
Math 249B. Unirationality

1. Introduction

This handout aims to prove a result that is very useful for solving problems with connected
reductive groups over infinite fields:

Theorem 1.1. Let G be a smooth connected affine group over a field K. If K is perfect or
G is reductive then G is unirational over K (i.e., admits a dominant K-morphism from a
dense open subset of an affine space over K).

The importance of this theorem is the consequence that over an infinite ground field, the
set of rational points of a connected reductive group is always Zariski-dense. That is a very
powerful tool for relating abstract group theory of the set of rational points to the structure
of the algebraic group (e.g., checking normality of a closed K-subgroup scheme by using
conjugation by K-rational points in settings which are sensitive to ground field extension,
such as with maximal K-split tori or minimal parabolic K-subgroups).

Remark 1.2. In the absence of reductivity and perfectness, it is not true that the set G(K)
of rational points is necessarily Zariski-dense. The classic counterexample of a positive-
dimensional G for which G(K) is even finite is due to Rosenlicht: if K = k(t) for a field k
of characteristic p > 0 and G ⊂ G2

a is the subgroup defined by yq = x − txq for a p-power
q > 2 then G(K) = {(0, 0)} if p > 2 whereas G(K) = {(0, 0), (1/t, 0)} if p = 2. (Allowing
q = p = 2 gives a smooth affine conic, hence infinitely many K-points.) Rather generally,
if K is any imperfect field of characteristic p > 0 and q > 2 is a p-power then for any
a ∈ K − Kp the K-group {yq = x − axq} is not unirational over K (though its locus of
K-points may be Zariski-dense, such as if K = Ks). See Examples 11.3.1 and 11.3.2 in
“Pseudo-reductive Groups” for more details.

2. Proof of Theorem 1.1

First we show that the general case over perfect fields reduces to the reductive case. Over
perfect K the unipotent radical Ru(GK) descends to a normal unipotent smooth connected
K-subgroup U ⊂ G due to Galois descent, and G/U is reductive. Since K is perfect, we
know that U is K-split; i.e., has a composition series

{1 = U0 ⊂ U1 ⊂ · · · ⊂ Un = U}
over K whose successive quotients Ui/Ui−1 are K-isomorphic to Ga. Thus, a U -torsor over
any field extension of K (such as the function field K(G/U)) vanishes by successive appli-
cations of additive Hilbert 90, so the U -torsor q : G → G/U admits a rational point on its
generic fiber. This K(G/U)-point “spreads out” to a section s of q over a dense open Ω in
G/U , so there is an open immersion U ×Ω→ G defined by (u, ω) 7→ u · s(ω). Thus, if G/U
(and hence Ω) is unirational over K then the unirationality of G reduces to that of U . But
the same torsor method applied to a composition series of U via induction on dim(U) shows
that U has a dense open subset that is open in an affine space. (Stronger cohomological
methods show that U itself is K-isomorphic to an affine space, but we do not need that
here.)
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Now it remains to treat the reductive case over any field, though we will treat characteristic
zero by a separate argument from positive characteristic (and finite fields will also be treated
by a special argument). The idea of the proof in the reductive case is to show that G is
“generated by K-tori”, which is to say that there is a finite set of K-tori in G that generate G
as a K-group, or equivalently a finite set of K-tori T1, . . . , Tr ⊂ G such that the multiplication
map of K-schemes

T1 × · · · × Tr → G

is dominant. The reason that such dominance suffices is to due:

Lemma 2.1. Every torus T over a field K is unirational over K.

Proof. Let Γ = Gal(Ks/K), so the category of K-tori is anti-equivalent to the category of
Γ-lattices (i.e., finite free Z-modules equipped with a discrete continuous left Γ-action); the
Γ-lattice associated to T is the character group X(TKs).

