MATH 249B. ISOMORPHISMS OF QUADRATIC SPACES

1. INTRODUCTION

Let A be a local ring, with residue field k, and Q,Q’ : A" = A two residually non-degenerate
quadratic forms in n variables over A such that their reductions ¢, ¢’ : k" = k are isometric. (That
is, there exists a linear automorphism Lg of k™ such that go Ly = ¢'.)

Subject to the mild hypothesis char(k) # 2 when n is odd, we aim to prove that if A is henselian
(e.g., complete local noetherian, or the henselization of any local ring) then @ and Q' are isometric;
i.e., we seek to build a linear automorphism L of A™ such that Qo L = Q.

Remark 1.1. Let’s show that the parity condition on n when char(k) = 2 cannot be removed. (We
will only care about the case of even n, in fact n = 2, so the reader who doesn’t care about residue
characteristic 2 is welcome to skip this.) Suppose char(k) =2 and n = 2m + 1 with m > 0. Let
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for u € A*. The reductions (k",q) and (k™,q’) have 1-dimensional defect spaces each coinciding
with the line keg. (Recall that for a non-degenerate quadratic space (V, q) of odd dimension 2m + 1
over a field of characteristic 2, the symmetric bilinear form Bg(vi,v2) = q(v1 + v2) — q(v1) — q(v2)
is alternating and has defect space V+ := {v € V|, B4(v,-) = 0} equal to a line, with the induced
alternating form B, on the 2m-dimensional V/V+ non-degenerate; i.e., symplectic.)

The restrictions of g and ¢’ to their respective defect lines are x% and ﬂx% respectively, so the
existence of a residual isometry forces the reduction @ € k* to be a square in k. Since char(k) = 2,
the reduction of u being a square does not generally imply that u is a square in A* (even if A is a
complete discrete valuation ring). Although it is clear by inspection that u being a square in A*
is sufficient for Q and @’ to be isometric, it isn’t evident in general if this is necessary for ) and
@’ to be isometric (in which case we would have a genuine obstruction, showing that the parity
condition on n for residue characteristic 2 cannot be avoided).

In case A is an Fs-algebra then necessity is obvious because in such cases the intrinsic defect
modules for Q and Q' respectively each coincide with the subbundle Aey on which they respectively
restrict to 23 and ux3, so we can argue as we did over k. Thus, by taking A to be a local henselian
Fs-algebra and u € A* a non-square unit whose reduction is 1 (e.g., A = k[t] for a field k of
characteristic 2 and u = 14 t) we get the desired examples of non-isometric @ and Q" that are
residually non-degenerate and residually isometric for all odd n = 2m + 1.

In fact, by using more serious input through the structure of “odd” orthogonal group schemes
over rings one can show over any local ring A that the condition of u being a square is always
necessary for @ and @’ to be isometric; see Remark 2.1. Thus, we also get mixed-characteristic
examples with A any 2-adic integer ring, by taking u to be 1 4+ 7 for a uniformizer 7 (visibly a
non-square precisely because if u were a square then it would have to have a square root that is a
1-unit but the square of any 1-unit is 1 mod 72 since 7|2 in A).

2. SMOOTHNESS OF AN [SOM-SCHEME

Now we take up the task of proving for henselian local A that @ and Q' are isometric when they
are residually isometric, provided that n is even when char(k) = 2. First we dispose of a boring
case: n = 1. Suppose n = 1, so Q = az? and Q' = o’z for units a,a’ € A* such that a’/a has
reduction in k£ that is a square (by the residual isometry hypothesis). For odd n we are assuming
char(k) # 2, so a’/a is therefore a square in A by the henselian condition (i.e., Y2 —d’/a € A[Y]
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has a simple residual root, and thus a root in A) and so @ and @' are isometric. Thus, we now
assume n > 2.

The key idea is to introduce an A-scheme classifying isometries and prove this scheme is smooth
(which will crucially use the hypothesis that n is even when char(k) = 2); it will then follow via the
henselian condition on A that even the given residual isometry ¢’ ~ ¢ can be lifted to an isometry
Q' ~ Q over A.

Inside the A-group scheme GL,,, the condition on a point L that @' = Qo L is an explicit (albeit
nasty) finite system of universal polynomial conditions over A on the matrix entries of L (depending
on @ and @’ over A). This defines a finitely presented closed subscheme I C GL,, representing the
functor on A-algebras

C ~ Isom((C™, Qr), (C™, Qc)).

We are given that I(k) is non-empty. Thus, if I is A-smooth then I(A) — I(k) is surjective for
henselian A, so we would be done. Our aim then is to prove that I is A-smooth. The beauty of
this idea is that as a property of an explicit finitely presented A-scheme it will be sufficient to check
this after suitable fpqc scalar extensions on A that would otherwise seem to lose all contact with
our actual problem of interest over A.

