
Math 249C. Reductive centralizer

1. Motivation

Let G be a connected reductive group over a field k. Let T be a maximal k-torus and
let M be a closed k-subgroup scheme of T . (The case of interest to us is M = ker(a) for
a nontrivial character a : S → Gm on a k-split subtorus S ⊆ T .) Consider the scheme-
theoretic centralizer ZG(M). For example, if g ∈ T (k) and M is the Zariski-closure of gZ in
T then M is a smooth (possibly disconnected) closed k-subgroup of T and ZG(M) = ZG(g).

In general ZG(M) is smooth. Indeed, to check this we may assume k = k, so M is a “split”
group of multiplicative type, and then we can verify the infinitesimal smoothness criterion for
ZG(M) by using the complete reducibility of k-linear representations of split multiplicative-
type k-group schemes. This calculation is a special case of Proposition A.8.10(2) in “Pseudo-
reductive groups”, applied to the M -action on G via conjugation (the proof of the general
case in A.8.10(2) simplifies a lot under our present hypotheses that the base is a field and
the group G is affine, as the interested reader can check).

Note that the preceding smoothness argument applies to any closed k-subgroup scheme
M of multiplicative type inside G without assuming that M occurs inside a maximal k-torus
of G. It is a genuine constraint on M that it occurs inside a maximal k-torus:

Example 1.1. For n ≥ 3, let qn denote the standard “split” quadratic form (x1x2+· · ·+xn−1xn
for n even, and x20 + qn−1(x1, . . . , xn−1) for n odd). Let G be the split connected semisimple
group SOn = SO(qn) ⊂ SLn. Consider the k-subgroup

M ′ = {(ζ1, . . . , ζn) ∈ µn2 |
∏

ζj = 1} ' µn−12

inside G. The maximal tori of Gk have dimension bn/2c, and so have 2-torsion equal to

µ
bn/2c
2 . Since bn/2c < n− 1 for n ≥ 3, M ′ is not contained in any k-torus of G.

Remark 1.2. Although we don’t require it, the special case that char(k) = p > 0 and M = µp
makes an appearance in the classical theory in the sense that for a nonzero element X in the
line Lie(M) ⊂ Lie(G), Proposition A.8.10(3) in “Pseudo-reductive groups” shows that the
smooth closed k-subgroup ZG(M) equals the group denoted ZG(X) in the classical theory
(see 9.1 in Borel’s textbook on linear algebraic groups).

It is an important fact in the classical theory that ZG(M)0 is reductive when M is smooth
with cyclic étale component group or when M = µp with char(k) = p > 0. The former case
immediately reduces to ZG(g) for g ∈ T (k), and the latter case can be expressed in the form
of ZG(X) as explained above. In Borel’s textbook, the reductivity of ZG(M)0 for such M is
proved in 13.19.

The goal of this handout is to carry out a generalization of the classical reductivity ar-
gument in our scheme-theoretic framework, proving that ZG(M)0 is reductive for any mul-
tiplicative type k-subgroup M of T . In the special case that M is smooth and connected,
hence a torus, this is a ubiquitous fact in the theory of connected reductive groups. Our aim
is to remove connectedness and smoothness hypotheses on M .

Remark 1.3. It is natural to wonder if the reductivity of ZG(M)0 requires that assumption
(that we have seen need not always hold for multiplicative type subgroups of split connected
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semisimple groups) that M occurs inside a maximal torus of G. That is, if M is any closed
k-subgroup scheme of multiplicative type inside G then is the smooth connected k-subgroup
ZG(M)0 reductive? The answer is affirmative, but our technique of proof (which uses the
structure of root groups relative to Φ(Gks , Tks)) is not applicable without the crutch of a
maximal torus containing M .

Rather generally, consider any finite type affine k-group scheme H such that the represen-
tation theory of Hk is completely reducible. For any action by H on a connected reductive
k-group G, the schematic centralizer GH is smooth with reductive identity component. This
result lies much deeper than the case “H ⊆ T acting through conjugation” treated below,
and a proof is given in Proposition A.8.12 in “Pseudo-reductive groups”. The proof rests on
a remarkable necessary and sufficient reductivity criterion for smooth connected k-subgroups
G′ of G independently due to Borel and Richardson: G′ is reductive if and only if G/G′ is
affine. (Borel’s proof rests on the general apparatus of étale cohomology, and Richardson’s
proof rests on the work of Haboush and Mumford in geometric invariant theory).

2. Reductivity

To prove the reductivity of ZG(M)0 we may and do assume k = k. Suppose to the contrary
that U = Ru(ZG(M)0) is nontrivial, so Lie(U) is a nonzero representation space for T through
its adjoint action on the smooth connected group ZG(M)0. This representation space cannot
support the trivial weight, since gT = Lie(T ) by reductivity of G and Lie(T ) ∩ Lie(U) =
Lie(T ∩U) = 0 (as T ∩U is a multiplicative type subgroup scheme of the unipotent U , so it
has to be trivial since Ga contains no nontrivial multiplicative type closed subgroup scheme).
Thus, for some a ∈ Φ(G, T ) the 1-dimensional weight space ga occurs inside Lie(U).

Let H = ZG(Ta ·M)0 where Ta = (ker a)0red, so H is smooth and connected inside ZG(M)0.
In particular, U ∩H is a normal subgroup scheme of H. Note that since T normalizes U (by
working inside ZG(M)0 in which U is normal), the schematic centralizer UTa is smooth. But
U ∩H = UTa and this has Lie algebra Lie(U)Ta ⊇ ga 6= 0, so (U ∩H)0 is a nontrivial smooth
connected unipotent subgroup of H that is normal. In other words, by replacing M with
Ta ∩M we may assume that Ta ⊆M without losing the hypothesis that H is not reductive.

But H ⊂ ZG(Ta) and ZG(Ta) is an almost direct product of the torus Ta and the rank-1
connected semisimple group H ′ := D(ZG(Ta)) = 〈Ua, U−a〉 that is either SL2 or PGL2 and
meets T in the diagonal torus D. Since Ta ⊆M , by writing T = Ta ·D we have M = Ta ·µ for
µ = D ∩M . Thus, ZG(M)0 = Ta ·ZH′(µ)0 as an almost direct product of smooth connected
k-groups, so the failure of reductivity for ZG(M)0 forces the failure for ZH′(µ)0.

To get a contradiction, we’re now reduced to checking for H ′ equal to either SL2 or PGL2

and any closed k-subgroup scheme µ of the diagonal D = Gm that ZH′(µ))0 is reductive. The
cases µ = 1, D are trivial, so we can assume µ = µn for some n > 1. Since Lie(ZH′(µ)0) =
Lie(ZH′(µ)) = Lie(H ′)µ, if H ′ = PGL2 then Lie(H ′)µ = Lie(D). Hence, in such cases the
inclusion D ⊂ ZH′(µ)0 between smooth connected groups is an equality on Lie algebras, so
it is an equality of k-groups. Suppose instead that H ′ = SL2. If µ = µ2 then ZH′(µ) = H ′

and we are done, so we may assume µ = µn with n > 2. Thus, squaring on µn is nontrivial,
so it is easy to check that Lie(H ′)µ = Lie(D), and hence once again D = ZH′(µ)0 by Lie
algebra considerations.