Let K ′/K be a finite Galois subextension of Ks that splits T , so X(TKs) is a Gal(K ′/K)-
lattice. The category of Gal(K ′/K)-representations on finite-dimensional Q-vector spaces is
semisimple, and more specifically X(TKs)Q is a subrepresentation of a finite direct sum of
copies of the regular representation Q[Gal(K ′/K)]. Scaling by a sufficiently divisible nonzero
integer, we thereby identify X(TKs) as a subrepresentation of a finite direct sum of copies of
Z[Gal(K ′/K)] equipped with its natural Γ-action.

The Γ-lattice Z[Gal(K ′/K)] corresponds to the Weil restriction torus RK′/K(GL1) (check!),
so an inclusion

X(TKs) ↪→ Z[Gal(K ′/K)]⊕r

corresponds to a surjective map of K-tori RK′/K(GL1)r → T . The unirationality of tori
over K is thereby reduced to the special case of tori of the form RK′/K(GL1) for finite
separable extensions K ′/K. By thinking functorially, we see that RK′/K(GL1) is the open
non-vanishing locus of the norm morphism NK′/K : RK′/K(A1

K′)→ A1
K). �

Beware that we cannot expect to establish dominance of a map T1 × · · · × Tr → G by
proving surjectivity on tangent spaces at (e, . . . , e) (which would ensure smoothness, and
hence openness, at (e, . . . , e)), since such surjectivity can fail: for G = SL2 in characteristic
2 the diagonal maximal torus D has Lie equal equal to Lie(D[2]) where D[2] = µ2 is the
center of G, so conjugation on D has no effect on this Lie algebra! That is, all maximal tori
in SL2 have the same Lie algebra. Observe that this problem does not arise for PGL2.

As in the proof of Grothendieck’s theorem on (geometrically) maximal tori, we will use
Zariski-density arguments with rational points of Lie algebras, so the case of finite ground
fields has to be treated separately. Thus, we first dispose of the case of finite fields:

Lemma 2.2. Any connected reductive group G over a finite field k is unirational over k.

Proof. We abandon the attempt to show that G is generated by maximal k-tori, and instead
proceed in another way. (In fact G is generated by its maximal k-tori, but Gabber’s proof
of this fact over finite fields in the proof of Proposition A.2.11 of “Pseudo-reductive groups”
[2nd ed.] is rather delicate and so we omit it.) By Corollary 1.5 of the handout on Lang’s
Theorem we proved there exists a Borel k-subgroup B ⊂ G. Choose a maximal k-torus
T ⊂ B. Over k there is a unique Borel subgroup of Gk containing Tk that is “opposite”
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to Bk (i.e., its intersection with Bk is precisely Tk, or equivalently its Lie algebra supports
precisely the set of roots −Φ(Bk, Tk) inside Φ(Gk, Tk)). The uniqueness over k implies via
Galois descent that this opposite Borel subgroup descends to a Borel k-subgroup B′ ⊂ G
containing T with B′ ∩B = T .

By another application of Galois descent for the perfect field k, the k-unipotent radicals
U := Ru,k(B) and U ′ := Ru,k(B′) descend the unipotent radicals of Bk and B′

k
respectively.

Thus, the “open cell” structure for (Gk, Tk, Bk) implies that the multiplication map

U ′ × T × U → G

is an open immersion, so it suffices to show that each of T , U , and U ′ are unirational over
k. The case of T is handled by Lemma 2.1, so it suffices to show that any unipotent smooth
connected affine k-group U is unirational over k. This unirationality has been explained at
the start of this section for split unipotent smooth connected groups over any field, and the
split condition is automatic when the ground field is perfect (such as a finite field). �

Now we may and do assume that K is infinite. We give two proofs, depending on the
characteristic of K. The arguments are similar, but technically not quite the same.

Case 1: characteristic 0. First we assume K has characteristic 0, and shall proceed by
induction on dim(G) without a reductivity hypothesis. As we have already noted, we may
assume both that G is reductive (so the characteristic 0 hypothesis has not been of much use
yet) and that all lower-dimensional smooth connected K-subgroups are generated by K-tori.
Consider the central isogeny π : G → Gad := G/ZG with Gad having trivial center. As for
any central quotient map between connected reductive groups, the formation of images and
preimages defines a bijective correspondence between the sets of maximal K-tori of G (all
of which contain ZG) and of Gad. Hence, if we can find maximal K-tori T ′1, . . . , T

′
r of Gad

that generate Gad then G is generated by their maximal K-torus preimages Ti = π−1(T ′i ).
Consequently, it is harmless to assume that G is semisimple and nontrivial with trivial center
due to the very useful:

Lemma 2.3. Let f ′ : G′′ → G′ and f : G′ → G be central quotient maps between connected
reductive groups over a field k. The composite quotient map f ◦ f ′ : G′′ → G also has central
kernel. In particular, G/ZG has trivial center.

The conclusion is false without centrality; e.g., if U ⊂ SL3 is the unipotent radical of a
Borel subgroup then U contains a central subgroup Z := Ga given by the upper-right matrix
entry, and U/Z = G2

a, so we have central quotient maps U → U/Z and U/Z → Ga whose
composition has non-central kernel.

Proof. We may and do assume k = k. Since G′′/ZG′′ is a central quotient of G′, it suffices
to show that the central quotient G of G′ dominates it. Provided that G′′/ZG′′ has trivial
center, it follows that the central kernel of f : G′ → G dies in the quotient G′′/ZG′′ of G′, so
the desired domination would follow.

We may rename G′′ as G and reduce to checking that G/ZG has trivial center. Let T ⊂ G
be a maximal torus, so T/ZG is a maximal torus in G/ZG. The center of G/ZG is contained
in T/ZG and hence is killed by all roots in Φ(G/ZG, T/ZG). Thus, it suffices to show that the
kernels of all such roots have trivial intersection. We have shown in class (see Proposition
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3.4.1 and Remark 3.4.3) that the central quotient map G→ G/ZG identifies the root systems
for T and T/ZG respectively, so it suffices to show that the intersection of the kernels of the
roots in Φ := Φ(G, T ) coincides with ZG.

Let M :=
⋂

a∈Φ(ker a), so clearly ZG ⊂M . To prove the reverse inclusion, note that since
M ⊂ T we know that ZG(M) is smooth with Lie algebra gM . But the definition of M shows
immediately that gM = g, so ZG(M) has full Lie algebra yet is also smooth, so ZG(M) = G.
Thus, M ⊂ ZG. �

It follows that GK contains (i) a non-central GL1 and (ii) no nontrivial central subgroup
scheme over K. It was precisely under such geometric hypotheses on a general smooth con-
nected affine group over an infinite field K that we showed (via Zariski-density considerations
in the Lie algebra over K, and a lot of extra work in positive characteristic) in the proof of
Grothendieck’s theorem on the existence of geometrically maximal K-tori that g contains a
semisimple element X that is non-central (i.e., adg(X) 6= 0). The non-central non-nilpotent
locus in g is Zariski-open and non-empty, hence Zariski-dense (as K is infinite), so for any
proper K-subspace V ⊂ g there exists a non-central non-nilpotent X ∈ g− V . So far this is
characteristic-free (and the non-nilpotence of X will not be used in characteristic 0).

Since char(K) = 0, the K-subgroup ZG(X)0 is smooth and connected with Lie algebra
equal to the proper subspace zg(X) ⊂ g which contains X and so is not contained in V .
In other words, we have found a lower-dimensional smooth connected K-subgroup H ⊂ G
whose Lie algebra does not contain a specified proper K-subspace of g. Applying this
procedure several times, we arrive at a finite set of smooth connected proper K-subgroups
H1, . . . , Hn ⊂ G whose K-group structure is unclear but whose Lie algebras span G. Hence,
the multiplication map

H1 × · · · ×Hn → G

is surjective on tangent spaces at the identity points, so it is smooth there. Thus, this
map is dominant, so the unirationality of the lower-dimensional Hi’s over K implies the
unirationality of G over K. This settles the argument in characteristic 0.
Case 2: positive characteristic. Now assume char(K) = p > 0, with G reductive if

K is not perfect. We will again use the Lie algebra to dig out suitable lower-dimensional
smooth connected K-subgroups of G for applying dimension induction. Exactly as above,
we may always arrange (without an initial reductivity hypothesis for perfect K) that G is
semisimple with trivial center, and that the problem is solved in all lower-dimensional case
(with a reductivity hypothesis if K is not perfect).

