
Math 249B. Center and adjoint kernel

1. Introduction

It is a classical fact that if G is a connected Lie group then the kernel of the adjoint
representation

AdG : G→ GL(g)

coincides with the center ZG. Indeed, by the definition in terms of the differential of conju-
gation it is obvious that ZG ⊂ ker AdG, and for the reverse containment we need to check
that if g ∈ G has the property that the conjugation automorphism cg : x 7→ gxg−1 of G
induces the identity on g then cg = idG (as that is exactly the centrality of g). But this in
turn follows from the faithfulness of the Lie-algebra functor on connected Lie groups.

The same argument works for (necessarily separated) smooth connected groups G over a
field k of characteristic 0: we just need to prove the faithfulness of the Lie-algebra functor

for such G, and passage to the (generally non-commutative) formal group ÔG,e is certainly
faithful (as G is integral), so our task comes down to proving that on smooth formal groups
in characteristic 0 the “tangent space” functor is faithful. But that in turn is a classical
fact in the theory of formal groups; see Theorem 3 in §6 of Chapter V of Serre’s book Lie
groups and Lie algebras (wherein §6–§7 of Chapter IV and §5–§6 of Chapter V provide a
self-contained development of formal groups culminating in that result).

The technique of faithfulness of the Lie-algebra functor breaks down in characteristic
p > 0. Here is an instructive example in the unipotent case:

Example 1.1. Over Fp, consider the alternating biadditive 2-cocycle b : Ga × Ga → Ga

defined by

b(x, y) = xp2yp − yp
2

xp.

Define U to be the non-commutative central extension of Ga by itself via

(x, y) · (x′, y′) = (x + x′ + b(y, y′), y + y′),

with identity (0, 0) and inversion (x, y)−1 = (−x,−y). (The associativity of this composition
law expresses the 2-cocycle condition on b.) This class of groups is inspired by the 2-
dimensional non-commutative wound unipotent groups in Example B.2.9 of [CGP].

Assume p 6= 2. Since b is skew-symmetric and p 6= 2, the scheme-theoretic center ZU is the
functor of points (x, y) satisfying yp = 0. But by direct computation of conjugation against
points (xε, yε) valued in the dual numbers R[ε] for any k-algebra R with x, y ∈ R, we find
that the adjoint representation of U is trivial!

Over F2 there is a variant of this construction that yields a non-commutative unipotent
smooth connected affine group whose adjoint representation is trivial. The preceding con-
struction is the “specialization at a = 1” for the construction in odd characteristic given in
Example B.2.9 of [CGP] (2nd edition, as always). In that Example a modified (not as ex-
plicit) construction is made over the polynomial ring F2[a] using Galois descent from F4[a];
the reduction modulo a− 1 furnishes the desired example over F2.

In view of the preceding example, to prove that ZG = ker AdG for a class of non-
commutative smooth connected affine k-groups G in characteristic p > 0, we need to avoid
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the unipotent case and so are led to focus on the reductive case. Our aim is to prove that
everything works well in that case:

Theorem 1.2. If G is a connected reductive group over an arbitrary field k, then the inclu-
sion ZG ⊂ ker AdG of closed k-subgroup schemes of G is an equality.

Our proof of this result will be by characteristic-free methods, although the real substance
is its validity in positive characteristic. As a special case of the theorem, ZG = 1 if and only
if the adjoint representation AdG : G→ GL(g) is faithful (i.e., has trivial schematic kernel,
or equivalently is a closed immersion). This is the reason that such G with trivial center are
called adjoint type.

Remark 1.3. With appropriate definitions for reductivity (with connected fibers) over a
general base scheme, Theorem 1.2 is valid over any base; see Proposition 3.3.8 in the Luminy
SGA3 notes (whose proof is a mild simplification of the proof of the essential content of
Proposition 4.11 in Exp. XII of SGA3). The proof we give below is extracted from the
argument given in the context of a general base scheme.

The fact that AdG is a closed immersion when ZG = 1 also remains true over any base
scheme (see Proposition 5.3.5 in the Luminy SGA3 notes), but this result even over Z or a
discrete valuation ring lies much deeper than the case over fields (since a monic homomor-
phism between smooth affine groups need not be a closed immersion when the base is the
affine line over a field of characteristic 0; see Example 3.1.2 in the Luminy SGA3 notes).

2. Proof of Theorem 1.2

We may and do assume k is algebraically closed. Rather generally, a closed normal sub-
group scheme N in G is central if its identity component N0 is central. Indeed, if N0 is
central then G/N0 has center ZG/N

0 (by the known good behavior with respect to passage
to central quotients for the formation of the scheme-theoretic center of a connected reduc-
tive group), so to prove N is central in G it suffices to show that N/N0 is central in G/N0.
Renaming the reductive quotient G/N0 as G, we are reduced to the case that N is finite
étale. The conjugation action by the connected G on the normal finite étale N is therefore
trivial, which exactly expresses the centrality of N in G.

Returning to the situation of interest, setting N = ker AdG, it suffices to prove that
H := (ker AdG)0 is central in G. Note that H is normal in G since N is normal in G.
(Normality can be checked using G(k)-conjugation since G is smooth; beware that H is
generally not smooth.) Let T ⊂ G be a maximal torus. By consideration of the T -equivariant
and schematically dense open cell Ω ⊂ G associated to a choice of positive system of roots
in Φ := Φ(G, T ), we see that

ker(AdG|T ) =
⋂
a∈Φ

ker a∨ = ZG.

Hence, it suffices to show that H := (ker AdG)0 ⊂ T . Since T is its own scheme-theoretic
centralizer in G, it is the same to prove that H ⊂ ZG(T ), which is to say that T -conjugation
on the connected normal subgroup scheme H is trivial.
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In general, an action of a torus T on a connected k-group scheme H of finite type is trivial
if the T -action on Lie(H) is trivial. This is proved via the complete reducibility of the finite-
dimensional representation theory of T , applied to the T -action on the coordinate rings of
the infinitesimal neighborhoods of the identity in H; see Corollary A.8.11 in [CGP] (proved
for the action of a linearly reductive group scheme, such as a group scheme of multiplicative
type, but whose proof simplifies in the relevant case of an action by a torus). Hence, it
suffices to prove triviality of the T -action on

Lie((ker AdG)0) = Lie(ker AdG) = ker(Lie(AdG)) = ker adg,

where adg : X 7→ [X, ·] is the adjoint representation of g. The kernel of adg is certainly T -
stable, so it is the span of its T -weight spaces. Hence, to show that only the trivial T -weight
occurs it suffices to show that none of the T -root lines ga (a ∈ Φ(G, T )) are killed by adg;
i.e., each such root line has nontrivial Lie bracket against something in g.

Passing to D(ZG(Ta)) and its maximal torus T ∩D(ZG(Ta)) = a∨(Gm) (whose root lines
are g±a) in place of G and T , we are reduced to the rank-1 semisimple case. That is, we
can assume G is equal to either SL2 or PGL2, with T the diagonal torus and ga the upper-
triangular root line. Let v+ be a nonzero vector in that root line, v− a nonzero vector in the
opposite root line, and X a nonzero vector in Lie(T ).

In the SL2-case we have [v+, v−] 6= 0 by direct verification. In the PGL2-case that calcu-
lation doesn’t work out in characteristic 2, but we can instead use an alternative calculation
that does work uniformly in all characteristics: since each root generates the character lattice
of T (as PGL2 has trivial center, or by inspection: the roots carry diag(t, 1) to t±1), we have
[X, v+] = a′(X)v+ 6= 0 where

a′ = Lie(a) : t ' Lie(Gm) = k∂t|t=1 = k.


