
Math 249B. Torus centralizer of a coset space

1. Introduction

Our main aim is to establish the following fact, the proof of which is somewhat tricky:

Lemma 1.1. Assume k = k, and let S be a k-torus in a smooth connected affine k-group G.
The Borel subgroups of ZG(S) are precisely the subgroups ZB(S) = B ∩ ZG(S) (scheme-theoretic
intersection, as always) for Borel subgroups B of G which contain S.

The Borel property for ZB(S) rests crucially on the fact that S is a torus. That is, if H ⊂ B
is merely a smooth connected subgroup then typically ZB(H) is not a Borel subgroup of ZG(H),
even when both centralizers are smooth and connected. For example, if G = GL3 and B is the
standard upper-triangular Borel subgroup and H ⊂ Ru(B) is the subgroup that fixes e1 and e2 and
sends e3 into span(e2, e3) then ZG(H) is easily computed to be smooth, connected, and solvable of
dimension 5 whereas ZB(H) is smooth and connected of dimension 4.

Proof. We proved in the previous course (using dynamic methods) that the schematic centralizer
ZG(S) is smooth and connected. This contains a Borel subgroup B′, and we claim that S ⊂ B′.
Indeed, S lies in some Borel subgroup of ZG(S), all Borel subgroups in a smooth connected affine
group over k = k are conjugate, and S is central in ZG(S), so indeed S ⊆ B′. In turn, B′ is
contained in a Borel subgroup B of G (via the characterization of Borel subgroups as maximal
smooth connected solvable subgroups, rather than the “minimal parabolic” viewpoint). But ZB(S)
is a smooth connected subgroup of B, so it is solvable, yet it lies in ZG(S). The inclusion B′ ⊆
ZB(S) = B ∩ ZG(S) is therefore an equality by maximality of B′ in ZG(S). Thus, we have found
a Borel subgroup B in G containing S such that ZB(S) is equal to an arbitrarily chosen Borel
subgroup B′ of ZG(S). This proves that all Borel subgroups of ZG(S) have the asserted form.

Conversely, we wish to show that if B is a Borel subgroup of G containing S then the smooth
connected solvable subgroup ZG(S) ∩ B = ZB(S) is a Borel subgroup of ZG(S). This is the
more interesting direction. Since ZB(S) is smooth and connected, and it inherits solvability from
B, it suffices to prove that ZG(S)/ZB(S) is complete. Since S ⊆ B, the S-conjugation on G
preserves B and so induces an action on the complete coset space G/B. By HW8, Exercise 3 of
the previous course, the scheme-theoretic fixed locus (G/B)S is smooth. But this fixed locus is
obviously closed in G/B, so it is complete. There is an evident map ZG(S)/ZB(S) → (G/B)S

which factors through the (irreducible) connected component of the identity of the target (since
ZG(S) is connected), and we will show that it is an isomorphism onto this component. That will
provide the desired completeness for ZG(S)/ZB(S). The next result provides this completeness
from that of (G/B)S . �

Proposition 1.2. If H is a smooth closed subgroup of G (not necessarily connected or solvable) that
is normalized by a torus S ⊂ G, then under the resulting left multiplication action on (G/H)S by
ZG(S) all orbit maps ZG(S)→ (G/H)S through points g0 ∈ (G/H)S(k) are smooth. In particular,
the orbits are open and hence coincide with the connected components of (G/H)S.

More specifically, the natural map of smooth varieties

f : ZG(S)/ZH(S)→ (G/H)S

(induced by the orbit map through 1 mod H, with StabZG(S)(1 mod H) = ZH(S)) is an isomorphism
onto the identity component of the target.

Although H may not contain S, the scheme-theoretic centralizer ZH(S) for the S-action on H
still makes sense and is smooth: we simply apply the usual centralizer theory to S viewed as the
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second factor of the semi-direct product H o S and observe that ZHoS(1 × S) = ZH(S) × S as
functors on k-algebras. The reader is referred to Proposition 11.15 in Borel’s book for a direct
proof of Proposition 1.2 in the special case that H = B; allowing more general H clarifies the key
properties of tori that underlie the proof, and this generalization will be used a lot in what follows.