The infinitude of K once again ensures that for any proper K-subspace V of g there exists
a non-central non-nilpotent X ∈ g−V . The Jordan decomposition Xs +Xn of X in gK may

not be K-rational, but for a sufficiently large p-power q the Jordan decomposition X
[q]
s +X

[q]
n

of X [q] is K-rational. Note that the semisimple Xs is nonzero (since X is non-nilpotent), so

X
[q]
s 6= 0 by semisimplicity. Taking q large enough ensures that X

[q]
n = 0, so X [q] is nonzero

and semisimple. Consideration of the inclusion g ↪→ glN(K) arising from a K-subgroup

inclusion G ↪→ GLN shows that [X,X
[q]
s ] = 0, so X lies in the Lie-theoretic centralizer

zg(X
[q]).
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As in the proof of Grothendieck’s theorem on geometrically maximal tori, the K-span
of the pairwise commuting semisimple elements X [qpi] (i ≥ 0) has a K-basis consisting of

nonzero semisimple elements Xi satisfying X
[p]
i = Xi. Such Xi are necessarily K-rational

(since Xi = X
[pa]
i for all a ≥ 0). Each zg(Xi) contains X and so is not contained in the initial

choice of proper K-subspace V of g. Applying this construction several times, we can find

a finite set of nonzero (semisimple) elements Y1, . . . , Ym ∈ g such that Y
[p]
i = Yi for all i and

the Lie-centralizers zg(Yi) span g.
We shall prove that zg(Yi) = Lie(Hi) for smooth connected reductive K-subgroups Hi of

G with non-trivial scheme-theoretic center ZHi
. Since ZG = 1 by design (as G has been

arranged to be semisimple of adjoint type), it would follow that Hi 6= G, so dimHi < dimG
for all i and hence we could conclude by dimension induction. To find such Hi’s, rather
generally if X ∈ g is a nonzero (semisimple) element satisfying X [p] = X then we claim that
zg(X) = Lie(H) for a connected reductive K-subgroup H with ZH 6= 1.

In the proof of Grothendieck’s theorem on geometrically maximal tori we saw that any
such X spans the tangent line to a K-subgroup µ that is the image of a K-subgroup inclusion
µp ↪→ G. The schematic centralizer ZG(µ) is smooth, and hence of smaller dimension than
G since the schematic center ZG is trivial whereas ZG(µ) has schematic center that contains
µ 6= 1. Moreover, clearly X ∈ Lie(ZG(µ)) = Lie(ZG(µ)0). We may therefore define H =
ZG(µ)0 provided that the evident inclusion

Lie(ZG(µ)) ⊂ zg(X)

is an equality and ZG(µ)0 is smooth.
Let m = Lie(µ) ⊂ g and define the K-subgroup Fix(m) ⊂ GL(g) to be the subgroup of

linear automorphisms of g that restrict to the identity on m. Thus, we have a Cartesian
square of K-groups

ZG(µ) //

��

Fix(m)

��
G

AdG

// GL(g)

because we can verify the Cartesian property on R-valued points for any k-algebra R: this
follows from the fact that the natural map

HomR-gp(µR, GR)→ Homp-Lie(Lie(µ)R, gR)

is bijective. (Here we use in an essential way that µ ' µp.) Passing to the Cartesian square
of Lie algebras, we conclude that Lie(ZG(µ)) = zg(m) since d(AdG)(e) = adg.

The above Cartesian square of K-groups implies that the schematic centralizer ZG(X)
of X ∈ g for the adjoint action of G on g coincides with ZG(µ), and in 13.19 of Borel’s
“Linear algebraic groups” he shows rather generally that ZG(X)0 is reductive for any nonzero
semisimple X ∈ g (over a field of any characteristic). Since our approach to the theory of
linear algebraic groups avoids the ZG(X)-construction, we now give a direct proof of what
we need (and a bit more):

Proposition 2.4. Let G be a smooth connected affine group over a field K of characteristic
p > 0, and let µ ⊂ G be a connected K-subgroup scheme of multiplicative type (e.g., µp).
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(1) There exists a maximal K-torus of G containing µ; equivalently, the maximal tori of
the smooth connected subgroup ZG(µ)0 are maximal in G.

(2) If G is reductive then the identity component ZG(µ)0 is reductive.

Proof. Without loss of generality K is algebraically closed. To prove (1) it suffices to find
some torus S of G containing µ, as then any maximal torus of G containing S also centralizes
µ (since tori are commutative). We shall prove (1) using induction on dim(G). The central-
izer H = ZG(µ) is smooth and µ ⊂ H0 is a nontrivial subgroup of multiplicative type, so
H0 is not unipotent. Hence, a maximal torus T of H0 is not trivial, so ZH0(T ) is a smooth
connected group.

If ZH0(T ) 6= H0 then by dimension induction some torus of ZH0(T ) contains µ, so (1)
would be proved. Thus, we just need to consider the possibility that ZH0(T ) = H0, which
is to say that H0 has a central maximal torus, so (by conjugacy) H0 has T as its unique
maximal torus. In this situation we claim that µ ⊂ T . The quotient H0/T is a smooth
connected affine group containing no nontrivial tori, so it must be unipotent. Hence, the
composite map µ→ H0 → H0/T has to be trivial since µ is of multiplicative type, so

µ ⊂ ker(H0 → H0/T ) = T.

Turning to the proof of (2), by (1) we may choose a maximal torus T of G containing
µ. Assuming that the unipotent radical U of ZG(µ)0 is nontrivial, we seek a contradiction.
Since U is stable under T -conjugation, Lie(U) is a T -stable subspace of g. This subspace
supports only nontrivial T -weights since gT = T by the reductivity of G. Hence, the nonzero
Lie(U) is a direct sum of some of the root spaces ga for a ∈ Φ(G, T ). Choose such an a and
let Ta = (ker a)0

red be the codimension-1 subtorus killed by a.
The centralizer H := ZG(Ta) is a connected reductive subgroup of G with semisimple rank

1, and it meets U nontrivially since Lie(U) ∩ Lie(H) = Lie(U)Ta ⊃ ga. But U ∩ H is the
centralizer for the Ta-action on U , so it inherits smoothness and connectedness from U . We
conclude that ZH(µ) = H ∩ ZG(µ) contains the nontrivial U ∩ H in its unipotent radical.
Thus, to reach a contradiction we may replace G with H to reduce to the case of semisimple
rank 1.

We may assume that the subgroup µ is non-central in G (or else there is nothing to do), so
µ has nontrivial image µ′ in G/ZG = PGL2. The nontrivial unipotent radical of ZG(µ)0 has
nontrivial image U ′ in PGL2. But ZG(µ)0 contains a maximal torus of G, so its image T ′ in
PGL2 is a maximal torus that must normalize U ′. By dimension considerations, B′ := T ′nU ′
is a Borel subgroup of PGL2, and this forces ZG(µ)0 to map onto B′ (as it cannot map onto
the reductive PGL2, due to the normality of U ′ in its image). Thus, B′ is the centralizer of
µ′ in PGL2.

Applying a conjugation to PGL2 brings T ′ = GL1 to the diagonal torus D and brings U ′ to
the upper unipotent subgroup U+. By inspection, the action of D = GL1 on U+ = Ga inside
PGL2 is given by ordinary scaling (possibly composed with inversion, depending on which
identification D = GL1 is chosen), so a nontrivial subgroup scheme of D cannot centralize
U+. This is a contradiction, since µ′ 6= 1. �


