
Math 249B. Standard parabolic subgroups: theory and examples

1. Introduction

Let G be a connected reductive k-group, P0 a minimal parabolic k-subgroup, and k∆ the
basis of kΦ := Φ(G,S) corresponding to the positive system of roots kΦ(P0, S) for a maximal
split k-torus S ⊂ P0. A parabolic k-subgroup of G is called standard if it contains P0. We
have seen that each G(k)-conjugacy class of parabolic k-subgroups has a unique standard
member, and that there is an inclusion-preserving bijection I 7→ kPI from the set of subsets
I ⊂ k∆ onto the set of standard parabolic k-subgroups (so kP∅ = P0 and kPk∆ = G). In
particular, the number of G(k)-conjugacy classes of parabolic k-subgroups is the number of
such I, which is 2#k∆ = 2rk(D(G)) (where rk(D(G)) = dimS ′ is the k-rank of D(G), with
S ′ = (S ∩D(G))0

red a maximal split k-torus of D(G)).

Remark 1.1. The relative root system for the quotient of kPI modulo its unipotent radical
(equivalently, for a Levi factor) has basis given by I and the same associated coroots as for G
(thus the same pairings of roots and coroots arising from I). In particular, if k∆ is reduced
then the Dynkin diagram for a Levi factor of kPI is the same as that formed by I inside
the diagram for k∆ with the same edges and edge-multiplicities that join vertices from I
inside the Dynkin diagram for k∆. As an extreme case, for empty I this corresponds to the
fact that the Levi factor of a minimal parabolic k-subgroup has k-anisotropic derived group,
hence an empty relative root system.

We do not need this fact, so we refer the reader to the proof of Theorem 2.9 in the
forthcoming handout on Tits systems and root groups for this result (where the compatibility
with reflections proved there establishes the compatibility of coroots as well).

Example 1.2. Assume G is split (so we write ∆ and Φ rather than k∆ and kΦ, the root groups
are commutative, and Φ is reduced). The Levi factors of the parabolic k-subgroup kPI are
therefore split, and their Dynkin diagram is given by the subdiagram of that for ∆ having
vertices in I (and the same edge multiplicities for edges of the ambient diagram joining
vertices in I). Indeed, using central isogenies and derived groups allows us to reduce to the
case when G is semisimple and simply connected. These Levi factors are special cases of torus
centralizers, and rather generally for simply connected G the proof of Corollary 9.5.11 in class
described a root basis inside ∆ for the derived group of any torus centralizer in G; this also
gave that such derived groups are also simply connected, so in such cases the isomorphism
type of the derived group of the Levi factor of a parabolic k-subgroup can be read off from
the Dynkin diagram (e.g., this recovers the familiar fact that parabolic subgroups for SLn
have Levi factors that are direct products of GLdi ’s with product of determinants equal to
1). For maximal proper parabolic k-subgroups (usually referred to as a “maximal parabolic
subgroup”, in the spirit of “maximal ideal”), the derived groups of their Levi factors have
diagram given by removing a single vertex (and any related edges) from the original diagram.

For which maximal (proper) parabolic k-subgroups P is Ru,k(P ) abelian? If kPk∆−{a}
is in the G(k)-conjugacy class of P then the abelian property is exactly the condition that
(Ub, Ub′) = 1 for all positive non-divisible b, b′ whose ∆-expansions contain a in their support.
It is necessary and sufficient that b+b′ 6∈ Φ for all such b and b′ (for necessity this rests on the
precise form of the Chevalley commutation relations with “universal” structure constants in
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Z up to signs, especially when p = char(k) ∈ {2, 3} and Φ has an edge of multiplicity p in
its Dynkin diagram).

In this handout we will determine the parabolic k-subgroups of symplectic groups, as well
as of special orthogonal groups, in the latter case allowing arbitrary (finite-dimensional) non-
degenerate quadratic spaces. For a specific minimal P0, we will also describe the resulting
standard parabolic k-subgroups. The case of SO(q)’s with general (V, q) will provide further
classes of examples of determining relative root systems.

The general theme for all of these calculations will be “stabilizer of an isotropic flag”. As
a warm-up, we now address the case of SLn in terms of flags (with no isotropicity condition):

Proposition 1.3. Let V be a vector space of finite dimension n ≥ 2 over a field k, and let
G = SL(V ). For any strictly increasing flag

F = {F 1 ( · · · ( F r}
of nonzero proper subspaces of V , the scheme-theoretic stabilizer PF := StabG(F ) is a para-
bolic k-subgroup and every parabolic k-subgroup of G arises in this way for a unique F .

The conjugacy class of PF is uniquely determined by the “numerical invariants” of F : the
sequence {dim(F j)} of dimensions of the successive terms.

Proof. It is clear that any two flags F and F ′ with the same numerical invariants are G(k)-
conjugate (use scaling along a line inside F 1 to enforce triviality of the determinant), and
that the numerical invariants are preserved under G(k)-conjugacy In particular, if we fix
an ordered basis {e1, . . . , en} of V then PF is G(k)-conjugate to PF ′ for F ′ a subflag of the
standard full flag whose jth term is the span of e1, . . . , ej (1 ≤ j ≤ n− 1).

There are 2n−1 subflags of the standard full flag (among the n−1 nonzero proper subspaces
of V occurring in the standard full flag, choose which ones to remove), and they are pairwise
non-conjugate since their numerical data are pairwise distinct. Moreover, F is recovered
from PF as the unique flag with stabilizer PF . (Explicitly, PF = G only for empty F , and
otherwise F 1 is the unique irreducible subrepresentation of the natural representation of PF
on V , with {F j/F 1}j>1 a flag in V/F 1 whose stabilizer is the image of PF in SL(V/F 1).)

We know that there are 2n−1 distinct conjugacy classes of parabolic k-subgroups since G is
split semisimple with rank n− 1, so it suffices to check that the visibly smooth k-subgroups
PF are parabolic. But each PF is the G-stabilizer of a point on a suitable Grassmannian on
which the G-action is geometrically transitive, so G/PF is a Grassmannian. Hence, PF is
parabolic. �

Example 1.4. Consider the standard full flag F = {F j} in kn, and its stabilizer B that is
the upper triangular Borel subgroup of SLn. For each subset I ⊂ ∆ := {1, . . . , n − 1}, let
PI be the G-stabilizer of the flag obtained by removing from F the terms F j for j ∈ I (e.g.,
P∅ is the stabilizer B of the standard full flag F and P∆ = G). The terms of FI consist of
the subspaces Vj = span(e1, . . . , ej) for j 6∈ I (1 ≤ j ≤ n − 1), so PI is the corresponding
“staircase” subgroup of G containing B with jumps corresponding to the constituents of FI .

Example 1.5. A maximal (proper) parabolic subgroup of SLn is exactly the stabilizer of a
single nonzero proper subspace F 1 of V (a minimal non-empty flag); this is a “staircase”
with 1 step. The conjugacy class corresponds to the dimension of F 1 (between 1 and n− 1).
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By inspection of the parabolic subgroups containing the standard Borel, we see that these all
have abelian unipotent radical: Ru(P{F 1}) is the vector group associated to Hom(V/F 1, F 1).

2. Symplectic groups

Let G = Sp(ψ) for a symplectic space (V, ψ) of (necessarily even) dimension 2n > 0 over
a field k. An increasing flag F = {F j} of nonzero proper subspaces of V is called isotropic if
each F j is isotropic in the sense that ψ|F j×F j = 0. The action of G on V carries an isotropic
flag to an isotropic flag preserving its numerical invariants (i.e., the sequence of dimensions
of its successive terms).

By non-degeneracy of ψ, if W ⊂ V is a subspace then (V/W )∗ ' W⊥, so

dimW + dimW⊥ = dimV = 2n.

In particular, if W is isotropic, so W ⊂ W⊥, then dimW ≤ n and ψ induces a symplectic
form on W⊥/W . It then follows from the structure of symplectic spaces (applied to W⊥/W )
that any isotropic subspace W is contained in an n-dimensional isotropic subspace, so the
latter are called maximal isotropic. By similar reasoning, inductive considerations show that
any flag of isotropic subspaces may be extended to one in which the successive dimensions
are 1, 2, . . . , n; the latter is therefore called a maximal isotropic flag. The maximal ones are
also exactly the isotropic flags consisting of n terms F j.

Given a maximal isotropic flag F = {F 1 ( · · · ( F n} (so dimF j = j), by choosing
compatible bases for the F j’s and compatible lifts to (F j)⊥ of the basis of each (F j)⊥/F n =
(F j)⊥/(F n)⊥ dual to the chosen basis of F n/F j, we can identify (V, ψ, F ) with the standard
example in which V = k2n, ψ corresponds to the block matrix

ψstd =

(
0 1n
−1n 0

)
,

and F j is the span of e1, . . . , ej. Consequently, for any two isotropic flags F and F ′ with
the same numerical invariants, if we extend each to a maximal isotropic flag we see that
there is an automorphism of (V, ψ) carrying F to F ′. Hence, the corresponding G-stabilizers
PF and PF ′ are G(k)-conjugate and moreover G acts geometrically transitively on each
Grassmannian of isotropic flags with specified numerical invariants. It follows that G/PF is
proper for each F , so PF is parabolic provided that it is smooth.

There are 2n distinct subflags F of a maximal isotropic flag Fmax (and the stabilizers
of all such subflags clearly contain PFmax): the count is based on keeping track of which
among the n terms are dropped from Fmax to obtain F . But there are also 2n distinct G(k)-
conjugacy classes of parabolic k-subgroups of G since G is split semisimple with maximal
tori of dimension n (the root system is Cn). Thus, if the stabilizers of the subflags of
one maximal isotropic flag are smooth and pairwise distinct then we will have found all
parabolic k-subgroups and moreover the numerical invariants of a flag will be determined by
the associated stabilizer. This motivates:

Proposition 2.1. For each isotropic flag F ⊂ V , the stabilizer scheme PF is smooth (so it
is a parabolic k-subgroup) and the only isotropic flag with stabilizer PF is F . Every parabolic
k-subgroup of G arises in this manner.
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In particular, the G(k)-conjugacy class of PF determines and is determined by the numer-
ical invariants of F .

Proof. We may assume V = k2n equipped with the standard symplectic form ψstd, and we
consider the maximal isotropic flag Fmax whose terms are the spans

Vj = span(en, . . . , ej)

for 1 ≤ j ≤ n (so Vn−j+1 = span(en, . . . , ej) and V1 ( V2 ( · · · ( Vn).
Pick I ⊂ {1, . . . , n} and let F = FI = {F 1 ( F 2 ( . . . } be the subflag of Fmax obtained

by omitting Vj’s for precisely j ∈ I (e.g., F∅ = Fmax). Define the maximal torus

GLn1 = T =

(
t−1 0
0 t

)
⊂ Sp2n = G

(with diagonal t ∈ GLn). Let

µI : GL1 → GLn1

be a cocharacter given by z 7→ (zm1 , . . . , zmn) with mn ≤ · · · ≤ m1 ≤ m0 := 0 and mn−j+1 =
mn−j (1 ≤ j ≤ n) precisely when j ∈ I (i.e., when Vj does not occur in FI).

Using the identification of T with GLn1 as defined above, consider λI : GL1 → T defined
via µI ; i.e.,

λI(z) = diag(z−m1 , . . . , z−mn , zm1 , . . . , zmn)

with

mn ≤ · · · ≤ m1 ≤ 0 ≤ −m1 ≤ · · · ≤ −mn

(so m1 < −m1 if and only if m1 < 0 =: m0). Then PGL2n(λI) is the subgroup scheme of GL2n

that preserves FI and the ψstd-orthogonal complements (F j)⊥ for the terms F j occurring in
FI . But preservation of each (F j)⊥ is automatic for points of G = Sp2n that preserve FI , so
PFI

= PG(λI) as k-group schemes. Thus, PFI
is parabolic (in particular, smooth).

Let ∆ = {a1, . . . , an} be the basis of Φ(G, T ) as in the type-C case of the handout on
classical groups, with the indexing by {1, . . . , n} as defined there. We claim that PFI

is
the parabolic corresponding to the subset {ai}i∈I ⊂ ∆ under the general dictionary for
describing standard parabolic k-subgroups via subsets of a root basis. First note that for
each I the pairing 〈aj, λI〉 is non-negative for all 1 ≤ j ≤ n (equal to mn−j −mn−j+1 ≥ 0 if
1 ≤ j < n and equal to −2m1 ≥ 0 if j = n) and it is positive for all j when I = ∅. Hence,
each PFI

contains Ua for all roots a ∈ Z≥0 · ∆, and UG(λ∅) contains Ua for all such a. In
particular, λ∅ is regular and positive with respect to ∆. Thus, PG(λ∅) is the Borel subgroup
containing T that corresponds to the basis ∆ (so UG(λ∅) is directly spanned by the Ua’s for
∆-positive a) and every PFI

is then “standard” (as PG(λ∅) = T n UG(λ∅) ⊂ PG(λI) = PFI

for all I). Inspection of the unipotent radicals of standard parabolic subgroups in general
shows that the subset of ∆ corresponding to PFI

is the complement of the set of a ∈ ∆ for
which Ua ⊂ Ru,k(PFI

) = UG(λI); i.e., this is the set of a ∈ ∆ such that 〈a, λI〉 = 0. Thus,
by definition of FI , we need to show that 〈aj, λI〉 = 0 (i.e., mn−j = mn−j+1, where m0 := 0)
precisely when j ∈ I. This in turn is immediate from the definition of λI .
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The preceding argument shows that the parabolics PFI
exhaust without repetition the

standard parabolic subgroups, so for any isotropic flag F the G(k)-conjugacy class of k-
subgroup PF ⊂ G determines the numerical invariants of F (as the FI ’s for varying I
exhaust without repetition all possible numerical invariants).

It remains to show that an isotropic flag F is uniquely determined by its G-stabilizer PF .
Suppose F ′ is an isotropic flag such that PF ′ = PF . In particular, F and F ′ have the same
numerical invariants, so there exists g ∈ G(k) satisfying g(F ) = F ′. Hence, gPFg

−1 = PF ′ .
But PF ′ = PF , so g ∈ NG(k)(PF ) = PF (k). This says that g(F ) = F , so F ′ = g(F ) = F . �

Example 2.2. It follows from Proposition 2.1 (exercise!) that a maximal (proper) parabolic
subgroup of G = Sp(ψ) = Sp2n is exactly the stabilizer of a minimal non-empty isotropic flag;
i.e., the G-stabilizer of a nonzero isotropic subspace F 1 ⊂ V . There are n such conjugacy
classes, corresponding to a choice of vertex to remove from the diagram, and to the dimension
of F 1 (between 1 and n). Which F 1, if any, correspond to parabolics with abelian unipotent
radical? For the case n = 1 (i.e., SL2) the abelian property always holds (unipotent radical
of a Borel subgroup of SL2), so let’s consider n ≥ 2.

Inspection of the table for type Cn in Bourbaki for n ≥ 2 shows that for the unique long
root an ∈ ∆, the an-coefficient in every positive root b is either 0 or 1. Thus, if b and
b′ are positive roots whose ∆-expansions contain an in their supports then b + b′ is not a
root. Hence, by Example 1.2, the maximal (proper) parabolic subgroup corresponding to
∆−{an} has abelian unipotent radical. In contrast, inspection of the Bourbaki table for Cn

with n ≥ 2 shows that for each short root ai ∈ ∆ there exist positive roots b and b′ whose
∆-expansions contain ai in their support and for which b+ b′ is a root.

Thus, there is exactly one conjugacy class of parabolic subgroups with abelian unipotent
radical, corresponding to the subset ∆− {an} ⊂ ∆ (with an long); this also works for n = 1
with the unique root in ∆ understood to be long (reasonable, as it is divisible by 2 in the
weight lattice). These are called the Siegel parabolics. In terms of the notation in the proof
of Proposition 2.1, these correspond to mn = mn−1 = · · · = m1 < 0, which is to say isotropic
subspaces F 1 ⊂ V with dimension n (as also works for n = 1). [By the same method,
if F 1 ⊂ V is an isotropic subspace of dimension 1 ≤ i < n then the conjugacy class of
P{F 1} corresponds to the condition mn = · · · = mn−i+1 < mn−i = · · · = m1 = 0.] We
conclude that for any n ≥ 1, the Siegel parabolic subgroups of Sp2n are the stabilizers of
the maximal isotropic subspaces. For the standard maximal isotropic subspace F 1 = V1 =
span(e1, . . . , en) of (k2n, ψstd), by inspection Ru(P{F 1}) consists of the block matrices ( 1n M

0 1n
)

with M a symmetric n× n matrix.
In the special case n = 2 (i.e., Sp4) there is one other conjugacy class of maximal (proper)

parabolic subgroups, corresponding to ∆ − {a1} for the unique short node in the Dynkin
diagram. These are called the Klingen (or Jacobi) parabolic subgroups of Sp4, and they are
the stabilizers of lines (all of which are isotropic in a symplectic space). Using the standard
choice in the proof of Proposition 2.1, the standard Klingen parabolic is the stabilizer of
V2 = ke2, and its unipotent radical is (

(u−1)t mu
0 u

)
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for unipotent u = ( 1 x
0 1 ) ∈ GL2 and symmetric m = ( 0 y

y z ) ∈ Mat2. (This description
encodes parameterizations of the 3 root groups directly spanning that unipotent radical,
corresponding to x, y, z.) The same terminology is used for GSp4 (whose parabolic subgroups
are in natural bijective correspondence with those of the derived group Sp4).

3. Special orthogonal groups

We next turn to the study of G = SO(q) for a non-degenerate quadratic space (V, q)
of dimension n ≥ 3; we assume n ≥ 3 so that G is connected semisimple (it is a torus
when n = 2). Note that typically G is not k-split; this will introduce some new issues not
encountered in the symplectic case. Let Bq : V ×V → k be the associated symmetric bilinear
form (v, v′) 7→ q(v + v′) − q(v) − q(v′), so Bq is non-degenerate except when n is odd and
char(k) = 2 (in which case Bq has a 1-dimensional defect space V ⊥, with Bq inducing a
symplectic form on V/V ⊥). When we speak of orthogonality of subspaces of V , we mean
with respect to Bq.

By Exercise 5 in HW6 of the previous course, (V, q) is isotropic (i.e., q(v) = 0 for some
nonzero v ∈ V ) if and only if G is k-isotropic, in which case a nonzero solution to q = 0
lies in a hyperbolic plane H ⊂ V , with V = H ⊥ H⊥ as quadratic spaces. (This much only
requires n ≥ 2, rather than n ≥ 3.) For an analysis of proper parabolic k-subgroups of the
connected semisimple group G, we therefore may and do now assume that (V, q) contains a
hyperbolic plane, so G has positive k-rank. Note that in such a hyperbolic plane there are
exactly two lines on which the restriction of q vanishes.

Definition 3.1. A subspace W ⊂ V is isotropic if q|W = 0. (This is equivalent to Bq|W×W =
0 except when n is odd and char(k) = 2.)

Eventually we will prove that parabolic k-subgroups of G arise from isotropic flags in V ,
as in the symplectic case. However, the bijective correspondence as in the symplectic case
will break down when n ≥ 4 is even and G is k-split.

Remark 3.2. Since SO(q) = SO(cq) inside GL(V ) for c ∈ k×, if n = 2m + 1 ≥ 3 is odd
then it can happen then SO(q) is split even though q is not split. For example, consider
q = ax2

0 + x1x2 + · · ·+ x2m−1x2m. Then discriminant considerations show that q is not split
if a is not a square. However, (1/a)q is split and has the same special orthogonal group.

In general, since n ≥ 3, the k-group SO(q) determines (V, q) up to conformal isometry.
To prove this fact (which we do not need), note that the conformal automorphism group of
(V, q) is GO(q), and that there is a natural action of PGO(q) = GO(q)/GL1 on SO(q) via
conjugation. The remarkable fact is that this action identifies PGO(q) with the automor-
phism scheme of SO(q) (we only need this on ks-valued points) for n ≥ 3, first proved by
Dieudonné away from characteristic 2 (for a modern proof, see Lemma C.3.13 in the article
Reductive group schemes in the 2011 Luminy summer school Proceedings). Using Hilbert 90
then gives the assertion.

Proposition 3.3. Let r > 0 be the k-rank of G. Every maximal mutually orthogonal collec-
tion of hyperbolic planes in V has size r.

Note that a split subspace of dimension 2r is an orthogonal sum of hyperbolic planes by
another name.
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Proof. An orthogonal sum of hyperbolic planes has vanishing defect space, so by Witt’s
Extension Theorem (see Theorem 3.1 in the handout on root systems for classical groups) the
action of O(q)(k) is transitive every split non-degenerate subspace of a given even dimension
2m > 0. Thus, we just have to build such a subspace of dimension 2r and then show that
its orthogonal complement is anisotropic (and so contains no hyperbolic plane).

Let S ⊂ G be a maximal split k-torus, and T ⊂ G a maximal k-torus containing S. By
inspection of a split quadratic space over k we see that there is a collection of nontrivial
Tks-weights on Vks that is a basis for X(Tks)Q. Since the restriction map X(Tks) → X(S) is
surjective and the restriction to Sks of each Tks-weight on Vks is an S-weight on V , there
exists a subset {χ1, . . . , χr} of X(S) that is a basis of X(S)Q.

As is well-known, the S-weight spaces in V for distinct S-weights are mutually linearly
independent (since S is split). The S-invariance of q implies that for each χ ∈ X(S) the
quadratic form q vanishes on each V (χ) (since for v ∈ V (χ) and s ∈ S we have q(v) =
q(s.v) = q(χ(s)v) = χ2(s)q(v), forcing q(v) = 0). Note that if n is odd and char(k) = 2,
so there is a defect line V ⊥, the action of G on V preserves V ⊥ and hence is trivial on the
line V ⊥ (as G has no nontrivial characters), so S acts trivially on V ⊥. Thus, Bq sets up a
perfect pairing between each V (χ) and its orthogonal complement.

For any χ, χ′ ∈ X(S) and v ∈ V (χ), v′ ∈ V (χ′), and s ∈ S, we have

Bq(v, v
′) = Bq(s.v, s.v

′) = Bq(χ(s)v, χ′(s)v′) = χ(s)χ′(s)Bq(v, v
′).

Thus, if χ′χ 6= 1 then Bq(v, v
′) = 0. It follows that Bq defines a perfect duality between

V (χ) and V (χ−1) for any χ ∈ X(S). In particular, each V (χ−1
j ) is nonzero and the weight

spaces V (χ±1
j ) are collectively linearly independent.

Choose nonzero v±j ∈ V (χ±1
j ), so the span Hj of v+

j and v−j is a hyperbolic plane with

H1, . . . , Hr mutually orthogonal. For W = H1 ⊥ · · · ⊥ Hr we have V = W ⊥ W⊥, so G
contains SO(W )×SO(W⊥). But SO(W ) obviously contains a split torus of dimension r, yet
r is the k-rank of G, so SO(W⊥) must be anisotropic. Hence, W⊥ is anisotropic; i.e., q has
no nontrivial zeros on W⊥. In particular, there is no hyperbolic plane contained in W⊥. It
then follows from Witt’s Theorem that W is maximal as an orthogonal sum of hyperbolic
planes in V . �

Corollary 3.4. For n ≥ 3, the maximal isotropic subspaces W ⊂ V have dimension r, and
G(k) acts transitively on the set of these except when n = 2r, in which case there are exactly
two G(k)-orbits of such subspaces.

Every maximal split k-torus S ⊂ G acts on V with nontrivial weights occurring in r pairs
of opposite weights {χ±1

j }, each with a 1-dimensional weight space and with {χj} a basis for
X(S). Every maximal isotropic subspace of V arises from such an S as the span of S-weight
spaces for one from each of the r pairs of opposite nontrivial S-weights on V .

In Example 3.5 we give a direct geometric characterization of the two orbits when n = 2r.

Proof. An isotropic subspace has vanishing intersection with the defect line V ⊥ when n
is odd with char(k) = 2, so by Witt’s Theorem any two isotropic subspaces of the same
dimension are related through the action of O(q)(k). Thus, if one r-dimensional isotropic
subspace is maximal then all maximal isotropic subspaces have dimension r. We have found
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a decomposition
V = H1 ⊥ · · · ⊥ Hr ⊥ V ′

where the Hi are hyperbolic planes and V ′ is (non-degenerate and) anisotropic. Each Hj

contains exactly two isotropic lines {Lj, L′j}. Let W = L1 ⊥ · · · ⊥ Lr, an isotropic subspace
of dimension r, and let W ′ = L′1 ⊥ · · · ⊥ L′r.

To prove that W is maximal isotropic, we have to show that any isotropic vector v ∈
W⊥−W must vanish. It is harmless to change v modulo W since W is isotropic, so we may
assume v = w′ + v′ for some w′ ∈ W ′ and v′ ∈ V ′. But W ′ is orthogonal to V ′, so

0 = q(v) = q(w′) +Bq(w
′, v′) + q(v′) = q(w′) + q(v′).

Since W ′ is isotropic we have q(w′) = 0, so v′ is isotropic in V ′. But V ′ is anisotropic, so
v = w′ ∈ W ′.

But W ′ is in perfect duality with W under Bq via the construction using the isotropic
lines in the hyperbolic planes H1, . . . , Hr, so the condition w′ = v ∈ W⊥ with w′ ∈ W ′ forces
w′ = 0. This completes the proof that maximal isotropic subspaces have dimension r.

For W as just built, there is an evident split torus S0 = GLr1 ⊂ G for which the jth factor
acts on the line Lj through usual scaling, on L′j through scaling via inversion, and trivially
on V ′. Identify S0 as a split maximal k-torus in the split subgroup SO(kv′ ⊥ (⊥ Hj)) =
SO2r+1 ⊂ G when n is odd or when n is even with r < n/2, and in the split group SOn = G
when n is even and r = n/2. Inspection of the Weyl group in the Bourbaki tables for types
Br and Dr (separate care for B1 = A1 and D2 = A1×A1) and the explicit description of split
maximal tori and the roots for types B and D in the handout on root systems for classical
groups (using type-D only when n = 2r) show that NG(S0)(k) acts by whatever collection
of inversions we wish along the r evident GL1-factors except that when n = 2r only an even
number of such inversions can be realized.

We conclude from the transitivity of the G(k)-action on the set of split maximal k-tori
that transitivity holds on the set of such tori equipped with a choice of one from each pair of
opposite non-trivial weights on V except that for even n ≥ 4 and r = n/2 there are at most
two orbits. Such data yields a specific maximal isotropic subspace, and all arise in this way
since O(q)(k) normalizes G and (by Witt’s Extension Theorem) acts transitively on the set
of such subspaces, so G(k) acts transitively on the set of maximal isotropic subspaces except
possibly when n = 2r ≥ 4, in which case there are at most two G(k)-orbits.

Finally, we check for n = 2r (so G = SO2r is split and O(q) = O2r is an extension of Z/2Z
by G in all characteristics) that there are indeed two distinct G(k)-orbits of such subspaces.
Since O2r(k) acts transitively, it suffices to show that the O2r-stabilizer of such a subspace is
contained inside SO2r = O0

2r. Indeed, once this is proved it follows that the O2r-homogenous
space of maximal isotropic subspaces inside the Grassmannian of r-planes inside k2r has two
connected components, so each SO2r(k)-orbit is constrained to lie in one component and the
effect of any ρ ∈ O2r(k) − SO2r(k) (such as reflection in a non-isotropic vector) must move
an SO2r(k)-orbit to another such orbit.

Letting W ⊂ k2r be a maximal isotropic subspace, our uniform description of these in
terms of hyperbolic planes provides an isotropic complement W ′ that is in perfect duality
with W via Bq. Consequently, if g ∈ O2r(k) preserves W then its effect on V/W = W ∗ must
be inverse-dual to g|W via g-equivariance ofBq. Hence, det(g) = det(g|W ) det((g|W )∗)−1 = 1,
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so if char(k) 6= 2 then g ∈ SO2r(k). To handle characteristic 2, we can argue in another way
that is characteristic-free: for W of dimension r, we may identify our quadratic space with
W ⊕W ∗ on which q(w, `) is equal to `(w), and then the stabilizer of W inside O(q) is easily
computed to consist of block matrices(

M MT
0 (M∗)−1

)
with M ∈ GL(W ) and T ∈ Hom(W ∗,W ) satisfying `(T (`))) = 0 for all ` ∈ W ∗. This
is clearly linear condition on T ; explicitly, relative to a basis of W and its dual basis for
W ∗, it says that the matrix for T has vanishing diagonal and vanishing sum for ij and
ji entries for all i < j. In this way we see that the W -stabilizer in O(q) is connected (a
semi-direct product of GL(W ) against a linear subrepresentation of Hom(W ∗,W )), so it lies
inside O(q)0 = SO(q). �

Example 3.5. When n = 2r ≥ 4 (so G = SO2r is k-split of type Dr), among the maximal
isotropic subspaces W ⊂ V we have seen that there are two G(k)-orbits. How do we detect
when two such subspaces W,W ′ ⊂ V lie in the same G(k)-orbit? We claim W and W ′ are in
the same orbit if and only if the common codimension of W ∩W ′ inside W and W ′ is even.

Let c be the common codimension of L := W ∩W ′ in W and W ′. Then W,W ′ ⊂ L⊥,
and W/L and W ′/L are c-dimensional maximal isotropic subspaces in the non-degenerate
quadratic space L⊥/L with dimension dim(V ) − 2 dim(L) that is even. (There is a natural
quadratic form on L⊥/L since L is isotropic, and it is non-degenerate because Bq induces a
perfect pairing on this space.) If c ≥ 2, then we claim that by applying to W ′ a composition
of an even number of reflections in non-isotropic vectors of L⊥ (giving an element of G(k))
brings us to the case in which the codimension becomes 0 for even c and become 1 for odd c.
Note that such reflections have trivial effect on L, so for this purpose we may work instead
with L⊥/L in place of V , so W ∩W ′ = 0 and dimW = dimW ′ = c ≥ 2.

Now Bq sets up a perfect duality between W and W ′. By choosing a basis of W and
equipping W ′ with the Bq-dual basis, we may express V as an orthogonal sum of c hyperbolic
planes H1, . . . , Hc such that for the two isotropic lines {Lj, L′j} of each Hj we may label them
to ensure that W =

⊕
Lj and W ′ =

⊕
L′j. A reflection in a non-isotropic vector of Hj swaps

Lj and L′j, and the composition of such reflections for an even number of j’s lies in G(k).
We can take this even number to be c when c is even, and to be c− 1 when c is odd. This
provides g ∈ G(k) such that g(W ) = W ′ when c is even and g(W ) ∩W ′ has codimension 1
in each of g(W ) and W ′ when c is odd.

It remains to show that if W ∩W ′ has codimension 1 in W and W ′ then W and W ′ are
not in the same G(k)-orbit. The O(q)(k)-stabilizer of W is contained in G (see the proof
of Corollary 3.4), all elements of O(q)(k) carrying W to W ′ lie in the same G(k)-coset.
In particular, to prove that W and W ′ are not in the same G(k)-orbit it suffices to find
γ ∈ O(q)(k)−G(k) such that γ(W ) = W ′. We will find a reflection in a non-isotropic vector
that carries W to W ′, thereby completing the proof.

Since L := W ∩W ′ has dimension r−1, the quotients W/L and W ′/L are distinct isotropic
lines in the non-degenerate quadratic space L⊥/L of dimension 2, so L⊥/L is a hyperbolic
plane. A reflection in a suitable non-isotropic vector in a hyperbolic plane swaps the two
isotropic lines, so we get the desired γ as a reflection in a non-isotropic vector.
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We define a flag F = (0 ( F 1 ( · · · ( Fm ( V ) to be isotropic if each F j is isotropic
(so dimFm ≤ r ≤ n/2). Witt’s Extension Theorem ensures that the maximal isotropic flags
are precisely the full flags in maximal isotropic subspaces (which we know have dimension
exactly r > 0). But we have proved that G(k) acts transitively on the set of maximal
isotropic subspaces except when n = 2r ≥ 4, in which case there are two G(k)-orbits.

Lemma 3.6. The group G(k) acts transitively on the set of maximal isotropic flags except
that if n = 2r ≥ 4 then there are two orbits (determined by the orbit of the maximal member
of the flag).

Proof. Let W be the maximal isotropic subspace occurring in a maximal isotropic flag. We
can choose another maximal isotropic subspace W ′ in perfect duality with W under Bq (by
considerations with Witt’s Extension Theorem and mutually orthogonal hyperbolic planes).
Then GL(W ) naturally embeds into SO(q) by making g ∈ GL(W ) act as follows: the usual
action onW , the inverse-dual action onW ′ ' W ∗, and trivially on the anisotropic (W⊕W ′)⊥.
Since GL(W ) acts transitively on the set of flags of nonzero proper subspaces of W with a
given set of numerical invariants, it follows that G(k) acts transitively on the set of maximal
isotropic flags except for the obstruction at the top layer: if n = 2r ≥ 4 then there are two
orbits (determined by the orbit of the maximal member of the flag). �

Any isotropic subspace of dimension less than r can be embedded into one of dimension
r, and this leads to a refinement of the preceding lemma.

Proposition 3.7. The action on G(k) on the set of isotropic flags in V with a given set
of numerical invariants is transitive except when n = 2r ≥ 4 and the maximal subspace in
the flag has dimension r. In the latter case there are exactly two G(k)-orbits with the given
numerical invariants.

Proof. Assume that we are not in the case n = 2r ≥ 4. Since any isotropic flag F can be put
into a maximal one, and F is recovered as a subflag using the given numerical invariants,
transitivity in the maximal case in Lemma 3.6 does the job.

Now suppose n = 2r ≥ 4 (so r ≥ 2). By the same reasoning, there are at most two
G(k)-orbits of isotropic flags with a given set of numerical invariants, and certainly when the
flags under consideration contain an r-dimensional member there are exactly 2 such orbits.

It remains to show that when the members of the flags all have dimension < r then there
is only one G(k)-orbit. It is harmless to restrict attention to flags

F = (F 1 ( · · · ( F r−1)

with dimF j = j for all 1 ≤ j ≤ r−1. For such an F , let W be a maximal isotropic subspace
containing F r−1 as a hyperplane. We can choose another r-dimensional isotropic subspace
W ′ complementary to W and in perfect duality with W via Bq.

Choose a basis {e1, . . . , er} of W with ej ∈ F j, and let {e′1, . . . , e′r} be the dual basis of
W ′, so Hj = kej + ke′j is a hyperbolic plane. Reflection in a non-isotropic vector of Hr has
the effect of swapping the two isotropic lines ker and ke′r and has no effect on H1, . . . , Hr−1.
Hence, the original flag F is unaffected by that reflection, but the enlargements F ′ and F ′′

of F by appending W = F r−1 + ker or F r−1 + ke′r are swapped.
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In this way we have made representatives of the two G(k)-orbits of maximal isotropic
flags that each contain F as their subflag in dimensions < r. But every flag with the same
numerical invariants as F can be enlarged to a maximal isotropic flag and hence is in the
same G(k)-orbit as one of F ′ or F ′′. Yet the subflags of F ′ and F ′′ in dimension < r coincide
with F ! This establishes the desired transtivity. �

We are nearly ready to prove the orthogonal analogue of Proposition 2.1, but first we shall
address n = 2r = 4 because this illustrates very directly a special feature of the general case
with n = 2r ≥ 4 (so r ≥ 2) that we shall see later: isotropic flags F containing members with
dimensions r−1 and r have the same stabilizer as the subflag in dimensions < r. The reason
that n = 2r = 4 is very accessible is that SO4 = SL2 ×µ2 SL2 via the action of SL2 ×µ2 SL2

on (gl2, det) by left and right multiplication of SL2 on gl2, using (g, h).M = gMh−1 (put
another way, the diagram D2 consists of two isolated points).

Example 3.8. Assume n = 2r = 4. For the isotropic line L = {( 0 ∗
0 0 )} and isotropic plane

W = {( 0 ∗
0 ∗ )}, direct calculation shows that their respective scheme-theoretic stabilizers are

the parabolic subgroups B′ := B ×µ2 B and P := SL2 ×µ2 B for the upper triangular Borel
subgroup B ⊂ SL2. Since B′ ⊂ P , the stabilizer of the maximal isotropic flag F0 = (L ⊂ W )
is also equal to B′. Similarly, the isotropic plane W ′ = {( ∗ ∗0 0 )} has stabilizer B ×µ2 SL2.

We have obtained all 3 proper parabolic k-subgroups containing B′, so every parabolic k-
subgroup of SO4 arises as the stabilizer of an isotropic flag. Since the G(k)-conjugacy classes
of B×µ2 SL2 and SL2×µ2 B are distinct, the isotropic planes W and W ′ are not in the same
G(k)-orbit, so these represent the two distinct G(k)-orbits of maximal isotropic subspaces.
(Alternatively, W ∩W ′ has odd codimension in each of W and W ′, so by Example 3.5 the
G(k)-orbits of W and W ′ are distinct.)

Likewise, F0 := (L ⊂ W ) and F ′0 := (L ⊂ W ′) must represent the two G(k)-orbits
of maximal isotropic flags, so we conclude that the scheme-theoretic G-stabilizer of every
isotropic flag is a parabolic k-subgroup. Note in particular that the two G(k)-conjugacy
classes of maximal parabolic k-subgroups correspond to the two G(k)-orbits of maximal
isotropic subspaces.

Observe that the flag F0 and the flag consisting just of the isotropic subspace L have
different numerical invariants but the same stabilizer, and likewise F ′0 also has this stabilizer
(by inspection or because O(q)(k) acts transitively on the set of maximal isotropic subspaces).
More generally, an isotropic line and both flags extending it with an isotropic plane are the
only cases of distinct isotropic flags in (gl2, det) with the same stabilizer. Indeed, by our
knowledge of the G(k)-orbits of isotropic flags and the G(k)-conjugacy classes of parabolic
k-subgroups it suffices to check that (i) L is the only isotropic line with stabilizer B′ and (ii)
W is the only isotropic plane with stabilizer P . For the diagonal k-torus T ⊂ SL2 the split
k-torus S := T ×µ2 T is maximal in G and is contained in B and P . The weight spaces for
the S-action on gl2 are the 4 isotropic lines given by the standard matrix entries, so (i) and
(ii) are easy case-checking with these lines.

The relationship between isotropic flags and parabolic k-subgroups in special orthogonal
groups is somewhat lengthy to sort out when n = 2r ≥ 4, due to the need to grapple with
the absence of a bijection between isotropic flags and parabolic k-subgroups for such n and
r. To be more precise, it is true for all n ≥ 3 that the (scheme-theoretic) stabilizer in SO(q)
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of any isotropic flag is parabolic and that every parabolic k-subgroup arises in this way.
However, when n = 2r ≥ 4 some parabolics arise as the stabilizer of three distinct flags, and
informally this is “cancelled” by the fact that in related cases the numerical invariants of
a flag can fail to characterize its SO(q)(k)-orbit (as opposed to its O(q)(k)-orbit). Keeping
track of these breakdowns is a source of case-checking headaches in the following proof.

Theorem 3.9. Let F ⊂ V be an isotropic flag, and ν(F ) ⊂ {1, . . . , r} its set of numerical
invariants.

(i) The G-stabilizer PF is a parabolic k-subgroup of G, and every parabolic k-subgroup
of G arises in this manner.

(ii) The stabilizer PF ⊂ G determines F except that if n = 2r ≥ 4 and r − 1 is the
largest element of ν(F ) then PF = PF ′ for both isotropic flags F ′ obtained from F by
inserting an r-dimensional isotropic subspace.

(iii) The G(k)-conjugacy class of PF determines the G(k)-orbit of F except that if n =
2r ≥ 4 and ν ⊂ {1, . . . , r− 1} is a subset containing r− 1 then the G(k)-orbit of F ’s
with ν(F ) = ν and both G(k)-orbits of F ’s with ν(F ) = ν ∪ {r} all have the same
G(k)-orbit of stabilizers.

In (ii) there are exactly two possibilities for F ′ because if W is the (r − 1)-dimensional
member of F then the r-dimensional member of F ′ corresponds to an isotropic line in the
quadratic space W⊥/W that is a hyperbolic plane.

Proof. We have already shown that a G(k)-orbit of isotropic flags consists of exactly those
flags with fixed numerical invariants with the exception that if n = 2r ≥ 4 then there are
two G(k)-orbits of isotropic flags containing an r-dimensional member and having specified
numerical invariants. In particular, (iii) is a formal consequence of (ii), so we may and do
now focus on (i) and (ii).

Let’s show that to prove (i) and (ii) we may assume q is split. To prove the parabolicity
of PF in (i) it suffices to check after scalar extension to ks (Sks is usually not maximal split
but Fks remains an isotropic flag). Likewise, to prove (ii) it suffices to check over ks because
if there is an r-dimensional isotropic subspace of V then n = 2r ≥ 4 and q is split (so every
(r − 1)-dimensional isotropic subspace lies in an r-dimensional one). Once (ii) is proved,
the second assertion in (i) for a given parabolic k-subgroup P follows from the case over ks
because we can apply Galois descent to the unique isotropic flag in Vks giving rise to Pks
which doesn’t have both r − 1 and r among its numerical invariants (uniqueness by (ii)).
Over a separably closed field k we can replace q with a k×-multiple so that it is split. Hence,
now we may and so assume q is split (and allow k to be arbitrary).

