
Math 249B. Iterated genericity

1. Introduction

In the proof of Lemma 4.11, there is a genericity property whose proof deJong omits from his
paper and which is essential for getting a smooth and geometrically connected fiber in the normal
case. We first have to review the basic setup. Let X be d-dimensional closed subvariety in some
projective space PN with 1 ≤ d < N (over an algebraically closed base field k), and let Z ⊆ X
be a reduced closed subscheme with pure dimension d − 1. We form a finite map π : X → Pd by
composition of N −d linear projections away from points, and it is arranged to be generically étale
with π|Z birational onto its image. Explicitly, π = πL is projection away from an (N −d− 1)-plane
L ⊆ PN disjoint from X, where L is the projective span of independent k-points {p1, . . . , pN−d}
where p1 is generic in PN , p2 lifts a generic choice of k-point in the hyperplane target of projection
away from p1, etc. (We will prove below that L’s arising in this way are generic in the Grassmann
variety of (N−d−1)-planes in PN ; this is not a tautology, even though each pj is chosen generically
within a projective space depending on the previous pi’s!)

Geometrically, if L′ is a fixed d-plane in PN disjoint from the (N − d − 1)-plane L then the
projection PN − L → L′ away from L sends a k-point z (such as z ∈ X) to the unique point
where L′ meets the (N − d)-plane spanned by L and z. In coordinate-free and choice-free language
(avoiding the non-canonical L′), if PN = P(V ) := Proj(Sym(V )) for an (N +1)-dimensional vector
space V then L = P(V/W ) for a (d + 1)-dimensional subspace W and π is the restriction to
X of the map P(V ) − P(V/W ) → P(W ) that carries the homothety class of a nonzero linear
form ` ∈ V ∨ not vanishing in W (that is, not in (V/W )∨) to the homothety class of its nonzero
restriction `|W . This coordinate-free and choice-free description admits a functorial description
over k-schemes (justifying algebraicity without needing to use coordinates), and this viewpoint will
be required below when we work in a relative situation over some Grassmannians.

[We are of course using the contravariant Grothendieck convention for projective bundles and
Grassmannians, so for example the projective space P(V ) classifies families of hyperplanes in V ,
or equivalently isomorphism classes of families of 1-dimensional quotients of V . This is “dual” to
the classical covariant viewpoint, but Grothendieck’s version is more convenient when working over
base schemes as we shall have to do below. A very nice introduction to his perspective on these
matters, as well as to the functorial picture and construction of Grassmannians and flag schemes in
general, is Grothendieck’s elegant write-up in the complex-analytic category in Exposé 12 of volume
13 of the Seminaire Cartan collection that you can find in the on-campus math library (since I made
sure that those volumes remain in the on-campus collection after the massive down-sizing when the
math library moved into the “Old Chem” building). The arguments there carry over to the case
of schemes verbatim.]

Having made the finite (necessarily surjective) map π : X → Pd, we then chose a generic k-
point p ∈ Pd − π(Z) such that π is étale over an open neighborhood of p and the finite projection
prp : π(Z) → Pd−1 to the “hyperplane” of lines through p is generically étale. In coordinate-free

language, if PN = P(V ) and L = P(V/W ) then π has target P(W ) and the point p ∈ P(W ) is
P(W/W0) for a unique d-dimensional hyperplane W0 ⊆W . The projection prp has target given by
the projective (d− 1)-space P(W0). We introduced the incidence scheme

X ′ = {(x, `) ∈ X ×P(W0) |x ∈ π−1(`) = ` ∩X}
(points of P(W0) = Pd−1 are identified with lines ` in P(W ) = Pd through p), and we considered
the projection

f : X ′ → P(W0) = Pd−1.
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For a point ` in the target (considered as a line through p in P(W ) = Pd), the scheme-theoretic
fiber f−1({`}) over the “point” ` ∈ P(W0) is the same as the scheme-theoretic preimage π−1(`) of
the line ` ⊆ P(W ) under the finite surjection π : X → P(W ) = Pd. Let H ⊆ P(V ) = PN be the
(N−d+1)-plane that is the closure of the subvariety of homothety classes of linear forms on V with
a specified nonzero restriction to W0 (corresponding to ` as a point of P(W0)), or more geometrically
let H be the projective span the independent points p1, . . . , pN−d and two points lifting a pair of
independent points on the line ` ⊆ Pd. The scheme-theoretic fiber f−1({`}) = π−1(`) is precisely
the linear slice X ∩H.

The question is this: as we vary through the permissible choices of (N−d−1)-plane L = P(V/W ),
and then choices of the point p = P(W/W0) in the projective space P(W ) (which depends on
L = P(V/W ) ⊆ P (V )), are the resulting (N − d + 1)-planes H generic? That is, does this
collection of H’s at least exhaust some non-empty open set in the associated Grassmannian Grd(V )
of codimension-d subspaces in V (i.e., codimension-(d+1) planes in P(V ))? We need an affirmative
answer because the Bertini theorem ensures that, with respect to the Zariski topology in Grd(V ),
a generic (N − d + 1)-plane H has scheme-theoretic intersection X ∩ H that is a smooth and
(geometrically) irreducible curve.

Intuitively, it must be the case that as we generically vary L = P(V/W ) and then vary the point
p = P(W/W0) ∈ P(W ) subject to the various “generic” restrictions imposed upon it (namely, it
lies outside of πL(Z) ⊆ P(W ), the projection prp : πL(Z) → P(W0) is generically étale, and πL is
étale over an open neighborhood of p), the resulting (N − d + 1)-planes H ∈ P(V ) “spanned” by
L and a generic choice of line in P(W ) through p should at least exhaust a non-empty open set in
Grd(V ). If you reflect on the matter, you’ll see that there is something to be proved here because
we have iterated genericity conditions: the conditions on the point p that lies in the projective
space P(W ) which depends on L, and the way that L was built up through iterated generic choices
of k-points with each depending on the preceding generic choice. In the end we wish to sweep out
at least a dense open locus in the Grassmannian Grd(V ) of H’s in P(V ).

It is probably the case that if you make artful non-canonical choices of planes in PN to realize all
projective spaces inside PN then you can see the desired genericity by working entirely within PN .
However, at least for me the clearest way to do this rigorously is to avoid non-canonical choices
and work directly with universal bundles over suitable Grassmannians. This is the approach that
we shall take below.

2. Genericity of L

As a first step toward genercity of H’s, we want to show that the L’s obtained in the initial part
of the construction exhaust a Zariski-open locus in the variety Grd+1(V ) of codimension (d + 1)-
planes in the (N + 1)-dimensional vector space V (which is to say, codimension-d planes in P(V )).
That is, although we built our L in successive stages, what matters for our purposes is to have a
dense open locus of such L’s. For any codimension-d plane L = P(V/W ) ⊆ P(V ) disjoint from X
such that the projection P(V )−L→ P(W ) has (necessarily finite and) generically étale restriction
πL to X, by choosing N − d independent points p1, . . . , pN−d in L we can realize πL as a successive
composite of projections away from the pj ’s. Hence, it is equivalent to prove:

Theorem 2.1. Let k be a field and V an (N + 1)-dimensional k-vector space. Let X ⊆ P(V )
be a generically smooth closed subscheme with pure dimension d < N . Let G = Grd+1(V ) be the
Grassmann variety of codimension-d planes in P(V ). The locus of “points” L = P(V/W ) ∈ G
such that L is disjoint from X and πL : X → P(W ) is generically étale is dense and open.
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In the final statement of the theorem it has to be understood that we are working with arbitrary
field-valued points of the Grassmannian (not just k-points), and we are engaging in the usual abuse
of notation by not explicitly writing in the base change to the field in which the point takes its
values. (Of course, it is equivalent to work with points taking values in a fixed algebraically closed
extension of k.)

Proof. We already know that this locus has a geometric point (and in fact has lots of geometric
points). Since G is irreducible, the problem is therefore just to prove that this locus is open.
By definition, G classifies isomorphism classes of quotient bundles of VS := V ⊗k OS with rank
(N + 1)− (d+ 1), which is to say subbundles of VS with rank d+ 1 (for varying k-schemes S). In
particular, there is a universal subbundle E ↪→ VG of rank d+1 over G, and so we get a “universal”
(N − d − 1)-plane P(VG/E ) ↪→ P(VG) = P(V ) ×k G over G. Consider the associated “universal
projection” morphism

Π : P(VG)−P(VG/E )→ P(E )

over G that is functorially defined as follows: to a rank-(d+ 1) subbundle F ⊆ VS and hyperplane
bundle H ⊆ VS fiberwise not containing F (so F corresponds to a k-map φ : S → G and H
corresponds to a G-map S → P(VG)) we associate the hyperplane bundle H ∩F ⊆ F . Over a
geometric point SpecK → G corresponding to a (d+ 1)-dimensional subspace W ⊆ VK = V ⊗kK,
the pullback of Π is the usual projection P(VK)−P(VK/W )→ P(W ) as considered earlier (given
by restriction of homothety classes of linear functionals).

On geometric points, consider the condition on G that a codimension-d plane P(W ) is disjoint
from X. This is a dense open condition (stronger than merely containing a dense open set). Indeed,
the overlap XG ∩ P(VG/E ) of closed subschemes in P(VG) = P(V ) ×k G has closed image in G
by properness of projective bundles, and this closed set is not all of G because Bertini’s theorem
provides (many) codimension-(d + 1) planes in P(V ) that do not meet the pure d-dimensional
closed subscheme X ⊆ P(V ). The complement of this closed set is a dense open G0 ⊆ G, and it is
precisely the locus of interest. All we have done is obtain an openness aspect in a Bertini theorem.

Now over G0 we have the inclusion XG0 ⊆ P(VG0) − P(VG0/E |G0), and so by restriction of Π
we arrive at the “universal” πL:

πuniv : XG0 → P(E |G0) = P(E )G0 ;

as we vary through geometric points of G0, this map gives precisely the projections πL from X
away from codimension-(d+ 1) planes in P(V ) that do not touch X. Since all maps πL are finite,
the map πuniv is finite on fibers over geometric points of G0, so πuniv is quasi-finite. It is also a
G0-map between proper G0-schemes, so it is proper. Hence, πuniv is a finite map.

Letting Xsm be the dense open k-smooth locus of X, the quasi-finite restriction π0 : Xsm
G0 →

P(E )G0 of πuniv between flat G0-schemes of finite type is fiberwise quasi-finite between smooth al-
gebraic schemes of the same pure dimension. By the miracle flatness theorem (23.1 in Matsumura’s
CRT) such fibral restrictions are therefore flat, and so by the fibral flatness criterion it follows that
the restriction of πuniv to Xsm

G0 is flat. Hence, the open étale locus U of π0 meets each fiber over

a geometric point L ∈ G0 in the étale locus of πL|Xsm . I claim that there is a dense open in the
irreducible G0 over which U is fiberwise dense, and so this would provide a dense open locus of L’s
for which πL is generically étale on X.

It is harmless (check!) to make a finite extension on k, so we may assume that the connected
components of Xsm are geometrically connected (and so geometrically irreducible). In this case,
if {Xsm

j } is the set of such components then the problem is to find a non-empty open Uj ⊆ G0

over which the open set U ∩ (Xsm
j )G0 meets all (irreducible!) fibers of (Xsm

j )G0 . Indeed, such Uj ’s
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in the irreducible G0 must be dense and so they would have a common non-empty overlap that is
the desired dense open locus of L’s in G0 over which U is fiberwise dense. To find the Uj ’s, first
use the definition of G0 and deJong’s 2.11 to find geometric points L of G0 for which πL|Xsm

j
is

generically étale. Thus,U ∩ (Xsm
j )G0 is a non-empty open set and hence its image under the smooth

projection (Xsm
j )G0 → G0 is a non-empty open set Uj that does the job. �

To summarize, we have proved that in the Grassmannian G, the condition on a geometric point
L = P(V/W ) that L ∩X = ∅ and πL : X → P(W ) is generically étale is a dense open set. (This
is stronger than just saying it contains a dense open set.) It remains to show that the further
requirement that πL carries Z birationally onto its image in P(V ) is a generic condition. Consider
the universal case (using notation as in the previous proof)

πunivZ = πuniv|ZG0 : ZG0 → P(E |G0).

This map is certain finite (as it is proper and has finite restriction to geometric fibers over G0), and
we seek a dense open locus in G0 over which it is birational onto its image on (geometric) fibers.

Consider the natural map of sheaves OP(E |G0 ) → πunivZ∗ (OZG0 ). Since πunivZ is finite (hence affine),

the formation of this map of sheaves commutes with any base change on P(E |G0), so it commutes
with any base change on G0. Thus, the formation of the open locus U ⊆ P(E |G0) over which this
sheaf map is surjective (use Nakayama for openness) is compatible with any base change on G0.
Now by deJong’s 2.11 and the definition of G0, there exists a geometric point L ∈ G0(k) such that
the open L-fiber UL ⊆ P(E |L) contains a dense open in πL(Z), or equivalently (by finiteness of πL
and equidimensionality of Z) that the open (πunivZ )−1(U) ⊆ ZG0 is dense in the L-fiber. We seek a
non-empty open in the irreducible G0 over which (πunivZ )−1(U) is dense in all fibers of ZG0 → G0.

Let {Zj} be the (reduced) irreducible components of the equidimensional Z over the algebraically
closed field k, so by flatness of (Zj)G0 → G0 the restriction (πunivZ )−1(U)∩(Zj)G0 → G0 to an open
subset is also flat. This map is therefore open, but its image hits the geometric point L mentioned
above and so its image is a nonempty open set. By varying j we get finitely many nonempty open
sets in the irreducible G0, so they meet in a common dense open over which we have the desired
fibral density in fibers of ZG0 → G0.

This completes the proof that for a generic (N−d+1)-plane L = P(V/W ) in P(V ) = PN we have
L ∩X = ∅, πL : X → P(W ) = Pd is generically étale, and the restriction πL : Z → P(W ) = Pd

is birational onto its image. In fact, the above proof gives a stronger property than genericity that
will be essential in what follows: this collection of conditions on L is an open condition. The only
aspect of such openness that has not been explained above is the generically étale property for πL
(given L ∩ X = ∅; that is, L ∈ G0). But the finite πL is generically flat for any L disjoint from
X, so generic étaleness is equivalent to generic unramifiedness. This latter condition is precisely
the generic vanishing of the coherent sheaf Ω1

X/P(W ), and since X is (geometrically) irreducible it

is equivalent that such vanishing occur somewhere on X. By Nakayama, it is equivalent to have a
vanishing fiber at some point of X, and so by compatibility of formation of Ω1 with respect to base
change on the target we get the desired openness of this condition on L via Nakayama’s Lemma.
(Form the open set in XG0 where its Ω1 with respect to πuniv vanishes, and use the open image of
this under the flat map XG0 → G0.)

To summarize: not only have we proved the genericity of L in the Grassmannian G = Grd+1(V ),
but we have shown that the conditions of interest on the codimension-d plane L in P(V ) cut out
exactly an open set G′ ⊆ G.
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3. Genericity of H

Consider a codimension-d plane L = P(V/W ) ⊆ P(V ) satisfying the preceding conditions. For
each such L, consider points p = P(W/W0) ∈ P(W ) − πL(Z) such that (i) the finite generically
étale map πL : X → P(W ) is étale over an open neighborhood of p (that is, p lies outside of the
closed set given by the πL-image of the closed non-étale locus of πL in the irreducible X), and (ii)
the finite restriction prp : πL(Z)→ P(W0) is generically étale. To p we associate the codimension-
(d − 1) plane H = P(V/W0) in P(V ), and we want to prove that as we vary through all possible
L = P(V/W ) as above and the allowed p ∈ P(W ), the resulting subspaces H = P(V/W0) in P(V )
sweep out at least a dense open in the corresponding Grassmannian G for V .

Consider the flag variety F classifying pairs W0 ⊆W consisting of a (d+1)-dimensional subspace
W ⊆ V and a hyperplane W0 in W . This is a smooth projective variety, and it is equipped with
two natural forgetful maps F → G and F → G givens by (W0,W ) 7→ W0 and (W0,W ) 7→ W
respectively. Under the surjection F → G between irreducible varieties, the image of any nonempty
open set contains a dense open. (In fact, this map is smooth, so the image of an open is open.)
It is therefore sufficient to prove genericity in F for the set of pairs (W0,W ) as above over a
nonempty open set in G. We shall of course consider the part of F lying over the dense open
G′ ⊆ G consisting of precisely the subspaces L = P(V/W ) as above. Recall again the conditions
on p = P(W/W0): if BL ⊆ X denotes the closed nowhere dense non-étale locus (“branch scheme”)
for the finite generically étale projection πL : X → P(W ), then we want p to lie in L− πL(Z ∪BL)
and that prp : πL(Z) → P(W0) = Pd−1 is generically étale. Note that since the finite πL|Z is
generically étale (it is even birational, by the conditions on L), the hypothesis on prp is equivalent
to requiring that prp ◦ πL : Z → P(W0) is generically étale.

Aside from the condition that p = P(W/W0) not lie in πL(BL), the other requirements on
(W0,W ) ∈ F over the dense open G′ ⊆ G are that it lies in the part of F sitting over the dense
open G′ ⊆ G defined with respect to Z exactly as the dense open G′ ⊆ G was defined with
respect to X. (The openness of G′ requires a moment’s reflection, since Z is reducible whereas X
is irreducible. We were careful in Theorem 2.1 to not impose irreducibility hypotheses so that it
would carry over to Z in the present setting. For the other aspects it is straightforward to allow
reducibility without losing openness or density.) It remains to check genericity in F for the locus
cut out by the condition that p = P(W/W0) 6∈ πL(BL) with L = P(V/W ) ∈ G′. This locus is not
empty because we have exhibited such L and p at the outset (the definitions of G′ and G′ did not
involve ambiguous “genericity” restrictions!). It is therefore enough to prove abstractly that this
locus is open in F .

Let F 0 ⊆ F be the open preimage of G′ ⊆ G, so the finite map

πunivF 0 : XF0 → P(VF 0/EF0)

over F 0 has open étale locus that is dense in all fibers over F 0. The closed complement of this open
set has closed image in P(VF 0/EF 0), so the desired openness result follows from the rather general:

Lemma 3.1. Let G ′ ⊆ G be a hyperplane bundle in a vector bundle G over a scheme S, and let
T ⊆ P(G ) be a closed subscheme. Let j : S = P(G /G ′) ↪→ P(G ) be the canonical section. The
condition on S-schemes that the pullback of S not meet the pullback of T is represented by an open
subscheme of S.

Proof. The open locus S − j−1(T ) does the job. �


