
Math 249B. Tits systems

1. Introduction

Let (G,T ) be a split connected reductive group over a field k, and Φ = Φ(G,T ). Fix a positive
system of roots Φ+ ⊂ Φ, and let B be the unique Borel k-subgroup of G containing T such that
Φ(B, T ) = Φ+. Let W = W (G,T )(k) = NG(k)(T )/T (k), and for each w ∈ W let nw ∈ NG(k)(T )
be a representative of W . For each a ∈ Φ we let ra ∈ W be the associated involution, and we let
∆ denote the base of Φ+. The Bruhat cell C(w) = BnwB depends only on w, not nw, and for the
closed subset

Φ′w = Φ+
⋂

w(−Φ+) ⊂ Φ+

we proved that the multiplication map

UΦ′
w
nw ×B → C(w)

is an isomorphism of k-schemes. We also proved the Bruhat decomposition: W → B(k)\G(k)/B(k)
is bijective.

The purpose of this handout is to show that (G(k), T (k), B(k), {ra}a∈∆) satisfies the axioms of
a Tits system (the definition of which we will give), from which many wonderful group-theoretic
consequences follow. For example, we will obtain the simplicity of G(k)/ZG(k) for any split abso-
lutely simple and simply connected semisimple k-group G away from three cases: SL2(F2) = S3,
SL2(F3)/F×3 = A4, and Sp4(F2) = S6.

2. Tits systems and applications

Inspired by the structural properties of groups of the form G(k) for a connected reductive group
G over a field k, Tits discovered a remarkably useful concept (developed in §1.2ff in Chapter IV of
Bourbaki):

Definition 2.1. Let H be an abstract group. A Tits system for H is a triple (B,N, S) consisting
of subgroups B,N ⊂ H and a subset S ⊂ N/(N

⋂
B) such that:

(1) B and N generate H, and N
⋂

B is normal in N ,
(2) the elements of S have order 2 in W := N/(N

⋂
B) and generate W ,

(3) for each w ∈ W and s ∈ S, C(s)C(w) ⊂ C(w) ∪ C(sw) where C(w′) := Bnw′B for any
nw′ ∈ N representing an element w′ ∈ W (visibly C(w′) depends only on w′, not on the
choice of nw′ , and this axiom can be equivalently written as nsBnwB ⊂ BnwB∪BnsnwB),

(4) for all s ∈ S, ns does not normalize B (equivalently, since s2 = 1 in W , nsBns 6⊂ B).

These axioms imply that W → B\H/B is bijective and that (W,S) is a Coxeter group (see
Bourbaki Chapter IV: §2.3, Theorem 1 and §2.4 Theorem 2 respectively), but this implication
will not be used in our work with split reductive groups. For a connected reductive k-group G
equipped with a split maximal k-torus T and a Borel k-subgroup B containing T , let H = G (k)
and define B = B(k), N = NG (k)(T ), and S = {ra}a∈∆ (with ∆ the base of Φ(G ,T )). Clearly
W = W (G ,T )(k), and the general theory of root systems ensures that (W,S) a Coxeter group.
We have already shown that W → B\H/B is bijective for such examples, and this will be used to
prove:

Proposition 2.2. The triple (B,N, S) is a Tits system for H.
1
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Proof. The first axiom consists of two parts: (i) G (k) is generated by B(k) and NG (k)(T ), and
(ii) NG (k)(T )

⋂
B(k) is normal in NG (k)(T ). The normality is immediate from the fact that

NG (T )
⋂

B = T (as W (G ,T )(k) acts simply transitively on the set of Borel k-subgroups con-
taining T ). The assertion in (i) follows from the established Bruhat decomposition G (k) =∐

B(k)nwB(k) on k-points.
The second axiom for Tits systems expresses the fact that the Weyl group W (G ,T )(k) is gener-

ated by the reflections in the simple positive roots (relative to the positive system of roots Φ(B,T )).
The identification of W (G ,T )(k) with W (Φ(G ,T )) reduce this to a general property of Weyl
groups of root systems.

The third axiom is a special case of the inclusion

GaBnwB ⊂ BnwB ∪BnanwB

proved in the handout on the geometric Bruhat decomposition (see (3) there), since Ga(k) contains
a representative for ra ∈W . The fourth axiom follows from Chevalley’s result that Borel subgroups
are self-normalizing, since B

⋂
NG (T ) = T . �

It is a general fact that for any Tits system (H,B,N, S), the set S ⊂W is uniquely determined
by the pair of subgroups (B,N) in H (see Corollary to Theorem 3 in §2.5 of Bourbaki Chapter
IV). For this reason, often one focuses attention on the pair (B,N), and such a pair in H for which
the axioms of a Tits system are satisfied (for some, necessarily unique, subset S ⊂ W ) is called a
BN -pair in H.

Remark 2.3. A subgroup of H is called parabolic (relative to a BN -pair for H) if it contains a
conjugate of B. There is a general parameterization of conjugacy classes of parabolic subgroups of
H (labeled by subsets of S), inspired by the case of parabolic subgroups of split connected reductive
groups that we shall discuss (and recovering the result for algebraic groups when the ground field
is separably closed). See Bourbaki Chapter IV, §2.6 Proposition 4 for a precise formulation and
proof of this result.

Inspired by the examples arising from split connected reductive groups, B
⋂
N is usually denoted

as T , and a BN -pair is called split when B = T nU for a normal subgroup U of B. For instance, if
(G ,T ) is a split connected reductive group as above then the associated BN -pair (B(k), NG (k)(T ))

in G (k) is split by taking U = UΦ+(k) for Φ+ = Φ(B,T ).

Theorem 2.4. Let (H,B,N) be a split BN -pair using U ⊂ N , and assume that U is solvable.
Let Z =

⋂
h∈H hBh−1. Let H+ be the normal subgroup of H generated by the conjugates of U .

Assume that W 6= 1 (equivalently, S 6= ∅) and that the Coxeter graph associated to the Coxeter
system (W,S) is connected.

If H+ is its own commutator subgroup and Z
⋂
U = 1 then Z

⋂
H+ is the center of H+ and the

quotient H+/(Z
⋂
H+) is either simple non-abelian or trivial.

Remark 2.5. The notion of Coxeter graph mentioned in this theorem is defined in §1.9 of Chapter
IV of Bourbaki, and in the examples arising from split connected reductive groups G this is precisely
the underlying graph of the Dynkin diagram (so it is connected if and only if D(G ) is absolutely
simple). The hypothesis Z

⋂
U = 1 holds in such examples because Z = ZG (k).

Theorem 2.4 is a special case of the Corollary to Theorem 5 in §2.7 of Chapter IV of Bourbaki
(in view of Remark 2 after that Corollary). To apply this theorem to H = G (k) for split connected
semisimple k-groups G that are absolutely simple and simply connected (with k any field), we
have to prove that the nontrivial subgroup G (k)+ is its own commutator subgroup. Note that by
Proposition 2.5 of the handout on the geometric Bruhat decomposition we have G (k)+ = G (k), so
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Theorem 2.4 implies that if the nontrivial group G (k) is perfect then its center is ZG (k) and the
nontrivial quotient G (k)/ZG (k) is a non-abelian simple group.

But when is the nontrivial group G (k) perfect? There are a few cases in which G (k) has a
nontrivial abelian quotient (and so is not perfect), namely the solvable groups SL2(F2) and SL2(F3)
as well as the group Sp4(F2) ' S6 (see the list of accidental isomorphisms among finite groups early
in C.6 in my Luminy SGA3 notes). These turn out to be the only counterexamples when working
with split G :

Proposition 2.6. The group G (k) is perfect except for G = SL2 over F2, F3 and G = Sp4 over
F2.

Proof. The exceptional cases have been explained already, so we now show that in all other cases
G (k) is perfect. By Proposition 2.5 of the handout on the geometric Bruhat decomposition, it is the
same to work with G (k)+. It suffices to show that Ua(k) is contained in the commutator subgroup
of G (k)+ for each root a.

Any pair of opposite root groups U±c in the split simply connected G generate an SL2 in which
U±c are the standard unipotent subgroups U±. It is classical that the subgroups U±(k) generate
SL2(k) for any k, and that SL2(k) is its own commutator subgroup when k 6= F2,F3, so we are
done if |k| > 3.

Only the cases |k| ≤ 3 remain, so we may and do assume that we are not in type A1. That is,
the Dynkin diagram has at least 2 vertices. Hence, for any root c there is an adjacent root c′, and
if the diagram is has two root lengths then we can choose c and c′ to have distinct lengths. Since
the Weyl group acts transitively on the roots of a common length, to show that Ua(k) lies in the
commutator subgroup of G (k)+ for all roots a, it suffices to treat one root of each length. The
root groups Uc, Uc′ lie in the connected semisimple subgroup D(ZG(Tc,c′)) that is split and simply
connected (!) of rank 2, where Tc,c′ = (ker c ∩ ker c′)0

red ⊂ T . In other words, this group is of type
A2, B2 = C2, or G2, which is to say (by the Isomorphism Theorem over k!) G is either SL3, Sp4, or
G2. It is therefore sufficient (though not necessary) to treat just these cases, though over F2 that
won’t work: we need a finer analysis over F2 to handle the groups which have just been reduced
to type B2 (as the desired perfectness conclusion is false over F2 for type B2).

For SL3, a direct calculation with the standard base ∆ = {a, b} and standard root group param-
eterizations uc : Ga ' Uc (up to a sign) gives the commutation relation

(ua(x), ub(y)) = ua+b(±xy),

so Ua+b(k) lies in the commutator subgroup of G (k)+. But all roots have the same length, and hence
are conjugate under the action of the Weyl group, so all Uc(k) lies in the commutator subgroup of
G (k)+.

For G2, an inspection of the picture of the root system shows that the roots of a common length
(long or short) constitute a root system of type A2. More specifically, for any root a there is
another root a′ such that {a, a′} is the base for a root system of type A2, and hence the split simply
connected semisimple subgroup D(ZG(Ta,a′)) with root system Φ

⋂
(Qa + Qa′) of type A3 is an

SL3 containing Ua as one of its root groups (relative to the intersection with T ). Thus, the settled
case of A2 implies that G (k)+ is its own commutator subgroup.

The only G that can give rise to type B2 by the above reduction step are the ones with a double
bond in the Dynkin diagram (as the multiplicity of an edge is defined in terms of a pair of a root
with a coroot, not by a non-canonical Euclidean structure!). By the classification of connected
Dynkin diagram, the only such possible diagrams are types B and C (in rank n ≥ 2) and type F4.
By inspection, every root in the Dynkin diagram of F4 is linked to another of the same length, so
we can reduce F4 to the settled case of A2 as we did for G2.
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It remains types B and C in rank n ≥ 3. Since n − 1 ≥ 2, we can use the settled A2-case to
express the elements of Uc(k) as commutators for all roots c of the length given by the leftmost n−1
vertices in the diagram (i.e., long roots for type B and short roots for type C). So the remaining
problem for types B and C is to handle Uc(k) for some root c of the other root-length (namely,
short roots for type B and long roots for type C).

Consider the simply connected subgroup Sp4 of type B2 = C2 associated to the pair of simple
positive roots with distinct lengths that are adjacent in the diagram, say with a short and b long.
In Example 5.3.9 of the course notes we defined explicit uc : Ga ' Uc for Sp4 and roots c lying in
a suitable Φ+ for the split diagonal torus, and we obtained

(ua(x), ub(y)) = u2a+b(x
2y)ua+b(−xy), (ua(x), ua+b(y)) = u2a+b(−2xy).

Focus on the first relation with x = 1. The left side is a commutator, and the right side is a product
of terms from the respective root groups U2a+b and Ua+b with 2a + b long and a + b short, so one
of the two terms on the right side is already known to be in the commutator subgroup. Hence, so
is the other term, so we have handled the root length missed by the A2-arguments used above for
types B and C in rank ≥ 3. �

The perfectness conclusion above allows us to apply the final assertion in Theorem 2.4 to obtain
by an entirely uniform method (up to some special case with the finite fields of size 2 or 3) the
classical simplicity results for matrix groups over all fields (especially significant for finite fields):

Corollary 2.7. Let G be a split connected semisimple group over a field k such that it is absolutely
simple and simply connected. If k = F3 then assume G 6' SL2, and if k = F2 then assume G 6' SL2,
Sp4. The center of G(k) is ZG(k), and G(k)/ZG(k) is a non-abelian simple group.

We emphasize the power of root systems to give a uniform approach to such a simplicity result
that was classically proved by extensive case-by-case procedures.

3. Kneser-Tits conjecture

Let G be a connected semisimple group over a field k. Assume moreover that G is k-isotropic: it
contains Gm as a k-subgroup. (In class we saw that this is equivalent to the existence of a proper
parabolic k-subgroup since ZG is finite; it is also equivalent to the existence of Ga as a k-subgroup,
but that equivalence lies much deeper.) For example, since any connected reductive group over a
finite field contains a Borel k-subgroup if k is finite (by Lang’s theorem), if the semisimple G is
nontrivial then necessarily G is k-isotropic.

The Borel–Tits structure theory for isotropic semisimple groups G over any field k is the focus
of the final two weeks of the course. The fundamental results in the theory are summarized in:

Theorem 3.1 (Borel–Tits). All maximal k-split k-tori S in G are G(k)-conjugate, the set Φ(G,S)
of nontrivial S-weights on Lie(G) is a (possibly non-reduced) root system in X(S)Q, and the minimal
parabolic k-subgroups P in G are G(k)-conjugate.

Every such P contains some S, and every S lies in some P , and the assignment P 7→ Φ(P, S)
is a bijection from the set of minimal parabolic k-subgroups P ⊇ S onto the set of positive systems
of roots in Φ(G,S).

The étale k-group W (G,S) := NG(S)/ZG(S) is constant, NG(S)(k)/ZG(S)(k)→W (G,S)(k) is
an isomorphism, and naturally W (G,S)(k) = W (Φ(G,S)).

The common dimension of the maximal k-split tori in G is called the k-rank. Note that the
surjectivity of NG(S)(k)/ZG(S)(k) → W (G,S)(k) is quite remarkable, since it cannot be proved
cohomologically: H1(k, ZG(S)) can be nontrivial (when k is not finite), as we will illustrate with
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explicit examples later. A big challenge in proving these results (especially with finite k) is that we
cannot use extension of the ground field as readily as in the split case (since such an operation is
not compatible with the formation of S in general).

For every a ∈ Φ(G,S), the dynamic method provides root groups Ua ⊂ G which admit a unique
characterization similarly to the split case but there are some deviations: dimUa can be rather
large, if a is multipliable in Φ(G,S) then Lie(Ua) = ga ⊕ g2a, and in this multipliable case Ua

can be non-commutative. (The commutative root groups are always vector groups.) In view of
these results, we get a canonical normal subgroup G(k)+ in G(k): the subgroup generated by the
G(k)-conjugates of Ua(k) for a ∈ Φ(G,S) (or even just a ∈ Φ(G,S)+). By using a version of the
theory of the open cell and description of G(k)-conjugacy classes of parabolic k-subgroups of G,
G(k)+ has a more “invariant” description: it is the subgroup of G(k) generated by the subgroups
U(k) for the (k-split!) k-unipotent radicals U = Ru,k(P ) of the parabolic k-subgroups P of G.

The theory of Tits systems can be used to establish the simplicity of the quotient of G(k)+

modulo its center when G is simply connected and absolutely simple and |k| > 3, and so it is
natural to ask for such G whether or not G(k)+ = G(k). For example, if G is k-split (and simply
connected and absolutely simple) then this always holds, by Proposition 2.5 of the handout on the
geometric Bruhat decomposition.

The Kneser-Tits conjecture is that G(k)+ = G(k) for any simply connected absolutely simple
k-isotropic G over any field k. This was settled by Steinberg when G is quasi-split over k (i.e.
contains a Borel k-subgroup), which includes the case of finite k. Over non-archimedean local fields
it was settled by Platonov in characteristic 0 using the classification theory of semisimple groups
(and later proved in a classification-free and characteristic-free manner by Prasad–Ragunathan).
Platonov also found a counterexample over k = Q(x, y) of type A. The problem was settled
affirmatively in general over all global fields only recently by Gille (who handled the thorniest case
of certain forms of E6), building on the work of many others (Garibaldi, Prasad–Ragunathan, Tits,
etc.).