To be explicit, it is convenient to use the coordinatizations

q2m = x0x2m−1 + · · ·+ xm−1xm, q2m+1 = x0x2m + · · ·+ xm−1xm+1 + x2
m

so that an m-dimensional split maximal torus T ⊂ G = SO(qn) is given by the diagonal

diag(t1, . . . , tm, t
−1
m , . . . , t−1

1 ), diag(t1, . . . , tm, 1, t
−1
m , . . . , t−1

1 )

for n = 2m, 2m+ 1 respectively. Note that r = m.
Due to the special behavior of B1 (for n = 3) relative to higher-rank type-B and of D2 (for

n = 4) relative to higher-rank type-D, we first treat n = 3, 4 directly, using the identification
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PGL2 ' SO3 via the action of PGL2 on (sl2, det) by conjugation and the identification
SL2 ×µ2 SL2 ' SO4. In dimension 3 the only non-empty isotropic flags are isotropic lines,
and in dimension 4 the non-empty isotropic flags are: isotropic lines, isotropic planes, and
pairs (L ⊂ W ) consisting of an isotropic line in an isotropic plane.

We treated n = 4 in Example 3.8, so suppose n = 3. A direct calculation with the isotropic
line ( 0 ∗

0 0 ) inside sl2 shows that its scheme-theoretic stabilizer in PGL2 is the upper triangular
Borel subgroup B of PGL2. To show that this isotropic line is the only one preserved by B,
consideration of the action on sl2 by the diagonal torus T of B shows that the only other
possible lines are Lie(T ) and the Lie algebra of the unipotent radical of the opposite Borel
subgroup with respect to T , neither of which is normalized by B.

Now we may and do assume n ≥ 5, so either n = 2m+1 with m ≥ 2 or n = 2m with m ≥ 3.
Let Wj = span(e0, . . . , ej−1) for 1 ≤ j ≤ m, so W := Wm is the standard maximal isotropic
subspace of kn and Fstd := (Wj)1≤j≤m is a maximal isotropic flag. Note that W⊥ = W for
even n and W⊥ = W ⊕ kem for n = 2m+ 1. Consider cocharacters λ ∈ X∗(T ) defined by

λ : z →


(zh1 , . . . , zhm , z−hm , . . . , z−h1), m even;

(zh1 , . . . , zhm , 1, z−hm , . . . , z−h1), m odd,

where h1 ≥ · · · ≥ hm ≥ 0 =: hm+1. Say that λ is of type I for a subset I ⊂ {1, . . . ,m} if for
1 ≤ j ≤ m we have hj = hj+1 exactly for j ∈ I.

For each I, let FI be the flag consisting of Wj’s for j 6∈ I and fix λI of type I. By a
variant of the argument in the symplectic case, PGLn(λI) is the stabilizer in GLn of the flag
consisting of the members of FI and their Bq-orthogonal complements. Hence, the parabolic
k-subgroup PG(λI) = G ∩ PGLn(λI) coincides with the G-stabilizer scheme PFI

of FI . As
we vary I, the FI ’s realize all possible numerical invariants. Since the numerical invariants
determine the O(q)(k)-orbit of a flag (not always the G(k)-orbit!), and O(q)(k) normalizes
G inside O(q), it follows that PF is parabolic for all isotropic flags F .

Each of the 2m parabolic subgroups PFI
contains PF∅ , and PF∅ is a Borel subgroup because

λ∅ is regular (as we see by composing λI with the list of positive roots for types B and
D in the handout on root systems for classical groups). Moreover, the T -root groups in
Ru(PF∅) = UG(λ∅) include the ones deemed positive for types B and D in the handout on
root systems for classical groups, so by comparing counts with the size of a positive system of
roots these are exactly the root groups in that unipotent radical. That is, the Borel subgroup
PF∅ ⊃ T corresponds to the root basis ∆ as defined for types B and D in that handout. Now
we treat the remaining cases n = 2m+ 1 ≥ 5 and n = 2m ≥ 6 separately.

Odd n = 2m + 1 ≥ 5. We claim that the PFI
’s exhaust the 2m standard parabolics

relative to the Borel PF∅ (so every parabolic k-subgroup arises as PF for some isotropic
flag F , with the G(k)-conjugacy class of PF characterized by the numerical invariants of
F ). For this it suffices to show that PFI

6= PFI′
for I 6= I ′. Once that is done, the fact

that the subgroup PF ⊂ G determines the isotropic flag F for odd n goes via Chevalley’s
self-normalizing theorem for parabolics as in the symplectic case, so we would be done.

So now it suffices to prove the more precise result (with n = 2m + 1 ≥ 5) that PFI

corresponds to the subset I of the basis ∆ as specified with roots indexed by {1, . . . ,m}
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for type Bm (m ≥ 2) in the handout on root systems for classical groups. Since we have
shown that PF∅ corresponds to the root basis ∆, as in the symplectic case our task reduces
to checking that the roots aj ∈ ∆ (1 ≤ j ≤ m) satisfying 〈aj, λI〉 > 0 are exactly those j not
in I, or equivalently those j for which hj > hj+1. This goes similarly to the symplectic case.

Even n = 2m ≥ 6. This goes similarly to type B except that extra care is required when
analyzing the contribution from the roots denoted am−1 and am in the Dm-diagram (m ≥ 3)
from the handout on root systems for split groups.

First, let’s check that PF = PF ′ when m − 1 is maximal in ν(F ) and F ′ is either of the
two m-dimensional isotropic subspaces containing F ; this will account for the existence of
the exceptional case in (ii). Letting W be the (m − 1)-dimensional member of F , the flag
F ′ corresponds to one of the isotropic lines in the hyperbolic plane H := W⊥/W . Clearly
PF preserves W and hence acts on the hyperbolic plane H. Consequently, to prove that
the evident containment PF ′ ⊂ PF of parabolic subgroups is an equality (equivalently, PF
preserves F ′) it suffices to check that the image of PF in O(H) preserves both isotropic lines.

We know that the stabilizer of every isotropic flag is a parabolic subgroup, and in particular
is connected, so the image of PF in O(H) lands inside SO(H). But as a subgroup of GL(H) =
GL2 the subgroup SO(H) is the unique split maximal torus in SL(H) preserving each of the
two isotropic lines (as we see by computing in a basis arising from the isotropic lines).

Now we may and do focus on isotropic flags F such that if m− 1 ∈ ν(F ) then m 6∈ ν(F )
(equivalently, ν(F ) doesn’t contain both m − 1 and m), to bypass the duplication problem
revealed by the preceding calculation of stabilizers of isotropic flags (corresponding to the
exceptional situation in (ii)).

Definition 3.10. An isotropic flag F is good if ν(F ) doesn’t contain {m− 1,m}.

The good F satisfying m ∈ ν(F ) (hence m− 1 6∈ ν(F )) require extra care when counting
possibilities. The good news is:

Lemma 3.11. There are 2m distinct G(k)-orbits of good flags.

Proof. First consider good F with m − 1 ∈ ν(F ), so m 6∈ ν(F ) by design. We claim that
there are 2m−2 G(k)-orbits of such F . Using notation as in our treatment of odd n ≥ 5 (so
FI is the “standard” isotropic flag whose set of numerical invariants is the complement of
I in {1, . . . ,m}!), since these flags F have no m-dimensional member each such G(k)-orbit
contains a unique isotropic flag FI with m− 1 6∈ I but m ∈ I. In other words, I = J ∪ {m}
for an arbitrary subset J of {1, . . . ,m − 2}. For the G(k)-orbits of F with m − 1 6∈ ν(F ),
among those with also m 6∈ ν(F ) we again get 2m−2 orbits, namely the orbit of FI for
I = J ∪ {m − 1,m} with J an arbitrary subset of {1, . . . ,m − 2}. We have obtained 2m−1

orbits so far.
Finally, consider orbits of F with m − 1 6∈ ν(F ) but m ∈ ν(F ). We just need to show

that there are 2m−1 orbits of such F . Using O2m(k)-orbits rather than G(k)-orbits, there are
unique orbit representatives of the form FI with I = J ∪{m−1} for J ⊂ {1, . . . ,m−2}; this
is 2m−2 possibilities for I, but each such O2m(k)-orbit consists of two G(k)-orbits by keeping
track of the G(k)-orbit of the m-dimensional member of the flag (of which there are exactly
2 possibilities, and G(k) has index 2 in O2m(k)). Hence, there are 2 · 2m−2 = 2m−1 different
G(k)-orbits obtained from this class of good isotropic flags. �
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The existence aspect of the exceptional case in (ii) has been confirmed, and we have also
verified the first assertion in (i) already. Hence, the count in the preceding lemma and the
fact that there are exactly 2m distinct G(k)-conjugacy classes of parabolic k-subgroups of G
(corresponding to subsets of a fixed root basis) together imply that the proof of (i) and (ii)
for n = 2m ≥ 6 is reduced to proving that the map F 7→ PF from the set of good isotropic
flags into the set of parabolic k-subgroups of G is injective. We will do this by arguing
similarly to the case of odd n ≥ 5 (with λI and FI as defined there); the restriction to good
flags will counteract the effect of the existence of two G(k)-orbits of m-dimensional isotropic
subspaces.

In our proof (for all n ≥ 3) that PF is parabolic for every isotropic flag F we saw that
every F is in the O2m(k)-orbit of FI for a necessarily unique I, namely the complement of
ν(F ) in {1, . . . ,m}. Clearly F is good precisely when I meets {m − 1,m}, which is to say
I contains m− 1 or m (or both), and those with m 6∈ I (i.e., m ∈ ν(F )) correspond to two
distinct G(k)-orbits of good isotropic flags. We label ∆ as {a1, . . . , am} via the type-Dm case
in the handout on root systems for classical groups (m ≥ 3).

Lemma 3.12. Identify ∆ = {a1, . . . , am} with {1, . . . ,m} in the evident manner.

(1) In the 2m−1 cases for which m ∈ I (all good), the subset of ∆ corresponding to PFI

is I when m− 1 ∈ I and is I − {m} when m− 1 6∈ I.
(2) For the 2m−2 subsets J ⊂ {1, . . . ,m − 2}, inside the O2m(k)-conjugacy class of the

stabilizer PFJ∪{m−1} of the good isotropic flag FJ∪{m−1} the G(k)-conjugacy class of

PFJ∪{m−1} corresponds to the subset J ∪ {m − 1} ⊂ ∆ and the other G(k)-conjugacy

class corresponds to the subset J ∪ {m} ⊂ ∆.

This lemma addresses at most 2m conjugacy classes of parabolic k-subgroups, and yields
each of the 2m subsets of ∆, so in fact the 2m conjugacy classes considered really are pairwise
distinct.

Proof. For any I ⊂ {1, . . . ,m} we have seen that PFI
= PG(λI) and that this contains the

Borel subgroup PG(λ∅) containing the diagonal torus T ⊂ G = SOn and corresponding as
such to ∆. The subset I ′ of ∆ corresponding to PFI

is therefore the complement of the set
of i such that Uai ⊂ Ru,k(PFI

) = UG(λI), which is to say the complement of the set of i such
that 〈ai, λI〉 > 0. By definition of λI , the complement of I consists of those 1 ≤ j ≤ m such
that hj > hj+1.

The description of the simple roots ai ∈ ∆ in the handout on root systems for classical
groups for type-Dm (m ≥ 3) gives that if i < m then 〈ai, λI〉 > 0 precisely when hi > hi+1,
which is to say i 6∈ I. Hence, for i < m we conclude that i 6∈ I ′ if and only if i ∈ I. In other
words, apart from possibly m, the subset of ∆ corresponding to PFI

agrees with I.
Likewise, 〈am, λI〉 > 0 (i.e., m 6∈ I ′) precisely when hm−1 + hm > 0. Since hm−1 ≥ hm ≥

0 =: hm+1, clearly hm−1 +hm > 0 if and only if either hm > 0 (i.e., m 6∈ I) or hm−1 > hm = 0
(i.e., m− 1 6∈ I and m ∈ I). In particular, if m ∈ I then m 6∈ I ′ precisely when m− 1 6∈ I,
or equivalently m ∈ I ′ if and only if m− 1 ∈ I. This gives (1).

Next, consider (2). Letting I = J ∪ {m − 1}, so m − 1 ∈ I and m 6∈ I, we have
hm−1 = hm > 0. Thus, 〈am, λI〉 > 0, so m 6∈ I ′. This forces I ′ = I, as desired. The other
G(k)-conjugacy class of parabolics in the O2r(k)-conjugacy class of PFJ∪{m−1} is obtained
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by conjugating against any ρ ∈ O2r(k) − G(k). We can take ρ to be any reflection in a
non-isotropic vector. Relative to the standard basis of V = k2m on which q = q2m, choose ρ
to be reflection in the unit vector em + e2m since this leaves ei unchanged for i 6= m, 2m and
negates em and e2m. Hence, this preserves T and leaves a1, . . . , am−2 invariants but swaps
am−1 and am. Consequently, the subset of ∆ associated to the ρ-conjugate of PFJ∪{m−1} is

J ∪ {m}. �

By Lemma 3.12, we get all 2m distinct subsets of ∆ by combining the output from the
parabolics PFI

for the 2m−2m−2 distinct good FI (goodness omits those I ⊂ {1, . . . ,m−2})
and the parabolics Pρ(FI) for a fixed ρ ∈ O2n(k)−G(k) and every I ⊂ {1, . . . ,m} containing
m− 1 but not m. This completes the proof of the exhaustive second assertion in (i), and to
establish (ii) we can focus on good isotropic flags (the ones avoiding the exceptional situation
in (ii)).

Consider isotropic flags F for which m 6∈ ν(F ) (hence good). We shall prove that the
G(k)-conjugacy class of PF determines the G(k)-orbit of F (stronger than determining the
numerical invariants when m ∈ ν(F )!). Once this is proved, we can conclude (ii) similarly
to the symplectic case (as we did for odd n): if F ′ and F are good with PF ′ = PF then
F ′ = g(F ) for some g ∈ G(k), so PF = Pg(F ) = gPFg

−1, and hence g ∈ PF (k) by Chevalley’s
self-normalizing theorem. That forces F ′ = g(F ) = F as desired.

If m ∈ ν(F ) then the O2m(k)-conjugacy class of PF consists of two G(k)-conjugacy classes,
and if m 6∈ ν(F ) then the O2m(k)-conjugacy class is also a G(k)-conjugacy class (by Propo-
sition 3.7). Hence, we can say conversely that the properties m ∈ ν(F ) and m 6∈ ν(F ) are
characterized by the G(k)-conjugacy class of PF by analyzing if this G(k)-conjugacy class is
also an O2m(k)-conjugacy class. It is therefore legitimate to determine the G(k)-orbit of a
good isotropic F from the G(k)-conjugacy class of PF by treating the collection of all such
flags F containing an m-dimensional member separately from the collection of those which
do not contain an m-dimensional member.

First suppose m 6∈ ν(F ), so F is in the G(k)-orbit of a unique FI with m ∈ I. By Lemma
3.12(1), if also m− 1 6∈ ν(F ) then the G(k)-conjugacy class of PF corresponds to the subset
of ∆ complementary to ν(F ) (this complementary subset contains m and m − 1), whereas
if m − 1 ∈ ν(F ) then PF corresponds to the subset of {1, . . . ,m − 2} complementary to
ν(F )−{m−1}. Hence, in these cases we can reconstruct the numerical invariants of F from
the G(k)-conjugacy class of PF . But the G(k)-orbit of F is characterized by the numerical
invariants when m 6∈ ν(F ), so the cases with m 6∈ ν(F ) are settled.

Now consider good isotropic flags F with m ∈ ν(F ), so m − 1 6∈ ν(F ). In these cases
the numerical invariants ν(F ) characterize the O2m(k)-orbit of F that consists of two G(k)-
orbits. For J = ν(F )− {m} ⊂ {1, . . . ,m− 2} and its complement J ′ inside {1, . . . ,m− 2},
Lemma 3.12 shows that the subset of ∆ corresponding to the G(k)-conjugacy class of PF is
either J ′ ∪ {m− 1} or J ′ ∪ {m} depending respectively on whether F is in the G(k)-orbit of
FJ∪{m−1} or in the other G(k)-orbit in its O2m(k)-orbit. In these cases the O2m(k)-conjugacy
class of PF consists of two G(k)-conjugacy classes, and we have shown that the subset of
∆ corresponding to the G(k)-conjugacy class of PF again detects the G(k)-orbit of F (it
depends on which of m − 1 or m is in the associated subset of ∆). The proof of Theorem
3.9 is finally done! �
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Remark 3.13. Let’s see what the preceding analysis tells us about the maximal (proper)
parabolic k-subgroups of G. Away from the case n = 2r ≥ 4 such subgroups correspond
exactly to minimal (non-empty) isotropic flags, which is to say nonzero isotropic subspaces.
In the split case for odd n the subset of ∆ complementary to the vertex ai corresponds to
the stabilizer of i-dimensional isotropic subspaces.

Now suppose n = 2r ≥ 4, so G is split. The case-checking with Lemma 3.12 near the
end of the proof of Theorem 3.9 shows that if n ≥ 6 then an isotropic flag F consisting of
a single maximal isotropic subspace the subset of ∆ associated to PF is the complement I
of exactly one of the vertices ar−1 or ar (the “short legs” in the picture for the Dr-diagram
with r ≥ 4, and the two endpoints in the diagram for D3 = A3 when r = 3); this also holds
when n = 4 by direct inspection.

The reader may wonder why this is not incompatible with triality when r = 4; i.e.,
the existence of order-3 automorphisms of the D4-diagram. Doesn’t such extra symmetry
prevent the possibility of distinguishing 2 of the 3 extremal vertices in that case? There is
no inconsistency because the order-3 diagram automorphisms lift (via a pinning) to order-3
automorphisms of Spin8 that permute the 3 order-2 subgroups of the center transitively and
so do not descend to automorphisms of G = SO8. In other words, working with SO8 already
picks out a preferred order-2 subgroup of the center of Spin8, and that breaks the symmetry
among the 3 extremal vertices in the D4-diagram for the purpose of analyzing questions
concerning SO8!

The isotropic flags consisting of a single nonzero isotropic subspace of dimension d ≤
m− 2 constitute a single G(k)-orbit and their associated G(k)-conjugacy class of parabolic
stabilizers corresponds to the subset of ∆ given by the complement of the vertex ad. In this
way we obtain all maximal proper subsets of ∆ (i.e., complements of a single point), and
hence we conclude that for r ≥ 2 the maximal parabolic k-subgroups of SO2r correspond
exactly to the stabilizers of nonzero isotropic subspaces of dimension d 6= r − 1 (reasonable
since any isotropic subspace W of dimension r − 1 has the same stabilizer as a 2-step flag
obtained with either of the two isotropic r-dimensional subspaces containing W ). Each fixed
d corresponds to exactly one SO2r(k)-conjugacy class of such parabolic k-subgroups except
that the single O2r(k)-orbit of r-dimensional isotropic subspaces corresponds to two such
conjugacy classes (one per SO2r(k)-orbit of maximal isotropic subspaces, distinguished by
the parity of the dimension with which the maximal isotropic subspace meets the “standard”
one spanned by e1, . . . , er in the coordinatization used in the proof of Theorem 3.9).

Example 3.14. As in the symplectic case, the maximal (proper) parabolic k-subgroups cor-
respond to the minimal non-empty flags, which is to say the stabilizers of nonzero isotropic
subspaces. This corresponds to subsets of ∆ complementary to a single vertex.

In the case of split q, or more specifically G = SOn, we have described these above. Do
any of them have an abelian unipotent radical? Since SO3 ' PGL2, SO4 = SL2 ×µ2 SL2,
and SO6 ' SL4/µ2, for n = 3, 4, 6 all maximal parabolic subgroups have abelian unipotent
radical. Thus, assume n = 5 or n ≥ 7, so either n = 2m + 1 with m ≥ 2 or n = 2m with
m ≥ 4. These cases can be analyzed similarly to the symplectic case in Example 2.2, except
we use the Bourbaki tables for types Bm (m ≥ 2) and Dm (m ≥ 4).
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More specifically, by inspecting the coefficients of the highest positive root to rule out
many possibilities, we see that for type Bm (m ≥ 2) there is exactly one conjugacy class of
parabolics with abelian unipotent radical, corresponding to the complement of the extremal
long root in the diagram. (This is consistent with the case of B1 = A1 and especially with
C2 = B2.) These are the stabilizers of isotropic lines.

Likewise, for type Dm (m ≥ 4) there are exactly three such conjugacy classes, correspond-
ing to the complement of any of the 3 extremal roots in the diagram. (This is consistent
with the case of D3 = A3 for which all 3 conjugacy classes of maximal parabolic subgroups
have abelian unipotent radical, and the case of D2 = A1 × A1 for which the unique conju-
gacy class of maximal parabolic subgroups has abelian unipotent radical.) These are the
stabilizers of either an isotropic line or of a maximal isotropic subspace (the latter giving
rise to two G(k)-conjugacy classes, one for each of the two G(k)-orbits of maximal isotropic
subspaces). It is easy to check directly for even n that the stabilizer of a maximal isotropic
subspace W ⊂ V has abelian unipotent radical: this unipotent radical corresponds to the
vector space of linear maps W → V/W = W ∗ that are Bq-alternating.

Remark 3.15. Let S ⊂ G = SO(q) be a maximal split k-torus. Certainly kΦ = Φ(G,S) is of
type Dr when n = 2r ≥ 4 (as then q is split, so G is split), and otherwise we claim it is of
type Br (regardless of the parity of n).

To understand this, recall that there is an orthogonal decomposition

V = H1 ⊥ · · · ⊥ Hr ⊥ V0

for r hyperbolic planes Hj and an anisotropic non-degenerate quadratic space V0. Letting
{Lj, L′j} be the two isotropic lines in Hj, we can make (t1, . . . , tr) ∈ GLr1 act on V via the

trivial action on V0, and acting on Hj through scaling by tj on Lj and t−1
j on L′j. This

identifies GLr1 as a split torus inside GL(V ) that leaves q invariant, so it lands inside O(q)
and hence inside SO(q) = G. As such, this is an r-dimensional split torus, so every S
arises in this way for a suitable choice of such hyperbolic planes. (Explicitly, S is equal to∏

SO(Hj) ⊂ SO(q) = G.)
Let q0 = q|V0 , Q = q|W for W := H1 ⊥ · · · ⊥ Hr, and T0 ⊂ SO(q0) a maximal k-torus, so

by dimension reasons the k-torus

S × T0 ⊂ SO(Q)× SO(q0) ⊂ G

is a maximal k-torus. The split case has already been settled in the handout on root systems
for classical groups, so we now assume 1 ≤ r < [n/2] (so n ≥ 4).

Pick bases of H1, . . . , Hr lying in the two isotropic lines of each of these hyperbolic planes,
and arrange label these basis vectors as e1, . . . , e2r with Hj spanned by ej and e2r−+1−j
(1 ≤ j ≤ r). Since now V0 6= 0 (as r < n/2), we can pick a line ` in V0 to get the
subspace W ⊥ ` on which q is conformal to the split form in 2r+ 1 variables. Choose a basis
{e2r+1, . . . , en} of V0 extending ` = ke2r+1. Using the trivial action on these additional basis
vectors, we get a copy of SO2r+1 = SO(W ⊥ `) inside G containing S as a split maximal
torus. Explicitly, if we denote an element of End(V ) = Matn(k) as a block matrix(

A B
C D

)
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with A ∈ End(W ), B ∈ Hom(W,V0), C ∈ Hom(V0,W ), and D ∈ End(V0), then S corre-
sponds to blocks (

A 0
0 1n−2r

)
with A ⊂ GL2r consisting of diagonal elements

diag(t1, . . . , tr, t
−1
r , . . . , t−1

1 ).

It is an elementary matter to calculate S-conjugation against gl(V ) to read off that the
upper-left (2r + 1) × (2r + 1) block provides the set of nontrivial S-weights as for the root
system Φ(SO(W ⊥ `), S) of type Br, the lower-right (n − 2r) × (n − 2r) block has trivial
S-action, and the S-weights occurring in the entries for B and C are exactly what is seen
along their edges adjacent to A. Hence, kΦ = Φ(SO(W ⊥ `), S) is of type Br whenever
r < [n/2] (regardless of the parity of n) and

ZG(S) = S × SO(q0)

with (V0, q0) non-degenerate of dimension n− 2r. Note that the root spaces for the relative
roots occurring outside the upper-left r × r block become very large as n− 2r grows.


