
Math 249C. The ∗-action, based root datum, and automorphism schemes

1. Motivation

Let G be a connected semisimple (not just reductive) group over a field k, and let S be a
maximal split k-torus and P a minimal parabolic k-subgroup of G containing S. Let T be a
maximal k-torus of P containing S (so T is also a maximal k-torus of G, since P is parabolic
in G). Define the notation

kΦ = Φ(G,S), kΦ
+ = Φ(P, S), Φ = Φ(Gks , Tks).

Choose a Borel ks-subgroup B ⊂ Pks containing Tks (so B = Pks if G is quasi-split over
k). This amounts to choosing a positive system of roots Φ+ = Φ(B, Tks) for Φ contained
inside the parabolic set of roots Φ(Pks , Tks) in Φ. We define ∆ to be the basis of Φ+ (so
its elements correspond to the nodes of the Dynkin diagram obtained from (Gks , Tks , B)),
and ∆0 denotes the set of a ∈ ∆ for which the restriction a|Sks

∈ X(Sks) = X(S) is trivial.
Let k∆ ⊂ X(S) − {0} = X(Sks) − {0} denote the restriction of ∆ −∆0 along the inclusion
Sks ↪→ Tks , so restriction defines a map

∆→ k∆ ∪ {0}.
In class, we defined an action of Γ = Gal(ks/k) on the set ∆, called the “∗-action”, as

follows. There is an evident Γ-action on Φ. For each γ ∈ Γ, γ(Φ+) is a positive system of
roots for Φ, so there is a unique wγ ∈ W (Gks , Tks) such that wγ(γ(Φ+)) = Φ+. Considering
minimal elements of these positive systems of roots, we see that wγ(γ(∆)) = ∆. We saw in
class that

wγ′γ = wγ′γ
′(wγ),

so Γ×∆→ ∆ defined by
(γ, a) 7→ γ ∗ a := wγ(γ(a))

is an action of Γ on the set ∆. This is visibly continuous, since the action factors through
Gal(K/k) for a finite Galois extension K/k inside ks that splits T and over which represen-
tatives in NG(T )(ks) for the elements of the finite group W = W (Gks , Tks) are defined.

Example 1.1. As was noted in class, if G is quasi-split (i.e., P is a Borel k-subgroup of G)
then wγ = 1 for all γ. Thus, in the quasi-split case the ∗-action is induced by the natural
Γ-action on Φ. The converse is true too: if the ∗-action is induced by the Γ-action on Φ then
G is quasi-split.

Indeed, since any nontrivial element of W (Gks , Tks) moves Φ+ to another positive system
of roots, any two of which are disjoint from each other, in such a situation necessarily wγ = 1
for all γ. Thus, Φ+ = wγ(γ(Φ+)) = γ(Φ+), which is to say that Φ(B, Tks) is Γ-stable inside
Φ. But any parabolic ks-subgroup of Gks containing Tks (such as a Borel ks-subgroup) is
uniquely determined by its associated parabolic set of roots, so B is Γ-stable inside Gks and
hence descends to a Borel k-subgroup of G.

The ∗-action on the set ∆ respects a lot of structure, such as the data encoded in the
Dynkin diagram (directed edges and edge multiplicities), and a bit more. To see this, note
that by definition, the Γ-action on Φ is induced by the natural Γ-action on X(Tks). This
latter action and its Z-dual permute the sets of absolute roots and coroots, respecting the
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evaluation pairing between them. The same holds for the action of the absolute Weyl group
W (Gks , Tks). Thus, the ∗-action of any γ ∈ Γ also respects these structures, and hence acts
through not only an automorphism of the based root system (i.e., the root system equipped
with a choice of positive system of roots, or equivalently a choice of basis) – which is to
say an automorphism of the Dynkin diagram – but even an automorphism of the based root
datum for (Gks , Tks) (i.e., the root datum equipped with a choice of positive system or roots,
or equivalently a choice of basis).

We say that a subset of ∆ is ∗-stable if it is stable for the above action of Γ on ∆. In this
handout, our main aim is to prove two properties of this action:

Theorem 1.2. The restriction map ∆ → k∆ ∪ {0} has Γ-stable fibers, and for a subset
I ⊂ ∆ − ∆0 the parabolic set Φ(Pks , Tks) ∪ [I] = Φ+ ∪ [∆0

∐
I] ⊂ Φ is Γ-stable inside Φ if

and only if the subset I ⊂ ∆−∆0 is ∗-stable.

In the final section of this handout, we explain a more conceptual perspective on the
∗-action that links it up with Galois cohomological considerations to be studied later.

2. Proof of Theorem 1.2

The key point is to show:

Lemma 2.1. For any γ ∈ Γ, wγ ∈ NZG(S)(T )(ks)/T (ks) inside NG(T )(ks)/T (ks).

Proof. Let U = Ru,k(P ), so P = ZG(S) n U due to the minimality of P . Thus, Borel
ks-subgroups of P necessarily contain U and so the set of these corresponds bijectively
to the set of Borel ks-subgroups of P/U = ZG(S) via “image” and “preimage”. In par-
ticular, the set of Borel ks-subgroups of Pks containing Tks is in bijective correspondence
with the set of Borel ks-subgroups of ZG(S)ks containing Tks . This bijection is visibly Γ-
equivariant, and W (ZG(S)ks , Tks) acts (simply) transitively on the set of Borel ks-subgroups
of W (ZG(S)ks , Tks). Thus, for the purpose of choosing wγ we can find a choice inside
NZG(S)(T )(ks). �

Since Lie(ZG(S)) = Lie(G)S, an element of Φ occurs in Lie(ZG(S))ks if and only if Sks i
killed by that absolute root. In other words, the elements of ∆ whose 1-dimensional weight
space in Lie(G)ks occurs inside Lie(ZG(S))ks are exactly the elements of ∆0. As we noted
in class, the minimality of P implies that for λ ∈ X∗(S) satisfying P = PG(λ), we have
ZG(S) = ZG(λ) = PG(λ) ∩ PG(−λ), so

Φ(ZG(S)ks , Tks) = Φ(Pks , Tks) ∩ −Φ(Pks , Tks) = [I]

for the unique I ⊂ ∆ such that Φ(Pks , Tks) = Φ+ ∪ [I]. Thus,

I = ∆ ∩ Φ(Pks , Tks) ∩ −Φ(Pks , Tks) = ∆ ∩ Φ(ZG(S)ks , Tks) = ∆0.

We conclude that Φ(ZG(S)ks , Tks) = [∆0]. This says that ∆0 is the basis of the posi-
tive system of roots for (ZG(S)ks , Tks) associated to the Borel ks-subgroup of ZG(S)ks =
Pks/Uks whose preimage in Pks is the Borel ks-subgroup B ⊂ Pks . Hence, the Weyl group
W (ZG(S)ks , Tks) is generated by the reflections ra for a ∈ ∆0. In view of the Lemma above,
we conclude that wγ = ra1 · · · ram for a sequence a1, . . . , am ∈ ∆0. For a ∈ ∆0 and x ∈ X(Tks),

ra(x) = x− 〈x, a∨〉a ∈ x+ Z∆0.
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Since moreover ra(∆0) ∈ Z∆0, it follows that ra(x+Z∆0) = x+Z∆0. Thus, wγ(x) ∈ x+Z∆0

for any such x, so γ ∗ a = wγ(γ(a)) ∈ γ(a) + Z∆0. Restricting to Sks kills ∆0, so using the
triviality of the natural Γ-action on X(Sks) = X(S) implies that

(γ ∗ a)|Sks
= γ(a)|Sks

= a|Sks
.

This proves the Γ-stability of the fibers of ∆→ k∆ ∪ {0}.
It remains to show for I ⊂ ∆−∆0 that Φ(Pks , Tks)∪ [I] is Γ-stable inside Φ if and only if

I is ∗-stable inside ∆. (Keep in mind that Φ(Pks , Tks) = Φ+ ∪ [∆0].) It suffices to show that
under the natural Γ-action on Φ,

γ(Φ(Pks , Tks) ∪ [I]) = Φ(Pks , Tks) ∪ [γ ∗ I]

for all γ ∈ Γ, where γ ∗ I denotes the image of I under the ∗-action of γ ∈ Γ. Clearly
γ(Φ(Pks , Tks)) = Φ(Pks , Tks), so

γ(Φ(Pks , Tks) ∪ [I]) = Φ(Pks , Tks) ∪ [γ(I)] = Φ+ ∪ [∆0 ∪ γ(I)]

(where [J ] denotes the set of absolute roots that are Z-linear combinations of a given set J
of such roots). We want this to coincide with Φ(Pks , Tks)∪ [γ ∗ I] = Φ+ ∪ [∆0 ∪ γ ∗ I]. Thus,
it suffices to show that the sets [∆0 ∪ γ(I)] and [∆0 ∪ γ ∗ I] coincide. But γ ∗ I = wγ(γ(I)) ⊂
γ(I) + Z∆0, so we are done.

3. Another interpretation

The last item we address in this handout is a conceptual interpretation of the ∗-action of Γ
on the based root datum. This requires a preliminary digression to discuss the automorphism
functor of a connected semisimple group.

For any connected semisimple k-group H, there is a smooth affine automorphism scheme
AutH/k that classifies automorphisms of H over arbitrary k-algebras. More specifically,
this represents the functor AutH/k that assigns to any k-algebra A the group of A-group
automorphism HA ' HA. In other words, there is a “universal” AutH/k-group scheme
automorphism

F : H × AutH/k ' H × AutH/k
such that for any k-algebra A and A-group automorphism f : HA ' HA there is a unique k-
map SpecA→ AutH/k along which the pullback of F is f . For example, if K is an extension
field of k then AutH/k(K) = AutK-gp(HK) functorially in K.

The construction of k-group AutH/k involves Galois descent applied to a construction in
the “split” case (which we will review shortly). There is a large part of the automorphism
scheme that we can describe in concrete terms, as follows. The action of H on itself via
conjugation makes ZH act trivially on H, so it factors through an action of Had = H/ZH
on H. Hence, Had(k) naturally acts on the k-group H. Beware that Had(k) may be larger
than H(k)/ZH(k), due to cohomological obstructions in H1(k, ZH) (fppf abelian cohomology
if ZH isn’t smooth).

Example 3.1. For H = SLn, the group Had = SLn/µn is identified with PGLn. Thus, we get
an action of PGLn(k) on SLn. Since H1(k,Gm) = 1 whereas H1(k, µn) = k×/(k×)n 6= 1 in
general, PGLn(k) = GLn(k)/k× whereas SLn(k)/µn(k) is generally a proper normal subgroup
of PGLn(k) whose cokernel k×/(k×)n (which is often infinite!) encodes the determinant
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modulo nth powers. This action of PGLn(k) = GLn(k)/k× on SLn is induced by the usual
conjugation action of GLn(k) on SLn.

The action of Had on H corresponds to a map of fppf group sheaves Had → AutH/k. This

map has trivial kernel: any point h′ of Had valued in a k-algebra arises from a point h of
H fppf-locally on the base, so h′ vanishes in AutH/k precisely when h-conjugation is trivial,
which is to say h is a point of ZH , or in other words h′ = 1 as desired. The subgroup functor
Had inside AutH/k is normal, by the same computation in ordinary group theory according
to which the inner automorphism group of an abstract group is preserved under conjugation
inside the full automorphism group.

We refer to points of the k-subgroup Had (valued in k-algebras or k-schemes) as the inner
automorphisms of H. Beware that since H(k) → Had(k) may fail to be surjective, there
may be elements of Had(k) whose effect on H(k) is not conjugation by any element of H(k)
(and so does not give an inner automorphism of H(k) in the sense of abstract group theory).
For example, SLn has automorphisms arising from PGLn(k) = GLn(k)/k×, and we call
these “inner” automorphisms of SLn but the diagonal elements diag(c, 1, 1, . . . , 1) mod k× ∈
PGLn(k) act on SLn in a manner that does not arise from any SLn(k)-conjugation when
c 6= 1.

Theorem 3.2. The functor AutH/k is represented by a smooth affine k-group with identity

component Had.

Proof. Since the automorphism functor is a sheaf for the étale topology (even the fpqc
topology), and étale descent (even fpqc descent) is effect for affine schemes, it suffices for
the proof of representability to first apply a finite separable extension of k. The same goes
for showing that Had is the identity component of the representing object. Hence, we may
and do assume H = H0 is a split connected semisimple k-group, say with a split maximal
k-torus S.

As a warm-up, we explain the structure of the group Aut(H0) of k-valued points of the
automorphism functor, modifying any k-group automorphism of H0 by an element of Had

0 (k)
so all that remains is an automorphism of the based root datum.

Since S is the preimage of its split maximal k-torus image Sad = S/ZH0 in Had
0 , and

Had
0 (k) acts transitively on the set of split maximal k-tori of Had

0 , for any k-automorphism
f of H0 we may compose f with the action of a suitable element of Had

0 (k) to arrange that
f preserves S. Choose a Borel k-subgroup B0 containing S. This is also the preimage of its
Borel k-subgroup image Bad

0 = B0/ZH0 in Had
0 . Since Had

0 (k) acts transitively on the set of
pairs (B0, S) consisting of a Borel k-subgroup and a split maximal k-torus contained inside
that Borel subgroup, by adjusting our Had

0 (k)-modification of f we can even arrange that f
preserves the pair (B0, S) inside H0.

Let ∆ be the basis of Φ associated to Φ+ := Φ(B, S). The root groups of (H0, S) map
isomorphically onto those of (Had

0 , S). More specifically, S n
∏

a∈Φ+ Ua ' B0 via multiplica-
tion (for any fixed choice of enumeration of Φ+), and likewise Sad n

∏
a∈Φ+ Ua ' Bad

0 . The
“adjoint torus” Sad has character group with basis ∆, and more specifically Sad '

∏
a∈∆ Gm

via s 7→ (a(s))a∈∆. Since X(f) preserves Φ+, it must permute the set ∆ of minimal elements.
If σf denotes this permutation, then on the root groups associated to these simple positive
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roots the effect of f must be determined by isomorphisms Ua ' Uσf (a) for a ∈ ∆. Thus,
if we choose an isomorphism Ua ' Ga for each such a, or equivalently choose a basis of
Lie(Ua) = ga (this is called a pinning of (H0, B0, S)) then the isomorphisms Ua ' Uσf (a) are
identified with automorphisms of Ga, which is to say k×-scalings.

Consequently, if we adjust f further by a suitable element of Sad(k) then we can cancel
out the effect of those multipliers and leave only the combinatorial data of the permutation
σf , which “is” an automorphism of X(S) that preserves Φ+ and whose dual preserves the
associated positive system of coroots. This automorphism respects pairings among simple
positive roots and coroots, so it is an automorphism of the based root datum.

Let E0 be the automorphism group of the based root datum (viewed as a subgroup of the
automorphism group of the Dynkin diagram). In the simply connected or adjoint cases, E0

coincides with the group of all diagram automorphisms because the Z-structure is determined
by the root system: X(S) = ZΦ in the adjoint case and X∗(S) = ZΦ∨ in the simply connected
case. In general the based root datum has a smaller automorphism group than does the
Dynkin diagram.

The preceding arguments provide a left exact sequence of groups

1→ Had
0 (k)→ Aut(H0)→ E0.

For each σ ∈ E0, the Isomorphism Theorem provides the existence of a unique k-automorphism
fσ of (H0, B0, S) which leaves the chosen pinning invariant and whose effect on the based
root datum is σ. In this way, we get an isomorphism of abstract groups

Had
0 (k) o E0 ' Aut(H0)

depending on the choice of (B0, S) and pinning. The preceding calculations work without
change over any extension K of k, using ((B0)K , SK) and the pinning over K that is the
base change of the chosen one over k. This provides isomorphisms

Had
0 (K) o E0 ' AutK((H0)K)

functorally in K, and thereby motivates the expectation that the k-group Had
0 o E0 should

represent the automorphism functor AutH0/k
of H0.

More specifically, by using normal subgroup functor inclusion of Had
0 into AutH0/k

and the
inclusion E0 ↪→ Aut(H0) specified above (depending on (B0, S) and the pinning), we get a
map of group functors

Had
0 o E0 → AutH0/k

(where the semidirect product structure uses the normality of Had
0 inside AutH0/k

). This has
been shown to be bijective on field-valued points over k, and in general is a subgroup functor
inclusion (as it suffices to check this on geometric points). Thus, for a given k-algebra A and
f ∈ AutH0/k

(A) = AutA((H0)A), to show f arises from an A-point of Had
0 oE0 it suffices to

do so étale-locally on SpecA.
A version of the Isomorphism Theorem and étale-local conjugacy theorems for Borel sub-

groups and maximal tori in reductive group schemes over rings (not just over fields) makes
it possible to push through the above arguments étale-locally on any k-algebra, not just over
fields. This ensures that our map of group functors is an isomorphism on points valued in all
k-algebras, not just fields. By construction, Had

0 is the identity component of AutH0/k. �
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In general we have a short exact sequence of k-groups

1→ Had → AutH/k → E → 1

for a finite étale k-group E. This need not split in general (e.g., the quotient map can
fail to be surjective on k-points), but when H = H0 is split then we saw in the preceding
argument that E is constant and there is a canonical semi-direct product splitting upon
choosing (B0, S) and a pinning. Any two choices of pinning for a given (B0, S) are related
through the action of Sad(k) = (S/ZH0)(k), so in the split case the identification of E(k)
with the automorphism group of the based root datum is intrinsic to the triple (H0, B0, S).

Now we bring in the link with the ∗-action. Returning to our original connected semisimple
k-group G, let G0 be the split k-form of G (in other words, the unique split connected
semisimple k-group whose root datum is the same as that of Gks). More specifically, if T0 is
a split maximal k-torus of G0 then (G0, T0) is a k-form of (G, T ) (they become isomorphic
over ks). Consider the exact sequence

1→ Gad
0 → AutG0/k → E → 1.

We have seen that E is a constant k-group, and E(k) is identified with the automorphism
group of the based root datum associated to a choice of Borel k-subgroup B0 of G0 containing
T0. The set of bases of the root datum is a principal homogeneous space for W (G0, T0),
and the set of choices of B0 containing T0 is compatibly a principal homogeneous space for
W (G0, T0). The simply transitive Weyl group action canonically identifies the automorphism
groups of the based root data arising from all choices of basis. If we change the choice of B0

containing T0 then the effect is to identify E(k) with the automorphism group of R(G0, T0)
equipped with another basis, and this respects the sense in which the automorphism groups
of the based root data arising from all choices of basis are compatibly identified with each
other (for a fixed choice of T0). Moreover, all choices of T0 are permuted by the action of
Had

0 (k). Hence, the identification between E(k) and the automorphism group of the based
root datum is canonical (independent of (B0, T0)).

As we shall see in our later discussion of Galois cohomology, the isomorphism class of G as a
k-group is classified by an element [G] ∈ H1(k,AutG0/k). This class has an image in H1(k,E).
Since E is a constant k-group, this latter cohomology set is identified with the quotient set
E(k)\Hom(Γ, E(k)) of the pointed set of continuous homomorphisms Γ = Gal(ks/k) →
E(k) modulo the effect of E(k)-conjugation. Hence, [G] gives rise to a conjugacy class of
continuous homomorphisms Γ→ E(k).

Since (G0, T0, B0)ks ' (Gks , Tks , B), so we have R(G0, T0) ' R(Gks , Tks) respecting choices
of a basis of each, but this isomorphism of based root data is not canonically attached to G
alone, the k-isomorphism class of G gives rise to an intrinsic conjugacy class of continuous
homomorphisms from Γ into the automorphism group of the based root datum. What could
this conjugacy class be? It is the class of the ∗-action! This is left to the reader as an
instructive exercise with the definition of the ∗-action.

The upshot is that the ∗-action records precisely the information of the finite étale com-
ponent group of the automorphism scheme of G. This is a description of the ∗-action that
is intrinsic to G, without reference to T or B ⊂ Gks containing Tks (or a pinning thereof).
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Remark 3.3. There is another viewpoint one can take: a continuous Γ-action on a finite set
is a finite étale k-scheme, so the ∗-action gives rise to a finite étale k-scheme whose set of
ks-points is identified with the set of nodes of the Dynkin diagram of (Gks , Tks , B). Note that
the ∗-action preserves the structure of the diagram (directed edges and edge multiplicities),
and this structure can be encoded in terms of (i) specifying a subset of ∆ × ∆ away from
the diagonal (directed edges that are not loops) and (ii) a map from that subset to {1, 2, 3}
(edge multiplicity).

To summarize, the ∗-action defines a finite étale k-scheme Dyn(G) and a finite étale closed
subscheme DirEdge(G) ⊂ Dyn(G) × Dyn(G) disjoint from the diagonal along with a map
from DirEdge(G) to the constant k-scheme {1, 2, 3} (and an identification of this structure
on ks-points with the Dynkin diagram). Actually, the ∗-action is a bit finer, since it respects
information related to the root datum and not just the root system (which is all that is
“known” through the diagram).

In SGA3, Exp. XXIV, §3, the notion of the finite étale scheme of Dynkin diagrams is
defined for semisimple group schemes over a general (non-empty) base scheme S. This is
a finite étale S-scheme D equipped with a finite étale closed subscheme of D × D disjoint
from the diagonal and a map from that closed subscheme to the constant scheme {1, 2, 3}S
(satisfying some axioms which ensure it arises from an actual Dynkin diagram on geomet-
ric fibers). Working over the field k and applying this to G, we recover Dyn(G) with its
additional structure built above via the ∗-action.


