
Math 249B. Isomorphisms of quadratic spaces

1. Introduction

Let A be a local ring, with residue field k, and Q,Q′ : An ⇒ A two residually non-degenerate
quadratic forms in n variables over A such that their reductions q, q′ : kn ⇒ k are isometric. (That
is, there exists a linear automorphism L0 of kn such that q ◦ L0 = q′.)

Subject to the mild hypothesis char(k) 6= 2 when n is odd, we aim to prove that if A is henselian
(e.g., complete local noetherian, or the henselization of any local ring) then Q and Q′ are isometric;
i.e., we seek to build a linear automorphism L of An such that Q ◦ L = Q′.

Remark 1.1. Let’s show that the parity condition on n when char(k) = 2 cannot be removed. (We
will only care about the case of even n, in fact n = 2, so the reader who doesn’t care about residue
characteristic 2 is welcome to skip this.) Suppose char(k) = 2 and n = 2m+ 1 with m ≥ 0. Let

Q = x20 + x1x2 + · · ·+ x2m−1x2m, Q′ = ux20 + x1x2 + · · ·+ x2m−1x2m

for u ∈ A×. The reductions (kn, q) and (kn, q′) have 1-dimensional defect spaces each coinciding
with the line ke0. (Recall that for a non-degenerate quadratic space (V, q) of odd dimension 2m+1
over a field of characteristic 2, the symmetric bilinear form Bq(v1, v2) = q(v1 + v2)− q(v1)− q(v2)
is alternating and has defect space V ⊥ := {v ∈ V |, Bq(v, ·) = 0} equal to a line, with the induced

alternating form Bq on the 2m-dimensional V/V ⊥ non-degenerate; i.e., symplectic.)
The restrictions of q and q′ to their respective defect lines are x20 and ux20 respectively, so the

existence of a residual isometry forces the reduction u ∈ k× to be a square in k. Since char(k) = 2,
the reduction of u being a square does not generally imply that u is a square in A× (even if A is a
complete discrete valuation ring). Although it is clear by inspection that u being a square in A×

is sufficient for Q and Q′ to be isometric, it isn’t evident in general if this is necessary for Q and
Q′ to be isometric (in which case we would have a genuine obstruction, showing that the parity
condition on n for residue characteristic 2 cannot be avoided).

In case A is an F2-algebra then necessity is obvious because in such cases the intrinsic defect
modules for Q and Q′ respectively each coincide with the subbundle Ae0 on which they respectively
restrict to x20 and ux20, so we can argue as we did over k. Thus, by taking A to be a local henselian
F2-algebra and u ∈ A× a non-square unit whose reduction is 1 (e.g., A = κ[[t]] for a field κ of
characteristic 2 and u = 1 + t) we get the desired examples of non-isometric Q and Q′ that are
residually non-degenerate and residually isometric for all odd n = 2m+ 1.

In fact, by using more serious input through the structure of “odd” orthogonal group schemes
over rings one can show over any local ring A that the condition of u being a square is always
necessary for Q and Q′ to be isometric; see Remark 2.1. Thus, we also get mixed-characteristic
examples with A any 2-adic integer ring, by taking u to be 1 + π for a uniformizer π (visibly a
non-square precisely because if u were a square then it would have to have a square root that is a
1-unit but the square of any 1-unit is 1 mod π2 since π|2 in A).

2. Smoothness of an Isom-scheme

Now we take up the task of proving for henselian local A that Q and Q′ are isometric when they
are residually isometric, provided that n is even when char(k) = 2. First we dispose of a boring
case: n = 1. Suppose n = 1, so Q = ax20 and Q′ = a′x20 for units a, a′ ∈ A× such that a′/a has
reduction in k× that is a square (by the residual isometry hypothesis). For odd n we are assuming
char(k) 6= 2, so a′/a is therefore a square in A by the henselian condition (i.e., Y 2 − a′/a ∈ A[Y ]
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has a simple residual root, and thus a root in A) and so Q and Q′ are isometric. Thus, we now
assume n ≥ 2.

The key idea is to introduce an A-scheme classifying isometries and prove this scheme is smooth
(which will crucially use the hypothesis that n is even when char(k) = 2); it will then follow via the
henselian condition on A that even the given residual isometry q′ ' q can be lifted to an isometry
Q′ ' Q over A.

Inside the A-group scheme GLn, the condition on a point L that Q′ = Q◦L is an explicit (albeit
nasty) finite system of universal polynomial conditions over A on the matrix entries of L (depending
on Q and Q′ over A). This defines a finitely presented closed subscheme I ⊂ GLn representing the
functor on A-algebras

C  Isom((Cn, Q′C), (Cn, QC)).

We are given that I(k) is non-empty. Thus, if I is A-smooth then I(A) → I(k) is surjective for
henselian A, so we would be done. Our aim then is to prove that I is A-smooth. The beauty of
this idea is that as a property of an explicit finitely presented A-scheme it will be sufficient to check
this after suitable fpqc scalar extensions on A that would otherwise seem to lose all contact with
our actual problem of interest over A.

We saw in class (with n ≥ 2) that the residual non-degeneracy of Q implies that the projective
quadric (Q = 0) ⊂ Pn−1

A is A-smooth with relative dimension n − 2 ≥ 0, so we now forget about
the assumptions that A is local and henselian (so in particular we drop the hypothesis involving a
residual isometry!) and instead allow A to be any ring whatsoever but assume two things:

(i) the projective quadrics (Q = 0), (Q′ = 0) ⊂ Pn−1
A are A-smooth with relative dimension

n− 2,
(ii) if n is odd then A is a Z[1/2]-algebra.

Under these assumptions, we shall prove that the Isom-scheme I is A-smooth. It is only at the end
of the argument that (ii) will be used.

As discussed in Lemma 1.3 of the handout “Orthogonal group schemes” in my course Algebraic
Groups I (largely refering to a self-contained concrete calculation in [SGA7, XII, Prop. 1.2]), the
smoothness of relative dimension n − 2 for the projective quadrics (Q = 0) and (Q′ = 0) in Pn−1

A
ensures that fppf-locally on Spec(A), each ofQ andQ′ becomes isometric to the “standard” fiberwise
non-degenerate quadratic form in n variables, namely Q2m := x1x2 + · · ·+x2m−1x2m when n = 2m
and Q2m+1 := x20+Q2m when n = 2m+1. Since the A-smoothness of the Isom-scheme I is an fppf-
local problem over Spec(A), by making a suitable fppf-affine base change on A (!) we can assume
Q = Q′ = Qn! Thus, our Isom-scheme I becomes the A-group scheme On,A ⊂ GLn,A representing
the functor of isometric automorphisms of Qn. This A-group scheme is the scalar extension of the
corresponding one over Z, so our task has reduced to that of proving the smoothness of On over Z
for even n and over Z[1/2] for odd n. (Recall that we assume A is a Z[1/2]-algebra when n is odd.)

It is shown by a concrete equation-counting argument in Proposition 2.3 of the handout “Or-
thogonal group schemes” from my course Algebraic Groups I that if n = 2m with m ≥ 1 then
the orthogonal group scheme On is Z-smooth and in fact (see also Corollary 2.4 of loc. cit.) is an
extension of the constant group Z/(2) by a smooth affine group scheme SOn with connected fibers
of dimension n(n− 1)/2 (this latter group scheme is not defined to be On ∩ SLn because for even n
this gives the wrong group in characteristic 2; the Dickson morphism defined in §1 of “Orthogonal
group schemes” gives a unified definition over Z for even n, recovering the usual notion over Z[1/2]
by Corollary 2.5 of loc. cit.).

In Proposition 3.5 of that same handout, it is shown that if n = 2m + 1 then On = µ2 × SOn

as Z-group schemes for the Z-group scheme SOn := On ∩ SLn that is shown to be smooth with
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connected fibers of dimension n(n− 1)/2. Thus, over Z[1/2] we recover the desired smoothness for
On for odd n!

Remark 2.1. The description O2m+1 = µ2 × SO2m+1 over Z allows us to fill in the loose end in
Remark 1.1 concerning the necessity of u being a square (for those who didn’t completely ignore
Remark 1.1, which we don’t logically need anyway). Namely, the Isom-scheme I = Isom(Q′, Q)
that we want to have an A-point is a left torsor for O(Q) = O2m+1 = µ2 × SO2m+1 for the fppf
topology on A. To get from Q to Q′ over the fppf cover A′ = A[T ]/(T 2−u) of A, we can apply the
diagonal operation on A′n given by

diag(
√
u,
√
u, 1/

√
u,
√
u, 1/

√
u, . . . , . . .

√
u, 1/

√
u).

Thus, the resulting fppf 1-cocycle over A′ ⊗A A
′ is given by

diag(ζ, ζ, 1/ζ, . . . , ζ, 1/ζ)

for ζ =
√
u⊗ (1/

√
u). But ζ2 = u⊗ (1/u) = 1, so ζ ∈ µ2(A′ ⊗A A

′) and hence 1/ζ = ζ.
We conclude that the fppf descent datum describing I as an O2m+1-torsor comes from H1(A,µ2).

Since O2m+1 = µ2×SO2m+1, this O2m+1-torsor is trivial if and only if the class in H1(A,µ2) is trivial
(since a coboundary splitting the cocycle over some fppf cover of A refining A′ can be projected to its
µ2-factor). By fppf Kummer theory, the class in H1(A,µ2) represented by

√
u⊗1/

√
u ∈ (A′⊗AA

′)×

corresponds to the class of u ∈ A×/(A×)2 under the natural injective map A×/(A×)2 → H1(A,µ2).
Hence, I(A) is non-empty if and only if u is a square in A. This is exactly the necessity claimed in
Remark 1.1.