Before proving Proposition 1.2, we consider an example that illustrates some striking “non-
homogeneity” of (G/H)S .

Example 1.3. Consider G = SL3 with diagonal maximal torus T and “root group” U ' Ga con-
sisting of matrices of the form

u(x) =

1 0 0
0 1 x
0 0 1

 .

The group U is normalized by T , with t = diag(t1, t2, t3) (
∏
ti = 1) satisfying tu(x)t−1 =

u((t2/t3)x). Let H = T n U inside G. This contains the 1-dimensional tori

S = {diag(t, t, t−2)}, S′ = {diag(t−2, t, t)}
which are visibly conjugate in G using the determinant-1 matrix π0 that swaps the first and third
standard basis vectors and negates the second one.

Note that S′ is central in H (as it conjugates trivially on U) whereas S is not. Hence, ZH(S′) = H
is of dimension 3 whereas ZH(S) must have strictly smaller dimension and so coincides with
its 2-dimensional subtorus T (due to its a-priori connectedness, or by computation). Clearly
ZG(S) ' GL2 has dimension 4 (as does ZG(S′), due to the conjugacy of S and S′ in G, or by
direct computation). Thus, in (G/H)S the connected component of 1 mod H has dimension 2
whereas the connected component of π0 mod H has dimension 1. More explicitly, these connected
components are respectively given by ZG(S)/ZH(S) = GL2/diag = P1 × P1 −∆ (which is affine
either via ampleness of ∆ or by identifying ∆ as a hyperplane section under the Segre embedding
into P3) and ZG(S′)/ZH(S′) = GL2/B

′ = P1. In particular, one of the connected components of
(G/H)S is affine and other is complete!

2. Proof of Proposition 1.2

First note that the S-orbits in G/H are connected, and distinct orbits are disjoint, so once
openness is proved for all orbits it follows that there are just finitely many orbits and these are the
connected components of (G/H)S . As a preliminary step, we reduce to the case that H contains S
by using a semidirect product trick. Namely, for G′ = GoS, H ′ = HoS, and S′ = 1×S, we have

ZG′(S
′) = ZG(S)× S, ZH′(S

′) = ZH(S)× S, (G′/H ′)S
′

= (G/H)S

and the orbit map of ZG′(S
′) through a point (g0, s) mod H ′ ∈ (G′/H ′)S

′
(k) is thereby identified

with the orbit map of ZG(S) through g0 mod H ∈ (G/H)S(k). Hence, we can work with (G′, H ′, S′)
instead, so now S ⊂ H.

Next, we reduce to the study of the orbit map through 1 mod H. For a point g0 ∈ G(k), the
coset g0H viewed as a point of (G/H)(k) is S-fixed precisely when the commutator (g−10 sg0)s lies

in H for all s ∈ S(k). Since now S ⊂ H, it is the same to say g−10 Sg0 ⊂ H. For any such

g0, the ZG(S)-stabilizer of g0H is g0ZH(g−10 Sg0)g
−1
0 . The left multiplication map G/H ' G/H

defined by x 7→ g−10 x intertwines the S-conjugation action on the source with g−10 Sg0-action on the

target (via the isomorphism S ' g−10 Sg0 defined by t 7→ g−10 tg0). Under the resulting isomorphism

φ : (G/H)S ' (G/H)g
−1
0 Sg0 between fixed spaces for these subtori of H, the point g0 mod H is

carried to 1 and the orbit map ZG(S) → (G/H)S through g0H is intertwined with the orbit map
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ZG(g−10 Sg0)→ (G/H)g
−1
0 Sg0 through 1 mod H. Hence, at the cost of passing to g−10 Sg0 in place of

S, it suffices to study the orbit map through 1.
Finally, it remains to prove that the natural map ZG(S)→ (G/H)S is a smooth morphism. This

amounts to surjectivity of the induced map between tangent spaces at all k-points of the source
(since source and target are both smooth over k = k). By equivariance for the left multiplication
action of ZG(S) on both sides, homogeneity considerations on the source reduce the surjectivity
to the case of tangent spaces at the identity. This tangent map is the natural map gS → (g/h)S

(see HW7, Exercise 4(ii) of the previous course), for which surjectivity follows from the complete
reducibility of linear representations of tori (such as S).