We saw in class (with n > 2) that the residual non-degeneracy of @) implies that the projective
quadric (Q = 0) € P" ! is A-smooth with relative dimension n — 2 > 0, so we now forget about
the assumptions that A is local and henselian (so in particular we drop the hypothesis involving a
residual isometry!) and instead allow A to be any ring whatsoever but assume two things:

(i) the projective quadrics (Q = 0),(Q" = 0) C P’y are A-smooth with relative dimension
n— 2,
(ii) if n is odd then A is a Z[1/2]-algebra.
Under these assumptions, we shall prove that the Isom-scheme I is A-smooth. It is only at the end
of the argument that (ii) will be used.

As discussed in Lemma 1.3 of the handout “Orthogonal group schemes” in my course Algebraic
Groups I (largely refering to a self-contained concrete calculation in [SGAT7, XII, Prop. 1.2]), the
smoothness of relative dimension n — 2 for the projective quadrics (Q = 0) and (Q' = 0) in szl
ensures that fppf-locally on Spec(A), each of @ and @’ becomes isometric to the “standard” fiberwise
non-degenerate quadratic form in n variables, namely Q9 := 129+ - - + T, _1T2, When n = 2m
and Qo1 = :cg 4+ Q2m when n = 2m—+1. Since the A-smoothness of the Isom-scheme I is an fppf-
local problem over Spec(A), by making a suitable fppf-affine base change on A (!) we can assume
Q = Q' = Q! Thus, our Isom-scheme I becomes the A-group scheme O,, 4 C GLj, 4 representing
the functor of isometric automorphisms of (),,. This A-group scheme is the scalar extension of the
corresponding one over Z, so our task has reduced to that of proving the smoothness of O,, over Z
for even n and over Z[1/2] for odd n. (Recall that we assume A is a Z[1/2]-algebra when n is odd.)

It is shown by a concrete equation-counting argument in Proposition 2.3 of the handout “Or-
thogonal group schemes” from my course Algebraic Groups I that if n = 2m with m > 1 then
the orthogonal group scheme O,, is Z-smooth and in fact (see also Corollary 2.4 of loc. cit.) is an
extension of the constant group Z/(2) by a smooth affine group scheme SO,, with connected fibers
of dimension n(n — 1)/2 (this latter group scheme is not defined to be O,, N SL,, because for even n
this gives the wrong group in characteristic 2; the Dickson morphism defined in §1 of “Orthogonal
group schemes” gives a unified definition over Z for even n, recovering the usual notion over Z[1/2]
by Corollary 2.5 of loc. cit.).

In Proposition 3.5 of that same handout, it is shown that if n = 2m + 1 then O,, = us x SO,
as Z-group schemes for the Z-group scheme SO,, := O, N SL,, that is shown to be smooth with
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connected fibers of dimension n(n — 1)/2. Thus, over Z[1/2] we recover the desired smoothness for
O,, for odd n!

Remark 2.1. The description Ogy,41 = g X SOgpyy1 over Z allows us to fill in the loose end in
Remark 1.1 concerning the necessity of u being a square (for those who didn’t completely ignore
Remark 1.1, which we don’t logically need anyway). Namely, the Isom-scheme I = Isom(Q’, Q)
that we want to have an A-point is a left torsor for O(Q) = Ogpt1 = p2 X SOgp,41 for the fppf
topology on A. To get from Q to Q' over the fppf cover A’ = A[T]/(T? —u) of A, we can apply the
diagonal operation on A" given by

diag(v/t, v/t 1/t i, 1N o0, V).

Thus, the resulting fppf 1-cocycle over A’ ® 4 A’ is given by

diag(¢, ¢, 1/¢, ..., ¢, 1/¢)

for ( = Vu® (1/y/u). But (2 =u® (1/u) =1, s0 ¢ € puz(A’ ®4 A’) and hence 1/¢ = (.

We conclude that the fppf descent datum describing I as an Qa4 1-torsor comes from H' (A, ps).
Since Oy 11 = 2 X SO2pp 11, this Ogy,y1-torsor is trivial if and only if the class in H (A, o) is trivial
(since a coboundary splitting the cocycle over some fppf cover of A refining A’ can be projected to its
po-factor). By fppf Kummer theory, the class in H' (A, u2) represented by u®1/y/u € (A'®4 A")*
corresponds to the class of u € A*/(A*)? under the natural injective map A* /(A*)? — H(A, p2).
Hence, I(A) is non-empty if and only if u is a square in A. This is exactly the necessity claimed in
Remark 1.1.



