gry of affine lines in Az such that the closed subscheme Zg ()¢ in ¢ is
0-dimensional and K-smooth for all K/k and affine lines £ in K¢ corresponding to a point in Q(K).
(If Z is a union of several affine hyperplanes then linear algebra gives the same conclusion, without
using Bertini’s Theorem.) Such a closed subscheme is K-étale, so for each affine line ¢ ~ A}
corresponding to a point in (k) the open locus V)¢ in ¢ is the complement of the zero locus
on / of a separable polynomial. Hence, by Corollary 3.4 and the k-wound hypothesis on U, f has
constant restriction to V' (¢ for all £ € Q(k).

To prove the constancy of f, it suffices to prove the constancy of f on V’(k) for a dense open
V' C V (since k = kg). The idea is that for a generic pair of distinct points v and v’ in V, the
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line ¢ joining them should correspond to a point in 2 and hence the constancy of f on V ()¢ forces
f(v) = f(v"). To make this idea rigorous, consider the 2d-dimensional variety X =V x V — A of
ordered pairs of distinct points in V. There is an evident morphism X — Gr, assigning to any
(v,v") € X the unique line joining them, and all fibers are 2-dimensional, so for dimension reasons
this map is dominant. Hence, there is a dense open locus X’ C X that is carried into €. For all
(v,v") € X'(k), the unique line ¢ C k% passing through v and v’ corresponds to a point in (k), so
f is constant on V[ ¢. In particular, f(v) = f(v'). The projection pr; : X’ — V is dominant, so
its image contains a dense open subset of V. We may choose vy € V (k) in this image, so the open
subset V' := X' (N({vo} x V) in V (via pry) is non-empty and therefore dense. Clearly f(v') = f(uvo)
for all v € V'(k). O

Remark 3.10. The above cohomological proof that U ~ A} as k-schemes for k-split unipotent
smooth connected k-groups U generalizes to show that any k-split solvable smooth connected
affine k-group is k-isomorphic to A;"™ := A x (A} — {0})™ for some n,m > 0. (This result
is due to Rosenlicht, who gave a non-cohomological proof; see Lemma 2 to Theorem 2 in [Ros].
A generalization to homogeneous spaces under such groups is [Ros, Thm.5].) To carry out this
generalization, first note that a composition series expressing the k-split property reduces the
problem to proving that for a k-split solvable smooth connected k-group G, every G-torsor over G,
or Gy, for the étale topology is a trivial torsor; i.e., H'((Gy)e¢r, G) and H' (G )er, G) vanish.

As in the proof of Corollary 3.9, by using a composition series expressing the k-split property
of G, the low-degree 6-term exact sequence in non-abelian cohomology associated to a short exact
sequence of smooth affine group schemes reduces the vanishing assertion to the special cases G = G,
and Gy,. The case G = G, was addressed more generally in the proof of Corollary 3.9. The case
G = G, follows from the general equality H'(X¢, G) = Pic(X) (via descent theory for line
bundles) and the PID property for k[x] and k[z,1/z].

Corollary 3.11. If G is a k-split solvable smooth connected affine k-group then 2(QG) is k-split.

Proof. By the structure theory over k, 2(G) is unipotent. Hence, by Corollary 3.9 it suffices to
construct a dominant k-morphism A} —Z — 2(G) for some n > 1 and some geometrically reduced
closed subscheme Z C AJ. Since the product of several varieties A}* — Z; with generically smooth

Z; has the form Akz " _ Z for a generically smooth closed subscheme Z, and the geometric points of
2(G) can be expressed as a product of a universally bounded number of commutators (depending
on (), by considering such a product morphism for a sufficiently large set of commutators we are
reduced to constructing a dominant k-morphism A]kV — Z — @G for some N > 1 and generically
smooth Z. By Remark 3.10 there is a k-scheme isomorphism A}"™ ~ G, so we are done. O

Let G be a smooth connected affine k-group. The k-unipotent radical %, (G) is the maximal
normal unipotent smooth connected k-subgroup of G, and the k-split unipotent radical %, 1 (G) is
the maximal normal k-split unipotent smooth connected k-subgroup of G. For any extension field
K/k clearly %, 1(G)k C %y k(GKk) inside G . This inclusion is an equality when K/k is separable
[CGP, 1.1.9(1)], but generally not otherwise (e.g., for a nontrivial purely inseparable extension k’/k
of degree p = char(k) and G equal to the Weil restriction Ry /,(Gm) we have Z,x(G) = 1 but

Rt (Grr) = G- see [CGP, 1.1.3, 1.6.3)).

Corollary 3.12. For any smooth connected affine k-group G, Rusi(G) = Ry i(G)spiit- In par-
ticular, Ry 1 (G)/Rusk(G) is k-wound, and the formation of Xysi(G) commutes with separable
extension on k.
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Proof. By Galois descent, Zys k., (G, ) descends to a smooth connected unipotent normal k-subgroup
of G. This descent is k-split, since the k-split property of smooth connected unipotent k-groups
is insensitive to separable extension on k (due to Theorem 3.7). Thus, the descent is contained in
Tns.1:(G), so the inclusion Zys 1, (G)k, C Husk, (Gr,) is an equality. In other words, the formation
of Zysk(G) is compatible with separable algebraic extension on k. Hence, to prove the compati-
bility with general separable extension on k£ and the agreement with the maximal k-split smooth
connected k-subgroup of %, ;(G), we may assume k = ky. But %, 1(G)split is a characteristic
k-subgroup of G, so it is normal due to the Zariski-density of G(k) in G when k = kg. This proves
that %y 1 (G)split C Zus,k(G), so equality holds.

The compatibility of the formation of %, ,(G) with respect to separable extension on k now
follows from such a compatibility for the formation of Uy, in Theorem 3.7 and the formation of
K 1:(G) [CGP, 1.1.9(1)]. O

4. TORUS ACTIONS ON UNIPOTENT GROUPS

Consider the action of a k-torus 7" on a smooth connected unipotent k-group U. This induces
a linear representation of 7" on Lie(U), so if T is k-split then we get a weight space decomposition
of Lie(U). If U is a vector group then it is natural to wonder if this decomposition of Lie(U) can
be lifted to the group U. When dim U > 1, the T-action may not respect an initial choice of linear
structure on U (in the sense of Definition 1.1) since char(k) = p > 0, so we first seek a T-equivariant
linear structure.

For example, if U = G2 with its usual linear structure and 7' = Gy, with the action t.(z,y) =
(tx, (t? — t)aP + ty) then the T-action is not linear and the action on Lie(U) = k? has the single
weight given by the identity character of 7. But note that if we transport the T-action by the
additive automorphism (x,y) — (z,y + 2P) of U then the action becomes t.(z,y) = (tx,ty), which
is linear.

Tits proved rather generally that if a k-split 7" acts on U with only nontrivial weights on Lie(U),
then there are nontrivial constraints on the possibilities for U as a k-group and that (after passing
to a suitable characteristic composition series for U) the action can always be described in terms
of linear representations of T'. To explain his results in this direction, we begin with the following
result that generalizes Lemma 1.14 by incorporating a torus action.

Proposition 4.1. Let U be a smooth p-torsion commutative affine k-group equipped with an action
by an affine k-group scheme T of finite type. There exists a linear representation of T on a finite
dimensional k-vector space V' and a T-equivariant isomorphism of U onto a k-subgroup of V.

Proof. Let Hom(U, G,) be the covariant functor assigning to any k-algebra R the R-module
Hompg(Ug, G,) of R-group morphisms ¢ : Ur — G, (with R-module structure defined via the
R-linear structure on the R-group G,). There is a natural R-linear injection Hom(U, G,)(R) —
R[UR| = R®yk[U] defined by ¢ — ¢*(x) (where x is the standard coordinate on G, ), and its image
is the R-submodule of “group-like” elements: those f satisfying mp(f) = f® 1+ 1® f (where
m : U x U — U is the group law). This is an R-linear condition on f and is functorial in R, so by
k-flatness the R-module of group-like elements over R is Jr where J C k[U] is the k-subspace of
group-like elements over k. In particular, the natural map R ®; Hom(U, G,) — Hompr(Ug, G,) is
an isomorphism.

The (left) T-action on U defines a left T-action on Hom(U, G,) (via (t.¢)(u) = ¢(t~!.u)) making
the k-linear inclusion Hom (U, G,) < k[U] a T-equivariant map. Thus, Hom(U, G,) is the directed
union of T-stable finite-dimensional k-subspaces, due to the same property for k[U] [Bo, 1.9-1.10].
By Lemma 1.14 there is a k-subgroup inclusion j : U < G for some n > 1. Let W C Hom(U, G,)
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be a T-stable finite-dimensional k-subspace containing j*(x1),...,j*(z,). The canonical map U —
W* = Spec(Sym(W)) is a T-equivariant closed immersion that is a k-homomorphism (since W
consists of group-like elements in k[U] that generate k[U] as a k-algebra). O

We now apply our work with wound groups to analyze the structure of smooth connected unipo-
tent k-groups equipped with a sufficiently nontrivial action by a k-torus.

Proposition 4.2. Let T, U, and V be as in Proposition 4.1, with T a k-torus, and let Vo x V'
be the unique T-equivariant k-linear decomposition of V with Vo = VT (so V' is the span of the
isotypic k-subspaces for the nontrivial irreducible representations of T over k that occur in V). The
product map

L UNVy)x(UNV)—=U

is an isomorphism and there is a T-equivariant k-linear decomposition V' = V{ x VJ of V' and a
T-equivariant k-automorphism « of the additive k-group V' such that

a(U) = (a(U)NV,) x V.

In particular, if VT = 0 then the k-group U is a vector group admitting a T-equivariant linear
structure.

Proof. Clearly Vo = Zy(T) as k-subgroups of V, so Uy := U NV is Zy(T'). This is smooth since
U is smooth. We will first prove that ¢ is an isomorphism, so U NV’ is smooth.

Since the formation of V' clearly commutes with scalar extension on k, to establish that ¢ is an
isomorphism we may assume k is algebraically closed. Choose s € T'(k) such that for every weight
x of T in V') x(s) # 1. Consider the k-linear map f : V. — V defined by f(v) = s-v —wv. It
is obvious that f maps V onto V' with ker f = Zy(s) = Vj and that the restriction of f to V’
is a linear automorphism. The image f(U) is a smooth k-subgroup of V', and it lies in U due
to the T-stability of U inside V. By definition, V' has a T-equivariant composition series whose
successive quotients are 1-dimensional vector groups with a nontrivial T-action. Hence, all T-stable
k-subgroup schemes of V’ are connected. In particular, f(U) is connected.

Since Up N f(U) =0 (as Vo NV’ = 0), under addition Uy x f(U) is a k-subgroup of U. Thus,
f:U — f(U) is a map onto a k-subgroup of U and the restriction of this map to f(U) is
therefore an endomorphism f(U) — f(U) with trivial kernel. But f(U) is smooth and connected,
so this endomorphism is an automorphism. In other words, f : U — f(U) is a projector up to an
automorphism of f(U). Since U Nker f = U NV, = Uy, this shows that the k-subgroup inclusion
Up x f(U) < U is an isomorphism, so f(U) = U NV'. This completes the proof that ¢ is an
isomorphism.

Let U' = UNYV' and define V] = Lie(U’). Then V{ is a T-stable k-linear subspace of V.
Complete reducibility of k-linear representations of T' provides a T-stable k-linear complement Vj
of V{ in V'. Using the decomposition V' = V/ x Vj, the projection U’ — V] is an isomorphism
on Lie algebras, so it is étale. By T-equivariance, the finite étale kernel is T-stable and therefore
centralized by the connected T. But Zy/(T) = 0, so this kernel vanishes. Hence, U" — V] is an
isomorphism. It follows that the k-subgroup U’ C V' = V{ x VJ is the graph of a T-equivariant
k-homomorphism g : V{ — VJ. The T-equivariant k-automorphism « of ¥V may be taken to be the
automorphism that is the identity on V, and is the inverse of the map (v1,v2) — (v1,g(v1) + v2)
on V{ x Vj. O

Theorem 4.3. Let T be a k-torus and U a smooth p-torsion commutative affine k-group. Suppose
that there is given an action of T on U over k. Then U = Uy x U’ with Uy = Zy(T) and U’
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a T-stable k-subgroup that is a vector group admitting a linear structure relative to which T acts
linearly. Moreover, U’ is uniquely determined and is functorial in U.

Proof. By Propositions 4.1 and 4.2 we get the existence of U’. To prove the uniqueness and
functoriality of U’, we may assume k = k,. Under the decomposition of U’ into weight spaces
relative to a T-equivariant linear structure on U’, all T-weights must be nontrivial due to the
definition of Uy. Hence, the canonical map 7' x U — U defined by (t,u) — t.u — u has image U’.
This proves the uniqueness and functoriality of U’. ]

If U in Theorem 4.3 is k-wound, then it must coincide with Uy and so have trivial T-action.
This is a special case of the following general consequence of invariance of the wound property with
respect to separable extension of the ground field (Proposition 3.2):

Corollary 4.4. Let T be a k-torus and U a k-wound smooth connected unipotent k-group. The
only T-action on U is the trivial one.

Proof. Our aim is to prove that the k-subgroup scheme Zy(T) is equal to U. For the k-group
G = UxT, we have that the torus centralizer Zg(T') is equal to Zy (T)xT. But Zg(T) is smooth and
connected, so the same holds for Zi;(T'). Since Zy(T') is a scheme-theoretic centralizer, Lie(Zy (1))
is the T-centralizer in Lie(U). Hence, to prove that Zy(T') = U it suffices (by smoothness and
connectedness of U) to prove that T acts trivially on Lie(U).

By Proposition 3.2, we may extend scalars to ks, so T is k-split. Consider the composition series
{U;} from Corollary 3.3. This is T-equivariant, and each U;4+1/U; is k-wound, commutative, and
p-torsion. The Lie algebras Lie(U;) provide a T-equivariant filtration on Lie(U) whose successive
quotients are the Lie(U;11/U;). By complete reducibility for the T-action on Lie(U), to prove
triviality of the action it suffices to treat the successive quotients of a T-stable composition series
of k-subspaces of Lie(U). Hence, it suffices to treat each U;;1/U; separately in place of U, so we
may assume that the k-wound U is commutative and p-torsion. Applying the decomposition in
Theorem 4.3, we have U = Zy(T) x U’ where U’ is a vector group. Since U is wound, we conclude
that U’ = 1, so the T-action on U is trivial. O

5. SOLVABLE GROUPS

By Theorem 3.7, if U is a unipotent smooth connected k-group then there is a unique k-split
smooth connected k-subgroup Uiy such that U/Ugpt is k-wound. For tori the analogous assertion
using an anisotropic quotient is elementary. We shall establish a common generalization for solvable
smooth connected affine k-groups G. This rests on the following common generalization of the
wound condition in the unipotent case and the anisotropicity condition for tori:

Definition 5.1. A solvable smooth connected affine k-group G is k-wound if G(k[z,1/x]) = G(k).

By Remark 2.2, if G is a torus then this coincides with k-anisotropicity. By Corollary 3.4, if G
is unipotent then this coincides with Definition 2.1.

An obvious but useful reformulation of Definition 5.1 is that the specialization homomorphism
G(k[x,1/z]) — G(k) at = 1 has trivial kernel. For example, this immediately implies:

Lemma 5.2. Let 1 - G — G — G" — 1 be an exact sequence of solvable smooth connected
k-groups. If G' and G" are k-wound then so is G.

The converse of Lemma 5.2 fails in the commutative unipotent case, as we noted in Example 2.4.

Remark 5.3. A delicate aspect of Definition 5.1 is that it is generally poorly behaved with respect
to any nontrivial extension of the ground field. More specifically, in the unipotent case the separable
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extensions preserve the woundness property and the purely inseparable ones can destroy it, whereas
in the torus case the purely inseparable extensions preserve the woundness (i.e., anisotropicity)
property and the separable ones can destroy it.

For a k-wound solvable smooth connected affine k-group G, it is obvious that any smooth con-
nected k-subgroup is k-wound and that if G’ is a k-split solvable smooth connected affine k-group
then Homy_o,(G',G) = 1 (e.g., argue by induction on dim G’, using a composition series over k
whose successive quotients are G, or Gy,). In particular, if we drop the k-wound hypothesis on G
then there is at most one k-split smooth connected normal k-subgroup Gs C G such that G/Gj is
k-wound.

Since any quotient of a k-split solvable smooth connected affine k-group is k-split, it is elementary
that there exists a unique maximal k-split normal smooth connected k-subgroup Ggpiiy C G. In
Theorem 5.4 we will show that Gy is the semi-direct product of a k-split torus against a k-split
unipotent smooth connected normal k-subgroup of Ggpiit. (This is proved by more classical methods
in [Bo, 15.4(i)].)

The only possibility for G is Ggpiit, s0 G exists if and only if G/Gypiit is k-wound (in which case
Glpiit Temains maximal in G even without the normality requirement as a k-subgroup of G). The
main result of this section is:

Theorem 5.4. For any solvable smooth connected affine k-group G, the k-group G/Gsplit is a
central extension of a k-wound unipotent group by a k-wound torus (so G/Ggpi, is k-wound). In
particular, G is k-wound if and only if Gspiix = 1. The k-group Gl 15 the semi-direct product of
a maximal k-split torus against a normal k-split unipotent smooth connected k-subgroup.

The natural map G — G /Ggpliy is initial among k-homomorphisms from G to k-wound solvable
smooth connected affine k-groups and the natural map Ggpiix — G is final among k-homomorphisms
to G from k-split smooth connected affine k-groups.

Example 5.5. If F' is a perfect field (perhaps of characteristic 0) and G is a solvable smooth
connected affine F-group then G = T x U for an F-torus T and an F-split unipotent smooth
connected F-group U. Thus, Ggplit := Tipiit X U is an F-split normal smooth connected F-subgroup
such that G/Gepit = T/Tspiie is an F-anisotropic F-torus. It follows that Theorem 5.4 is only
interesting when k is imperfect. Likewise, Theorem 5.4 is only nontrivial when %,(Gy) is not
defined over k as a k-subgroup of Gy (e.g., G = Ry (Gm) for a nontrivial purely inseparable finite
extension k'/k).

Remark 5.6. Although Definition 5.1 goes beyond the category of k-groups (using k-scheme
morphisms from A} — {0}), it is natural to wonder if it can be expressed within the category of k-
groups, as in the case of tori and unipotent groups. That is, if G is a solvable smooth connected affine
k-group and Homy_g,(Ga, G) = 1 and Homy_g,(Gm, G) = 1 (equivalently, Homy_,, (G, G) = 1 for
all k-split solvable smooth connected affine k-groups G’) then is G a k-wound group? This will be
immediate once we prove that G/Ggplit, is always k-wound.

Lemma 5.7. Let U be a k-split unipotent smooth connected k-group, and M a (finite type) k-group

scheme of multiplicative type. Any exact sequence of affine finite type k-groups
1-M-—->G—-U-—=>1

is uniquely split: G = M x U as k-groups.

Proof. By the uniqueness claim and Galois descent, we may and do assume k = ks;. Hence, M
is Cartier dual to a finitely generated Z-module (so M is a k-subgroup of a split k-torus). The
uniqueness of the splitting amounts to the assertion that Homy_g,(U, M) = 1, which is obvious
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(e.g., use an inclusion of M into a k-torus). For the existence, we first note that G must be a
central extension of U by M, since the conjugation action of G/M = U on the commutative normal
subgroup M defines a homomorphism from U to the automorphism functor of M, and any such
homomorphism is trivial since U is connected and Aut,, /i 1s represented by a constant k-group.
Thus, we aim to prove the triviality of the pointed set Exy (U, M) of central extensions of U by M
(in the category of affine k-group schemes of finite type).

By using a composition series of U over k with successive quotients isomorphic to G, the low-
degree 0-functoriality involving Homyg (-, M) and Exy(-, M) (or direct bare-hands arguments with
exact sequences and splittings thereof) reduces the problem to the case U = G,. That is, we seek
to prove the vanishing of Exy(Ga, M). Any central extension G of G, by M is commutative since
the commutator of G factors through a bi-additive pairing b : G, X G, — M that is necessarily
trivial since for all u € Ga(k) = k the map b(u,-) : Go — M is a k-homomorphism and hence
trivial.

Since M is a product of Gy,’s and pu,,’s, by low-degree d-functoriality considerations in the second
variable (rather than the first) it suffices to separately treat the cases M = u,, and M = Gy,. The
Kummer sequence 1 = p, = Gy, — G — 1 and the vanishing of Homy_gp(Ga, Gr) reduce us to
the special case M = Gy,. That is, we want Ex(G,, Gy,) = 1.

Consider a central extension G of G, by Gy, so GG is commutative. By viewing G as a Gp,-torsor
over the affine line (for the étale topology, and hence the Zariski topology due to descent theory
for line bundles), we see that the quotient map 7 : G — G, admits a k-scheme section o. Using
translation by a point in Gy, (k) = (ker 7)(k) we can arrange that o(0) = e € G(k). Hence, the
resulting identification of G with the pointed k-scheme (G, x A}, (1,0)) carries the group law
on G over to a composition law (c,z) - (¢, 2') = (¢ f(z,2"),z + 2') for a symmetric polynomial
[+ A2 = Gy, satisfying f(0,0) = 1. The only such f is f = 1. O

Proof of Theorem 5.4. There are no nontrivial k-homomorphisms from a k-split solvable smooth
connected affine k-group to a k-wound solvable smooth connected affine k-group, so the only task
is to establish the central extension structure of G/Ggplix and the semi-direct product structure of
Gsplit-

First consider H = Ggpjis. The derived group 2(H) is unipotent (as we may check over k) and
k-split (Corollary 3.11), and any maximal k-torus of H maps isomorphically onto a maximal k-torus
of H/2(H). Thus, to prove that H is a semi-direct product of a maximal k-split torus against
a normal k-split unipotent subgroup U (in which case the k-torus H/U is k-split, so all maximal
k-tori in H are k-split), we may pass to the k-split commutative C' = H/%(H). This has a unique
maximal k-torus T' and the quotient U = C/T is k-split unipotent, so by Lemma 5.7 there exists
a unique decomposition C' =T x U. Thus, T is a quotient of the k-split C, so it is k-split.

It remains to understand the structure of G /Ggpiit, which is to say that we can assume Ggplie, = 1.
By Lemma 5.2 it remains to show that G is a central extension of a k-wound unipotent group by
a k-wound torus. Since G is solvable, 2(G) is unipotent (as we may check over k). Thus, the
formation of Z(G)spiie commutes with separable extension on & (even though such extension may
ruin the hypothesis that Gspie = 1). By computing with G(ks)-conjugation on 2(G)y,, it follows
that 2(G)split is normal in G. But we have arranged that Ggpir = 1, so 2(G)gplie = 1. Hence, by
the structure theory in the unipotent case, Z(G) is k-wound.

Let T be a maximal k-torus in G. Since Z(G) is k-wound unipotent, the conjugation action
by T on 2(G) is trivial (Corollary 4.4). Since T maps isomorphically onto its image T in the
commutative G/Z(G) (due to the unipotence of Z(G)), the k-subgroup T' x Z(G) in G is normal.
Thus, the G(ks)-action via conjugation on the normal ks-subgroup Ty, X Z(G)x, of Gy, preserves
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the unique maximal ks-torus T}, , so T is normal in G. The connectedness of G then forces 7' to be
central in G. Since Gpliy = 1, so Tiplip = 1, we see that T' is k-anisotropic. The formation of 1" as
the maximal central torus commutes with scalar extension on k, even though such scalar extension
may ruin the anisotropicity property of T'.

The quotient U = G /T now makes sense and is unipotent. It remains to prove that U is k-wound.
By the structure theory in the unipotent case, it suffices to show that Uspiix = 1. The preimage G’ of
Uspiit in G is an extension of Ugpyiy by T', so by Lemma 5.7 there is a unique k-group decomposition
G’ = Ugpiit X T. The formation of G’ commutes with scalar extension to ks, as does the formation
of Ugpiit C U, so the same holds for the unique subgroup of G’ isomorphically lifting Uspiie. That
is, the unique product decomposition of G’ commutes with scalar extension to ks, so consideration
of G(ks)-conjugation on st shows that Uépht is normal in G. But Gy = 1, so Ubfplit =1. O

Corollary 5.8. Let G be a solvable smooth connected affine k-group, and k'/k a regular field
extension (i.e., separable with k algebraically closed in k'). The natural inclusion (Gsplit)r C
(Gr)split s an equality.

Proof. The structure of G/Ggpiit in Theorem 5.4 reduces the problem to verifying that if £'/k is a
regular extension and G is k-wound unipotent (resp. a k-anisotropic k-torus) then Gy is k’-wound
unipotent (resp.a k’-anisotropic k’-torus). The unipotent case follows from Proposition 3.2 since
k'/k is separable. To handle the torus case, by consideration of Galois lattice character groups
it suffices to prove the surjectivity of the restriction map Gal(k./k") — Gal(ks/k) relative to an
embedding ks — k. over k — k’. The k’-algebra k' ®j ks is a field contained in k that is moreover
Galois over k with Galois group Gal(ks/k) in the evident manner, so we are done. O

In Remark 3.10, we saw that every k-split solvable smooth connected k-group is isomorphic as
a k-scheme to A" = A% x (A} — {0})™ for some n,m > 0. Here is a converse result for solvable
groups in the spirit of the splitting criterion for unipotent groups in Corollary 3.9.

Corollary 5.9. A solvable smooth connected k-group G is k-split if and only if there is a dominant
k-morphism f: A"™ — G.

Proof. The implication “=" was shown in Remark 3.10, and for the converse we will use Theorem
5.4. Assuming such an f exists, to prove that G is split we may compose f with the quotient map
G — G/Ggplit, to reduce to the case that G is k-wound, so G is an extension of a k-wound unipotent
smooth connected k-group U by a k-anisotropic torus T. Our aim is to prove that G = 1. The
composite map AZ’m — U is dominant, so U is k-split by Corollary 3.9. But U is k-wound, so
U = 1. That is, G =T is a k-anisotropic torus.

Since the units in k:[xfl, ..., 2=l are precisely the monomials ¢[[z{* with ¢ € kX and e; € Z,
the same argument as in Remark 2.2 shows that any k-morphism A%m = (A} —{oh™ - T
is a constant map to some ¢ € T'(k). Thus, the case n = 0 is settled. The anisotropicity has
done its work, as it now suffices to show that for any k-torus 7" whatsoever and any k-morphism
[ AP™ — T, there is a (unique) factorization of f through the projection A} — Ag’m. This
says that f* : k[T] — k[A}""™] lands in the Laurent polynomial subalgebra k‘[A%m], for which it is
harmless to check after extending scalars to ks or even k. Now T' = (Gy,)" for some N > 0, so we
are reduced to the case T = Gy,. Any unit on A;"™ is the pullback of a unit on AZ’m, so we are
done. ([l

We end our discussion with some applications to general smooth connected affine k-groups G.
Our interest is in variants of the k-subgroups %, (G) and %y, (G) considered in Corollary 3.12.
Define the k-radical Zy(G) to be the maximal normal solvable smooth connected k-subgroup of
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G, and the k-split radical Zs 1, (G) to be the maximal normal k-split solvable smooth connected k-
subgroup of G. Obviously G/Z(G) has trivial k-radical and G /%, ;(G) has trivial k-split radical.
Beware that G/%)(G) may not be equal to its own derived group (in contrast with G/%2(Gy)).
Equivalently, there exist G such that Z;(G) = 1 but G # Z(G); see [CGP, 11.2.1] for many such
G over any imperfect field k.

A pseudo-reductive k-group is a smooth connected affine k-group G such that %, (G) = 1. By
Galois descent and Theorem 3.7, Zy(G), = %k, (Gr,) and Rys 1 (G)i, = Hus i, (Gr,). There is no
analogue of these equalities for % .

Proposition 5.10. Let G be a smooth connected affine k-group. Then Z(G) = 1 if and only if G
18 pseudo-reductive and has no nontrivial central k-torus.

Proof. In either direction, G is pseudo-reductive, so we may and do assume that G is pseudo-
reductive. Since pseudo-reductivity is inherited by smooth connected normal k-subgroups (as ex-
plained near the beginning of [CGP, 1.1]), Zx(G) is solvable and pseudo-reductive. But a solvable
pseudo-reductive group is commutative [CGP, 1.2.3], so Zx(G) is commutative. The unique max-
imal k-torus S in Zj(G) must be normal in G and hence central (due to the connectedness of
G), and S # 1 if Z,(G) # 1 since Z;(G) cannot be unipotent when it is nontrivial (due to the
pseudo-reductivity of G). Since any central k-torus in G lies in %y (G), S is the maximal central
k-torus in G. Thus, %Z;(G) =1 if and only if S = 1. O

As an application of Corollary 5.8, we can settle the following natural question: clearly Z; 1(G) C
X1, (G)spiit, but is this containment is an equality? It is equivalent to ask if %y (G)spiit is normal
in G, or if the k-radical of G/%s(G) is k-wound. In the proof of the unipotent analogue in
Corollary 3.12 it was harmless to extend scalars to ks, but that technique is not available in the
present circumstances (and G(k) might fail to be Zariski-dense in G). Nonetheless, we can prove
an affirmative answer:

Proposition 5.11. For a smooth connected affine k-group G, %5 1(G) = Zr(G)spiit -
Proof. This amounts to the assertion that the action map
G x %k‘(G)split — G

defined by (g, h) — ghg ™! factors through % (G)spiit. By Zariski-density considerations it suffices to
check this at the generic point 7 of G, which is to say that for K = k(G) the K-group (Zx(G)spiit) &
is carried into itself under conjugation by the K-point 7 € G(K). More generally, we claim that the
K-subgroup (Zi(G)split) ik inside G is stable under conjugation by the entire group G(K'). Since
(Z1(G)spiit)k = ZK(GK)spliv (Corollary 5.8), it remains to note that for any smooth connected
solvable group H over a field F, the closed F-subgroup Hgpjit is obviously normalized by H(F'). O

Corollary 5.12. For any smooth connected affine k-group G, if Zus i (G) =1 then Zs 1,(G) is the
mazimal central k-split torus in G. In particular, Zs,(G) = 1 if and only if Xys x(G) = 1 with G
containing no nontrivial k-split central k-torus.

Proof. Consider the k-split solvable smooth connected affine k-group R := Z1(G)spiit = Zs 1(G).
By the semi-direct product structure of split solvable smooth connected affine groups as in Theorem
5.4, R is the semi-direct product of a split torus against a normal split unipotent smooth connected
k-subgroup U that must be Zys i (R) = %y (R). Since the ks-subgroup Uy, = %y i, (Ry,) is stable
under all ks-automorphisms of Ry, the normality of Ry, in Gy, implies that Uy, is normal in Gy,
so U is normal in G. Thus, U C Z,s1(G) = 1, proving that R is a split torus. But the torus R
is normal in the connected k-group G, so R is central in G. This proves that R is the maximal
central k-split torus in G. O
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Corollary 5.13. Let G be a smooth connected affine k-group. The following three conditions are
equivalent:

(1) G/%5k(G) contains a nontrivial k-split solvable smooth connected k-subgroup,
(2) G/ZK(G) contains a nontrivial k-split solvable smooth connected k-subgroup,
(3) G contains a proper pseudo-parabolic k-subgroup.

In (1) and (2) it is equivalent to contain Gy, as a non-central k-subgroup.

The notion of pseudo-parabolicity is defined in [CGP, 2.2.1]; it coincides with parabolicity in
the connected reductive case [CGP, 2.2.9]. A typical example of a pseudo-parabolic k-subgroup
that is not parabolic is P := Ry /,(P') C Ry /,(G") =: G for a nontrivial purely inseparable finite
extension k'/k and a proper parabolic k’-subgroup P’ in a connected reductive k’-group G’. (Such
P are precisely the pseudo-parabolic k-subgroups of G, by [CGP, 11.4.4]. The non-parabolicity
of P, which is to say the non-properness of G/P ~ Ry ,(G'/P"), follows from [CGP, A.5.6] since
dimG’/P' > 0.) By [CGP, 2.2.10], condition (3) is equivalent to the same for the maximal pseudo-
reductive quotient G /%, 1(G), and if G is pseudo-reductive then (3) is equivalent to saying that G
has no non-central k-split torus [CGP, 2.2.3(1)].

Proof. The kernel %Z,(G)/%sk(G) = ker(G/Z%si(G) — G/%,(G)) is k-wound since %Zs(G) =
X1, (G)spiiv (Proposition 5.11), so a nontrivial k-homomorphism from G, or Gn, to G/Zsi(G)
yields a nontrivial composite homomorphism to G/%(G). Hence, (1) implies (2).

To prove that (2) implies (3), we may replace G with G /%, 1(G), so G is pseudo-reductive. The
hypothesis in (2) says that the pseudo-reductive G/%)(G) contains G, or G, as a k-subgroup.
By [CGP, C.3.8], if a pseudo-reductive k-group contains G, as a k-subgroup then it contains a
non-central Gy, as a k-subgroup. Since Gy, as a k-subgroup of G/%(G) cannot be central (as
X (G| %,(G)) = 1), it suffices to prove that if G/%)(G) contains a non-central G, then so does
G. The preimage H in G of such a Gy, is a smooth k-subgroup, so a maximal k-torus T in H
must map onto this Gy,. Hence, T' contains a k-subgroup Gy, that is not in Zx(G) and thus is not
central in GG. The existence of a non-central Gy, in the pseudo-reductive k-group G is equivalent
to (3), by [CGP, 2.2.3(2)].

Finally, we show that (3) implies (1). It is harmless to replace G with G/%Zys k(G), 50 Zus 1 (G) =
1. Thus, %5 (G) is the maximal k-split central k-torus in G (Corollary 5.12), so G /%, 1,(G) contains
no non-trivial normal k-split k-tori (as a normal k-split k-torus in G/Z;;(G) has preimage in G
that is a k-split normal k-torus, and such a normal torus must be central due to connectedness of
G, contradicting the maximality of Zx(G)). From the definition of pseudo-parabolicity, (3) implies
that G contains a non-central Gy,. Its image in G/%; 1 (G) is a non-central k-subgroup isomorphic
to Gp. OJ

Proposition 5.14. Let G be a smooth connected affine k-group. The solvable smooth connected nor-
mal k-subgroup R := RZy(G) /%y 1 (G) in the mazimal pseudo-reductive quotient G' := G /%, 1(G) is
a central k-subgroup, and if N is a normal closed k-subgroup scheme of %x(G) then the formation
of images and preimages under G — G /N defines a bijection between the sets of pseudo-parabolic
k-subgroups of G and G/N.

Proof. Clearly R = %x(G’), so to prove the centrality of R in G’ we can replace G with G’ to reduce
to the case when G is pseudo-reductive. Thus, by [CGP, Lemma 1.2.1], to prove the triviality of
the smooth connected commutator (R, G) it suffices to prove that (R,G); C #.(Gy). In other
words, we claim that Ry has central image in the connected reductive group H := Gy/%u(G5).
But this image is a solvable smooth connected normal subgroup of H, so it is a central torus in H
due to the reductivity of H.
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The centrality of R in G’ implies that it lies in every pseudo-parabolic k-subgroup of G’ (as
pseudo-parabolic subgroups always contain the scheme-theoretic center). For any 1-parameter k-
subgroup A : Gy, — G'/R there exists n > 1 such that A" lifts to a l-parameter k-subgroup
G, — G’ (since split tori lift lift up to isogeny through any smooth surjective k-homomorphism
between smooth connected affine k-groups), so it follows formally from [CGP, 2.1.7, 2.1.9] and the
role of 1-parameter subgroups in the definition of pseudo-parabolicity that the formation of images
and preimages under the quotient map G’ — G’/R defines a bijective correspondence between the
sets of parabolic k-subgroups of G’ and G’'/R. But the formation of images and preimages under
G — G’ likewise defines a bijection between the sets of pseudo-parabolic k-subgroups of G' and
G’ (see [CGP, Prop.2.2.10]), so we conclude that the same holds for the formation of images and
preimages under G — G /%y (G) = G'/R. The analogous such bijectivity for the map G — G/N is
therefore reduced to verifying that the evident containment %y (G)/N C %,(G/N) inside G/N is
an equality. This equality holds because the normal smooth connected k-subgroup

Ze(G/N)/(Z(G)/N) C (G/N)/(#(G)/N) = G/ % (G)
is solvable and hence trivial (due to the definition of Z(G)). O

EXERCISES ON UNIPOTENT GROUPS

U.1. Let U be a unipotent smooth connected commutative group scheme over a field &k, and assume
U is p-torsion if char(k) = p > 0.

(i) If char(k) > 0 and U is k-split, use Corollary 1.16 to prove that U is a vector group.

(ii) Assume char(k) = 0 (so all k-group schemes of finite type are smooth, by Cartier’s theorem).
Prove that any short exact sequence 0 — G, - G — G, — 0 with commutative G is split. Deduce
that U ~ Giv , and prove that any action on U by a k-split torus T respects this linear structure.
Also prove that every unipotent k-group is connected and k-split.

(iii) Prove that any commutative extension of G, by Gy, is uniquely split over k. (Hint: first
make a scheme splitting using that Pic(G,) = 1.)

U.2. Let k be an imperfect field of characteristic p > 0. Let k”/k be a purely inseparable finite

extension such that k7" C k and k' == k" N kP £ k. Let U = Ry /1 (Gm)/Gm.

(i) For any smooth connected affine &’-group G’, prove that the natural map Ry /,(G') — G’
defined functorially on k’-algebras by G'(k' @ A’) — G'(A’) is a smooth surjection with &’-split
unipotent smooth connected kernel. Describe (Uy/)split and Uy /(Ug/ )split, and show each is p-torsion
and nontrivial. Deduce that Uy — Uy /(U )spiis has no k’-homomorphic section, so Uy is not a
direct product of split and wound k’-groups.

(ii) Show that (Ug)split is the cck’p-kernel of Uy whereas Ry /1 (Gm)/Gm is the cckp-kernel of
U. (Hint: compute on kl-points and ks-points respectively.) Why does this illustrate the failure
of the formation of the cckp-kernel to commute with non-separable extension on k, and why is the
non-smoothness of the p-torsion a necessary condition for any such example?

(iii) Does there exist a unipotent smooth connected k-group that is not an extension of a k-split
group by a k-wound group, perhaps even a commutative example?
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