
Algebraic Groups I. Properties of orthogonal groups

1. Basic definitions

Let V be a vector bundle of constant rank n ≥ 1 over a scheme S, and let q : V → L be a
quadratic form valued in a line bundle L, so we get a symmetric bilinear form Bq : V × V → L
defined by

Bq(x, y) = q(x+ y)− q(x)− q(y).

Assume q is fiberwise non-zero over S, so (q = 0) ⊂ P(V ∗) is an S-flat hypersurface with fibers
of dimension n − 2 (understood to be empty when n = 1). By HW2, Exercise 4 (and trivial
considerations when n = 1), this is smooth precisely when for each s ∈ S one of the following holds:
(i) Bqs is non-degenerate and either char(k(s)) 6= 2 or char(k(s)) = 2 with n even, (ii) the defect δqs
is 1 and char(k(s)) = 2 with n odd and qs|V ⊥s 6= 0. (Likewise, δqs ≡ dimVs when char(k(s)) = 2.)

In such cases we say (V, q) is non-degenerate; (ii) is the “defect-1” case at s. (In [SGA7, XII, §1],
such (V, q) are called ordinary.)

Clearly the functor

S′  {g ∈ GL(VS′) | qS′(gx) = qS′(x) for all x ∈ VS′}

on S-schemes is represented by a finitely presented closed S-subgroup O(q) of GL(V ), even without
the non-degeneracy condition on q. We call it the orthogonal group of (V, q). Define the naive special
orthogonal group to be

SO′(q) := ker(det : O(q)→ Gm).

We say “naive” because this is the wrong notion in the non-degenerate case when n is even and 2 is
not a unit on S. The special orthogonal group SO(q) will be defined shortly in a characteristic-free
way, using input from the theory of Clifford algebras when n is even. (The distinction between
even and odd n when defining SO(q) is natural, because it will turn out that O(q)/SO(q) is equal
to µ2 for odd n but (Z/2Z)S for even n. In the uninteresting case n = 1 we have O(q) = µ2 and
SO(q) = 1.)

Definition 1.1. Let S = Spec Z. The National Bureau of Standards (or standard split) quadratic
form qn on V = Zn is as follows, depending on the parity of n ≥ 1:

q2m =
m∑
i=1

x2i−1x2i, q2m+1 = x2
0 +

m∑
i=1

x2i−1x2i

(so q1 = x2
0). We define On = O(qn) and SO′n = SO′(qn).

It is elementary to check that (Zn, qn) is non-degenerate.

Remark 1.2. In the study of quadratic forms q over a domain A, such as the ring of integers in
a number field or a discrete valuation ring, the phrase “non-degenerate” is often used to mean
“non-degenerate over the fraction field”. Indeed, non-degeneracy over A in the sense defined above
is rather restrictive. In addition to the National Bureau of Standards form qn, other non-degenerate
examples over Z (in our restrictive sense) are the quadratic spaces arising from even unimodular
lattices, such as the E8 and Leech lattices.

Lemma 1.3. If (V, q) is a non-degenerate quadratic space of rank n ≥ 1 over a scheme S then it
is isomorphic to (On

S , qn) fppf-locally on S. If n is odd or 2 is a unit on S then it suffices to use
the étale topology rather than the fppf topology.
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Proof. In [SGA7, XII, Prop. 1.2] the smoothness of (q = 0) is used to prove the following variant
by a simple induction argument: q is an étale form of qn when n is even and is an étale form of
ux2

0 + q2m when n = 2m+ 1 is odd, with u a unit on the base. Once the induction is finished, we
are done when n is even and we need to extract a square root of u when n is odd. This accounts
for the necessity of working fppf-locally for odd n when 2 is not a unit on the base. �

Lemma 1.3 is very useful for reducing problems with general non-degenerate quadratic spaces to
the case of qn over Z. This will be illustrated numerous times in what follows, and now we illustrate
it with Clifford algebras in the relative setting. Consider a non-degenerate (V, q) with rank n ≥ 1.
The Clifford algebra C(V, q) is the quotient of the tensor algebra of V by the relation x⊗2 = q(x)
for local sections x of V . This inherits a natural Z/2Z-grading from the Z-grading on the tensor
algebra, and by considering expansions relative to a local basis of V we see that C(V, q) is a finitely
generated OS-module. The Clifford algebra is a classical object of study over fields, and we need
some properties of it over a general base ring (or scheme) when n is even:

Lemma 1.4. Assume n is even. The OS-algebra C(V, q) and its degree-0 part C+(V, q) are vector
bundles over S of finite rank. Their quasi-coherent centers are respectively equal to OS and a rank-2
finite étale OS-algebra Zq.

Proof. We may work fppf-locally on S, so by Lemma 1.3 we may assume that V admits a basis
identifying q with qn. Since n is even, there are complementary isotropic free subbundles W,W ′ ⊂ V
(in perfect duality via Bq). This leads to concrete descriptions of C(V, q) and C+(V, q) in [SGA7,
XII, 1.4]: C(V, q) is naturally isomorphic as a Z/2Z-graded algebra to the endomorphism algebra of
the exterior algebra A = ∧•(W ), where w ∈W acts via w∧(·) and w′ ∈W ′ acts via the contraction
operator

w1 ∧ · · · ∧ wm 7→
m∑
i=1

(−1)i−1Bq(wj , w
′)w1 ∧ . . . ŵi · · · ∧ wm.

(It is natural to consider the exterior algebra of W , since q|W = 0 and the Clifford algebra associated
to the vanishing quadratic form is the exterior algebra.) The Z/2Z-grading of the endomorphism
algebra of A is defined in terms of the decomposition A = A+

⊕
A−, where A+ is the “even part”

and A− is the “odd part: an endomorphism of A is even when it respects this decomposition and
odd when it carries A− into A+ and vice-versa. We thereby see that C+(V, q) is the direct product
of the endomorphism algebras of A+ and A−. Since the center of a matrix algebra over any ring
consists of the scalars, we are done. �

The action of O(q) on C(V, q) preserves the grading and hence induces an action on C+(V, q), so
we obtain an action of O(q) on the finite étale center Zq of C+(V, q). The automorphism scheme
AutZq/OS

is uniquely isomorphic to (Z/2Z)S since Zq is finite étale of rank 2 over OS . Thus, for
even n we get a homomorphism

Dq : O(q)→ (Z/2Z)S

that is compatible with isomorphisms in (V, q), and its formation commutes with any base change
on S. This is called the Dickson morphism because Dqn underlies the definition of the Dickson
invariant (see Remark 2.6).

Proposition 1.5. Assume n is even. The map Dq is surjective.

Flatness properties for Dq require more work; see Proposition 2.3
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Proof. We may pass to geometric fibers over S, where the assertion is that the center Zq of C+(V, q)
is not centralized by the action of O(q) on C(V, q). This is a classical fact from the theory of Clifford
algebras, and we now recall the proof.

Let (V, q) be an even-dimensional nonzero quadratic space (V, q) over a field k. Naturally V is a
subspace of C(V, q) and the conjugation action on V by the Clifford k-group

Cliff(V, q) := {u ∈ C(V, q)× |uV u−1 = V }

defines a homomorphism from Cliff(V, q) onto O(q) [Bou, IX, §9.5, Thm. 4(a)]. Thus, the nontriv-
iality of Dq amounts to the assertion that the rank-2 center Zq of C+(V, q) is not centralized by
the units in Cliff(V, q). Viewing V as an affine space, the Zariski-open non-vanishing locus of q on
V is Zariski-dense in V and lies in Cliff(V, q) (such v ∈ V − {0} act on V via orthogonal reflection
x 7→ −x+(Bq(x, v)/q(v))v through v [Bou, IX, §9.5, Thm. 4(b)]), so this part of V generates C(V, q)
as an algebra. Hence, if Zq were centralized by the group Cliff(V, q) then it would be central in the
algebra C(V, q), an absurdity since C(V, q) has scalar center. �

We can finally define special orthogonal groups, depending on the parity of n.

Definition 1.6. Let (V, q) be a non-degenerate quadratic space of rank n ≥ 1 over a scheme S.
The special orthogonal group SO(q) is SO′(q) = ker(det |O(q)) when n is odd and kerDq when n is
even. For any n ≥ 1, SOn := SO(qn).

By definition, SO(q) is a closed subgroup of O(q), and it is also an open subscheme of O(q) when
n is even. (In contrast, SO2m+1 is not an open subscheme of O2m+1 over Z because we will prove
that O(q) = SO(q)×µ2 for odd n via the central µ2 ⊂ GL(V ), and over Spec Z the identity section
of µ2 is not an open immersion.)

The group SO′(q) is not of any real interest when n is even and 2 is not a unit on the base (and
we will show that it coincides with SO(q) in all other cases). The only reason we are considering
SO′(q) in general is because it is the first thing that comes to mind when trying to generalize the
theory over Z[1/2] to work over Z. We will see that SO′2m is not Z(2)-flat. (Example: Consider

m = 1 and S = Spec Z(2). We have O2 = Gm × (Z/2Z) and SO2 = Gm, whereas SO′2 is the
reduced closed subscheme of O2 obtained by removing the open non-identity component in the
generic fiber.)

From now on, we only consider non-degenerate (V, q). To orient ourselves, it is useful to record
the main properties we shall prove for the “good” groups associated to such (V, q):

Theorem 1.7. The group SO(q) is smooth of relative dimension n(n− 1)/2 with connected fibers.
Its functorial center is trivial for odd n and equals the central µ2 ⊂ O(q) for even n.

(1) Assume n is even. The Dickson morphism Dq is a smooth surjection identifying (Z/2Z)S
with O(q)/SO(q). In particular, O(q) is smooth with #π0(O(q)s) = 2 for all s ∈ S.

(2) Assume n is odd. Multiplication against the central µ2 ⊂ O(q) defines an isomorphism µ2×
SO(q) ' O(q). In particular, O(q) is smooth over S[1/2] and flat over S, and O(q)/SO(q) =
µ2 (so O(q)s is connected if char(k(s)) = 2).

We will also determine the functorial centers of these groups when n ≥ 3: O(q) has functorial
center represented by the central µ2, whereas the centers of SO(q) and SO′(q) coincide and equal
µ2 (resp. 1) when n is even (resp. odd). Since the case of odd rank requires special care in residue
characteristic 2, we shall first analyze even rank, where we can use characteristic-free arguments.
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2. Even rank

We will prove the smoothness of the closed subscheme O(q) ⊂ GL(V ) when n is even by compar-
ing its fibral dimension to the number of local equations that cut it out inside the smooth scheme
GL(V ). (A proof can be given by using the infinitesimal criterion, but equation-counting is simpler
in this case.)

One subtlety is that since we do not yet know S-flatness for O(q) (which will be obtained from
smoothness results for SO(q)), we do not know that there is a plentiful supply of sections after
fppf-local base change on S. In particular, it is not evident whether smoothness near the identity
section is sufficient to deduce smoothness of the entire group (as that intuition over a field is based
on the ability to do translations after a ground field extension, which is always faithfully flat).

As a concrete counterexample, consider the reduced closed complement G of the open non-
identity point in the generic fiber of the constant group (Z/2Z)R over a discrete valuation ring
R. This R-group is a disjoint union of the identity section and an additional rational point in the
special fiber, so it is affine and also R-smooth near the identity section with constant fibers but is not
R-flat. To circumvent this problem, we will use a “global” criterion in terms of equation-counting:

Lemma 2.1. Let R be a ring and G a smooth affine R-group. Let G′ ↪→ G be a closed sub-
group scheme whose defining ideal admits c global generators f1, . . . , fc and whose fibers G′s satisfy
dim Tane(s)(G

′
s) = dim Tane(s)(Gs)− c. Then G′ is R-smooth.

The special case G = GL(V ) is [DG, II, §5, 2.7].

Proof. Each fiber G′s has codimension at most c in Gs, so

dimG′s ≥ dimGs − c = dim Tane(s)(Gs)− c = dim Tane(s)(G
′
s).

Thus, the k(s)-group G′s is smooth for all s ∈ S (due to the homogeneity of the geometric fiber
G′s). Since an open subset of G′ that contains all closed points of all fibers must be the entire
space, by openness of the smooth locus it suffices to prove that G′ is smooth at each point g′ that is
closed in its fiber G′s. The k(s)-smoothness of G′s at the closed point g′ implies that the local ring
OG′s,g

′ = OGs,g′/((f1)s, . . . , (fc)s) is regular with dimension dimG′s = dimGs − c = dim OGs,g′ − c.
In other words, in the regular local ring OGs,g′ the sequence {(fj)s} in the maximal ideal is part of
a regular system of parameters. Since Gs and G′s are k(s)-smooth, by computing at a point over
g′ on geometric fibers over s we see that the elements

d(fj)(g
′) ∈ Ω1

G′/S,g′/mg′ = Ω1
G′s/k(s),g′ ⊗OG′s,g′

k(g′)

are k(g′)-linearly independent. Hence, by the Jacobian criterion for smoothness of a closed sub-
scheme of a smooth scheme [BLR, 2.2/7], G′ is R-smooth. �

Lemma 2.2. Inside End(V ) = Tane(GL(V )), we have

Tane(O(q)) = {T ∈ End(V ) |Bq(v, Tw) is alternating}.

This lemma makes no hypothesis on the parity of n.

Proof. We may assume S = Spec k for a ring k. In terms of dual numbers, Tane(O(q)) is the space
of linear endomorphisms T of V such that 1 + εT preserves qk[ε] on Vk[ε]. For any x ∈ Vk[ε] with
reduction x0 ∈ V , clearly εT (x) = εT (x0), so

qk[ε](x+ εT (x0)) = qk[ε](x) + εBq(x0, T (x0))

since ε2 = 0. Thus, the necessary and sufficient condition on T is that the bilinear form Bq(v, Tw)
vanishes on the diagonal, which is to say that it is alternating. �
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Proposition 2.3. If n is even then O(q) is smooth of relative dimension n(n−1)/2. In particular,
the open and closed subgroup SO(q) is smooth and the surjective Dickson morphism Dq : O(q) →
(Z/2Z)S is smooth, identifying (Z/2Z)S with O(q)/SO(q).

Proof. Once smoothness of O(q) is proved, the Dickson morphism must be smooth since it is visibly
smooth over fibers over S. The other assertions are then clear as well. The smoothness of O(q) is
fppf-local on the base, so by Lemma 1.3 it suffices to treat q = qn over Z (or over any affine base).
By a permutation of the variables, we may equivalently assume q =

∑m
i=0 xixi+m where 2m = n.

To prove the smoothness for this q, we will use the criterion in Lemma 2.1.
We express n × n matrices in the block form ( A B

C D ) where A,B,C,D are m ×m matrices, and
we likewise express (x1, . . . , xn) as a pair (x, y) where x and y are ordered m-tuples. Thus, our
quadratic form is q(x, y) = ~yt~x where ~y and ~x are “column vectors” (i.e., m× 1 matrices). For any
M = ( A B

C D ) we have M(x, y) = (Ax+By,Cx+Dy), so

q(M(x, y)) = ~xtCtA~x+ ~ytDtB~y + ~yt(DtA+BtC)~x.

Hence, M ∈ O(q) if and only if DtA + BtC = 1m and the matrices CtA and DtB are alternating
(in the sense that the associated bilinear forms in m variables that they define are alternating; i.e.,
vanish on pairs (x, x)).

The alternating condition on an m × m matrix amounts to m + m(m − 1)/2 = m(m + 1)/2
equations in the matrix entries, so the alternating conditions on CtA and DtB amount to m(m+1)
equations in the matrix entries of A,B,C,D. The condition DtA+BtC = 1m amounts to m2 such
equations, so the closed subscheme O(q) ⊂ GLn is defined by an ideal generated by m2+m(m+1) =
m(2m + 1) elements. Thus, by Lemma 2.1, to prove O(q) is smooth we just need to check that
over an algebraically closed field k, Tane(O(q)) has codimension m(2m+ 1) in gl2m(k). By Lemma
2.2, an element M ∈ gl2m(k) lies in Tane(O(q)) if and only if the matrix ( 0 1

1 0 )M = ( C D
A B ) is

alternating. This says that B and C are alternating and D = −At, which again amounts to
m(2m+ 1) (linear) equations on gl2m(k). We also conclude that the relative dimension of O(q) is
(2m)2 −m(2m+ 1) = 2m2 −m = n(n− 1)/2. �

Corollary 2.4. If n is even then SO(q)→ S has connected fibers.

Proof. We proceed by 2-step induction on n, and we can assume S = Spec k for an algebraically
closed field k. Without loss of generality, q = qn. In view of the surjectivity of the Dickson
morphism, it is equivalent to show that O(q) has exactly two connected components. Since q2 = xy,
clearly O2 = Gm

∐
Gmι for ι = ( 0 1

1 0 ). Now assume n ≥ 4 and that the result is known for n− 2.
Since q is not a square (as n > 1), it is straightforward to check that the smooth affine hyper-

surface H = {q = 1} is irreducible. The point in H(k) correspond to embeddings of quadratic
spaces (k, x2) ↪→ (V, q). By Witt’s extension theorem [Chev, I.4.1], if (W,Q) is a finite-dimensional
quadratic space over a field K and BQ is non-degenerate (so dimW is even when char(K) = 2)
then O(Q)(K) acts transitively on the set of embeddings of a fixed (possibly degenerate) qua-
dratic space into (W,Q). Hence, O(q)(k) acts transitively on H(k), so the orbit map O(q) → H
through e2 is surjective with stabilizer G′ := Stabe2(O(q)) that preserves the orthogonal comple-
ment V ′ := e⊥2 =

∑
i≥2 kei. Since H is connected, it follows that O(q)0 acts transitively on H too,

so #π0(O(q)) ≤ #π0(G′). Hence, it suffices to show that G′ has 2 connected components.
The action map G′ → GL(V ′) has kernel consisting of automorphisms of V that fix {e2, . . . , en}

and preserve q. Such automorphisms must preserve the orthogonal complement ke1+ke2 of the span
of {e3, . . . , en}, so it is an elementary calculation that the scheme-theoretic kernel of G′ → GL(V ′)
is trivial. Let W = (ke1 + ke2)⊥ =

∑
i≥3 kei. For any w ∈ W we have q(ce2 + w) = c2q(e2) +

Bq(ce2, w) + q(w) = q(w), so relative to the ordered basis {e2, . . . , en} of V ′ the map G′ → GL(V ′)
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is an isomorphism onto the subgroup of (n−1)× (n−1) matrices whose left column is (1, 0, . . . , 0),
top row has arbitrary entries beyond the initial 1, and lower right (n−2)× (n−2) block is O(q|W ).
In other words, G′ is an extension of O(q|W ) by Gn−2

a . By induction we know that O(q|W ) has
exactly two connected components, so the same holds for G′. �

Corollary 2.5. For even n, the determinant map det : O(q) → Gm factors through µ2 and kills
SO(q). The resulting inclusion SO(q) ⊂ SO′(q) is an equality over S[1/2], and SO′(q) ↪→ O(q) is
an equality on fibers at points in characteristic 2.

Proof. Any point of O(q) preserves the symmetric bilinear form Bq, and Bq is a perfect pairing (as
we may check on fibers, since n is even). Thus, the classical matrix calculation carries over to the
relative setting to show that any automorphism of V preserving Bq must have determinant valued
in µ2.

To prove that SO(q) is killed by the determinant, by working fppf-locally on S and using Lemma
1.3 we may pass to the case q = qn over Z. The flatness of SO(q) then reduces to the problem to
the generic fiber over Q, so we are over a field not of characteristic 2. Hence, µ2 is étale, so the
connected SO(q) has no nontrivial homomorphism to µ2.

The determinant is fiberwise nontrivial on On over Z[1/2] since the automorphism of Zn that
swaps e1 and e2 has determinant −1 and preserves qn. Hence, at points away from characteristic
2 the determinant map factors through a nontrivial homomorphism O(qs)/SO(qs) → µ2. Since
O(qs)/SO(qs) = Z/2Z, it follows that SO(qs) = SO′(qs) for such s. In other words, over S[1/2]
the closed subscheme SO′(q) in O(q) is topologically supported in the open and closed subscheme
SO(q), and that forces the inclusion SO(q) ⊂ SO′(q) to be an equality over S[1/2]. At points
s of characteristic 2, the smooth group O(qs) must be killed by the determinant map into the
infinitesimal µ2, so SO′(qs) = O(qs) for such s. �

Remark 2.6. For even n, consider the element g ∈ On(Z) that swaps x1 and x2 while leaving all
other xi’s invariant. The section Dq(g) of the constant Z-group Z/2Z is equal to 1 mod 2 since it
suffices to check this on a single geometric fiber, and at any fiber away from characteristic 2 it is
clear (as SOn coincides with SO′n over Z[1/2]). Thus, the Dickson morphism Dq : O(q)→ (Z/2Z)S
splits as a semidirect product when q = qn.

The induced map H1(Sét,On)→ H1(Sét,Z/2Z) assigns to every non-degenerate (V, q) of rank n
over S (taken up to isomorphism) a degree-2 finite étale cover of S. This is the Dickson invariant
of (V, q). If S is a Z[1/2]-scheme (so (Z/2Z)S = µ2) then it recovers the discriminant viewed in
Gm(S)/Gm(S)2. If S is an F2-scheme then it recovers the pseudo-discriminant, also called the
Arf invariant when S = Spec k for a field k/F2. The existence of the section to Dqn implies that
every degree-2 finite étale S-scheme arises as the Dickson invariant of some rank-n non-degenerate
quadratic space over S.

Corollary 2.7. For even n, the Z-group SO′n is reduced and the open and closed subscheme SOn ↪→
SO′n has complement equal to the non-identity component of (On)F2. In particular, SO′n is not Z-
flat when n is even.

Proof. Corollary 2.5 gives the result over Z[1/2], as well as the topological description of the F2-
fiber. It remains to show that SO′n is reduced. It is harmless to pass to the quotient by the smooth
normal subgroup SOn, so under the identification of On/SOn with the constant group Z/2Z via
the Dickson morphism we see that G = SO′n/SOn is identified with the kernel of a homomorphism
of Z-groups f : Z/2Z → µ2. The map f is nontrivial since SO′n 6= SOn, and there is only one
nontrivial homomorphism from Z/2Z = Spec Z[t]/(t2 − t) to µ2 = Spec Z[ζ]/(ζ2 − 1) over Z (as
we see by using flatness to pass to the Q-fiber). This map corresponds to 1 7→ −1, or equivalently
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ζ−1 7→ −2t on coordinate rings, so the kernel G is equal to Spec Z[t]/(−2t, t2− t). This is precisely
the disjoint union of the identity section and a single F2-point in the F2-fiber. �

3. Odd rank

In contrast with the case of even n, our proof of the smoothness of of SO(q) for odd n has to
be different because O(q) is not smooth over Z. This is already seen in the trivial case n = 1,
and in general we will show that O(q) = µ2 × SO(q), so smoothness always fails in characteristic
2. The infinitesimal criterion is ill-suited to this situation, because over a base ring such as Z/4Z
or Z(2) in which 2 is neither a unit nor 0 we encounter the problem that the “defect space” V ⊥ is
generally not a subbundle of V . That complicates efforts to verify the infinitesimal criterion when
“deforming away from defect-1”.

By Lemma 1.3, to prove smoothness of SO(q) for odd n in general, it suffices to treat the
case q = qn over Z. Our replacement for Lemma 2.1 is a criterion over a Dedekind base that
upgrades fibral smoothness to relative smoothness in the presence of a global hypothesis of fibral
connectedness. First we need to record the useful fibral isomorphism criterion:

Lemma 3.1. Let h : Y → Y ′ be a map between finite type schemes over a noetherian scheme S,
and assume that Y is S-flat. If hs is an isomorphism for all s ∈ S then h is an isomorphism.

Proof. This is part of [EGA, IV4, 17.9.5], but here is a sketch of an alternative proof. By using
that ∆h : Y → Y ×Y ′ Y satisfies the given hypotheses and is separated, we can reduce to the case
when h is separated, and then that Y and Y ′ are S-separated. For artin local S = SpecA it is easy
to show that h is a closed immersion, and then S-flatness of Y implies that the ideal defining Y in
Y ′ vanishes modulo mA, so Y = Y ′. This settles the result over an artin local base, so in general
h is an isomorphism between infinitesimal fibers over S. Hence, h is flat (by the so-called “local
flatness criterion”).

Now we can use a remarkable finiteness criterion of Deligne and Rapoport [DR, II, 1.19]: a
quasi-finite separated flat map f : X → T between noetherian schemes is finite if its fibral rank
is Zariski-locally constant on the base (the converse being obvious). Granting this criterion, it
follows that h is finite (as its fibral rank is always 1), and being finite flat of degree 1 it must be
an isomorphism (check!).

It remains to prove the Deligne–Rapoport finiteness criterion, for which we may assume the fibral
rank is constant. Since a proper quasi-finite map is finite, it suffices to prove that f is proper. By
the valuative criterion for properness, this reduces the problem to the case when T = SpecR for a
discrete valuation ring R. By Zariski’s Main Theorem, the quasi-finite separated X over T admits
an open immersion j : X ↪→ X into a finite T -scheme X. We can replace X with the schematic
closure of X, so X has structure sheaf that is torsion-free over R. Hence, X is R-flat, so as a finite
flat R-scheme it has constant fiber rank. But its open subscheme X also has constant fiber rank
and both X and X have the same generic fiber. Thus, their constant fiber ranks coincide, and the
equality of closed fiber ranks then forces X = X, so we are done. �

Now we can prove the desired smoothness criterion:

Proposition 3.2. Let S be a Dedekind scheme, and G an S-group of finite type such that all fibers
Gs are smooth of the same dimension. Then G contains a unique smooth open subgroup G0 whose
s-fiber is (Gs)

0 for all s ∈ S. In particular, G is smooth if its fibers are connected.

Proof. We may assume S is connected, say with generic point η. The smooth open subgroup
G0
η ⊂ Gη then “spreads out” over a dense open U ⊂ S to a smooth open subgroup of GU with

connected fibers. This solves the problem over U , and to handle the remaining finitely many closed
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points in S − U we may assume that S = SpecR for a discrete valuation ring R, say with fraction
field K. We may and do remove the closed union of the non-identity components of the special
fiber, so G has connected special fiber.

Let G denote the schematic closure in G of the generic fiber GK , so GK = GK . The R-flat
G × G is the schematic closure of its generic fiber GK × GK , so it follows that the R-flat G is an
R-subgroup of G. This is a flat closed subscheme of G with constant fiber dimension (by flatness),
so the closed immersion G0 ↪→ G0 between special fibers must be an isomorphism, as G0 is smooth
and connected and dim G0 = dim GK = dimGK = dimG0. Thus, G0 is smooth (as is GK = GK),
so G is smooth.

The closed immersion G ↪→ G is an isomorphism on fibers, so by flatness of G it is an isomorphism,
due to Lemma 3.1 below. �

Remark 3.3. The final assertion in Proposition 3.2 is valid more generally: if G→ S is a finite type
group over any reduced noetherian scheme S and if the fibers Gs are smooth and connected of the
same dimension then G is smooth. Indeed, the problem is to verify flatness, and by the “valuative
criterion for flatness” over a reduced noetherian base [EGA, IV3, 11.8.1] it suffices to check this
after base change to discrete valuation rings, to which Proposition 3.2 applies. See [SGA3, VIB,
4.4] for a further generalization.

The role of identity components in Proposition 3.2 cannot be dropped. For a quasi-finite example,
consider the constant group (Z/dZ)R over a discrete valuation ring R with d > 1. This contains

a reduced closed subgroup G(d) given by the reduced closed complement of the open non-identity
points in the generic fiber. The R-group G(d) has étale fibers but is not flat over R (the non-identity
points of the special fiber are open). A more interesting example is SO′2m over Z(2) (which is the

pushout of G(2) along the identity section Spec Z(2) ↪→ SO2m; see the proof of Corollary 2.7).
To apply Proposition 3.2 to SO(q) when n is odd, we need to verify three things in the theory

over an algebraically closed field: connectedness, smoothness, and dimension depending only on n.
We first address the connectedness and dimension aspects by a fibration argument in the spirit of
the proof of connectedness for SO2m:

Proposition 3.4. Let (V, q) be a non-degenerate quadratic space over a field k, with n = dimV
odd. The group SO(q) is connected with dimension n(n−1)/2 and multiplication against the central
µ2 defines an isomorphism µ2 × SO(q) ' O(q)

Proof. We may assume k is algebraically closed and q = qn. The case n = 1 is trivial, so we assume
n ≥ 3. We treat characteristic 2 separately from other characteristics, due to the appearance of
the defect space V ⊥ = ke0 in characteristic 2.

First assume char(k) 6= 2, so the symmetric bilinear form Bq is non-degenerate. Points of
O(q) preserve Bq and hence must have determinant valued in µ2 (by a classical calculation with
matrices). Since n is odd, the restriction of det : O(q) → µ2 to the central µ2 is the identity map
on µ2. Thus, µ2 × SO(q) = O(q). Hence, O(q) has at least 2 connected components, and exactly
2 such components if and only if SO(q) is connected. Since n > 1, the hypersurface H = {q = 1}
is irreducible, and exactly as in the proof of Corollary 2.4 we may apply Witt’s extension theorem
(valid for odd n since char(k) 6= 2) to deduce that the action of O(q) on H is transitive. The
orthogonal complement V ′ of e0 is spanned by {e1, . . . , e2m} since char(k) 6= 2, and it is preserved
by Stabe0(O(q)). It is straightforward to check that the action of this stabilizer on V ′ defines an
isomorphism onto O(q|V ′) ' O2m. We already know that O2m has 2 connected components and
dimension 2m(2m − 1)/2 = m(2m − 1), whereas H is irreducible of dimension n − 1 = 2m, so it
follows that O(q) has dimension 2m+m(2m−1) = n(n−1)/2 and at most 2 connected components
(hence exactly 2 such components). This settles the case char(k) 6= 2.
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Now assume char(k) 6= 2. The non-vanishing defect space obstructs induction using the action
on H, so instead we will use an entirely different procedure that is specific to characteristic 2. When
char(k) 6= 2 we passed to the hyperplane ke⊥0 spanned by e1, . . . , e2m on which Bq restricted to a
non-degenerate symmetric bilinear form. In characteristic 2, we will use the (n − 1)-dimensional
quotient V ′ := V/V ⊥ = V/ke0 rather than a hyperplane. More specifically, because V ⊥ is the
defect space, Bq factors through a non-degenerate symmetric bilinear form B′q on V ′. This has an
extra property: it is alternating, since char(k) = 2. Any point of O(q) preserves the defect space,
and the induced automorphism of V ′ preserves Bq. This defines a homomorphism

h : O2m+1 = O(q)→ Sp(V ′, B′q) ' Sp2m

from our orthogonal group to a symplectic group.
The kernel seen by direct calculation to be αn−1

2 o µ2 (along the top row of matrices, with µ2 in
the upper left), where µ2 acts on the Frobenius kernel α2 ⊂ Ga by the usual scaling action. Indeed,
rather explicitly, since a point T of O(q) must restrict to an automorphism of the quadratic space
V ⊥ = (ke0, x

2
0), it has the block form

T =

ζ α α′

0 A B
0 C D


for m×m matrices A,B,C,D, a point ζ of µ2, and ordered m-tuples α and α′. Writing a typical
ordered (2m+ 1)-tuple as (x0, x, x

′) for ordered m-tuples x and x′, we see that

q(T (x0, x, x
′)) = x2

0 + 〈α, x〉2 + 〈α′, x′〉2 +B′q(Ax+By,Cx+Dy),

where 〈·, ·〉 is the standard bilinear form (w, z) 7→
∑
wjzj . Setting this equal to q(x0, x, x

′) then
imposes equations on α, α′, A,B,C,D that define the closed subscheme O(q) ⊂ GLn. This not only
implies the description of kerh, but also shows that h is surjective.

The smoothness of symplectic group schemes is easily proved by the infinitesimal criterion, and
the dimension is likewise easily determined by direct computation of the tangent space. This gives
that Sp2m has dimension m(2m+ 1) = n(n− 1)/2. Finally, the connectedness of symplectic groups
is easily proved by an inductive fibration argument (using lower-dimensional symplectic spaces).
Since h is surjective with infinitesimal kernel, we conclude that O(q) is connected of dimension
n(n− 1)/2.

Since Sp2m ⊂ SL2m as k-groups, the above functorial description of points T of O2m+1 shows that
detT = ζ ∈ µ2. Thus, det : O(q)→ Gm factors through µ2, and once again the oddness of n implies
that the central µ2 in O(q) thereby splits off as a direct factor. Hence, µ2 × SO(q) = O(q). This
implies that SO(q) is connected of dimension n(n − 1)/2 since µ2 is infinitesimal in characteristic
2. �

Now we can pass to the relative case and establish smoothness too:

Proposition 3.5. If n is odd then SO(q)→ S is smooth with connected fibers of dimension n(n−
1)/2, and the multiplication map µ2 × SO(q)→ O(q) against the central µ2 is an isomorphism.

Proof. By Lemma 1.3, we may assume q = qn over S = Spec Z. The case n = 1 is trivial, so we
assume n = 2m+1 with m ≥ 1. Since the fibers are connected of the same dimension (n(n−1)/2),
by Proposition 3.4, to prove smoothness we may apply Proposition 3.2 to reduce to proving fibral
smoothness. In other words, we wish to show that over a field k, the tangent space Tane(SO(q)) has
dimension n(n−1)/2. To do this we will treat characteristic 2 separately from other characteristics.
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First assume char(k) 6= 2, so the equality µ2×SO(q) = O(q) implies Tane(SO(q)) = Tane(O(q)).
This latter tangent space is identified in Lemma 2.2: it is the space of linear endomorphisms T of V
such that Bq(v, Tw) is alternating. But Bq is non-degenerate since char(k) 6= 2, so T 7→ Bq(·, T (·))
identifies Tane(O(q)) with the space Alt2(V ) of alternating bilinear forms on V . This is the dual
of ∧2(V ), so it has dimension n(n− 1)/2, as desired.

Now assume char(k) = 2. Let V ′ = V/V ⊥, and let B′q the induced non-degenerate alternating
form on V ′. Since µ2 × SO(q) = O(q) and Tane(µ2) is 1-dimensional, it is equivalent to show that
Tane(O(q)) has dimension 1 + n(n− 1)/2. We will construct a short exact sequence

0→ Hom(V, V ⊥)→ Tane(O(q))→ Alt2(V/V ⊥)→ 0,

from which we will get the desired dimension count

n+ (n− 1)(n− 2)/2 = m(2m− 1) + (2m+ 1) = 2m2 +m+ 1 = m(2m+ 1) + 1 = 1 + n(n− 1)/2.

To construct the exact sequence, we will compute using dual numbers as in the proof of Lemma
2.2. Using notation as in that calculation, since the alternating property for Bq(v, Tw) implies

skew-symmetry and hence symmetry (as char(k) = 2), T must preserve the defect line V ⊥ (as
Bq(v, Tw) = 0 for v ∈ V ⊥ and any w, and Bq(v, Tw) is symmetric for general v, w ∈ V ). Thus,

Tane(O(q)) consists of those T which preserve V ⊥ and whose induced endomorphism T ′ of V ′ =
V/V ⊥ makes B′q(v

′, T ′w′) alternating. By non-degeneracy of B′q, every bilinear form on V ′ is
B′q(v

′, Lw′) for a unique endomorphism L of V ′, so the vector space Tane(O(q)) fits into the asserted

exact sequence since Hom(V, V ⊥) is precisely the ambiguity in T when T ′ is given.
Smoothness has now been proved in the general relative setting, and it remains to prove that

the natural homomorphism f : µ2 × SO(q)→ O(q) is an isomorphism. The map fs between fibers
over any s ∈ S is an isomorphism (Proposition 3.4), and the source of f is S-flat (as SO(q) is even
S-smooth). Thus, f is an isomorphism due to the fibral isomorphism criterion in Lemma 3.1. �

Corollary 3.6. Assume n is odd. The map det : O(q)→ Gm factors through µ2, and its kernel is
SO(q). In particular, det identifies O(q)/SO(q) with µ2.

Proof. Since O(q) = µ2 × SO(q) via multiplication and the determinant on the central µ2 is the
inclusion µ2 ↪→ Gm (as n is odd), we are done. �

Remark 3.7. In the proof of Proposition 3.4, over any field k of characteristic 2 we constructed a
surjective homomorphism O(q) → Sp(V ′, B′q) with infinitesimal geometric kernel µ2 o αn−1

2 when

n is odd. This kernel meets the kernel SO(q) of the determinant map on O(q) in αn−1
2 , so by

smoothness of SO(q) we obtain a purely inseparable isogeny SO(q)→ Sp(V ′, B′q) with kernel that

is a form of αn−1
2 . This “unipotent isogeny” is a source of many weird phenomena related to

algebraic groups in characteristic 2 (e.g., see [CP, A.3]).
For the benefit of those who have some prior awareness of the theory of root systems (perhaps

in the context of connected compact Lie groups or semisimple Lie algebras over C), here is the
broader significance of the preceding strange isogenies. In the setting of connected semisimple
algebraic groups over arbitrary fields to be taken up in the sequel course, special orthogonal groups
in 2m + 1 variables are type Bm and symplectic groups in 2m variables are type Cm (as in Lie
theory over C). These types are distinct for m ≥ 3 (for m = 1 and m = 2 the types coincide; see
Example 5.2 and Example 5.5 respectively), and the deeper structure theory of semisimple groups
via root systems shows that in characteristics distinct from 2 and 3 there are no isogenies between
(absolutely simple) connected semisimple groups of different types. However, in characteristic 2
we have just seen that isogenies exist between the distinct types Bm and Cm for all m ≥ 3. See
[SGA3, XXI, 7.5] for further details.
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4. Center

The remaining structural property of the groups SO(q) and O(q) (and SO′(q)) that we wish to
determine is the functorial center. Since O(q) is commutative when n ≤ 2, we will assume n ≥ 3.
For odd n, the central µ2 in O(q) has trivial intersection with SO′(q), and hence with SO(q), so
there is no obvious nontrivial point in the center. If n is even then the central µ2 is contained in
SO′(q), and we claim that it also lies in SO(q). In other words, for even n we claim that the Dickson
morphism Dq : O(q)→ (Z/2Z)S kills the central µ2. It suffices to treat the case of q = qn over Z, in
which case we just need to show that the only homomorphism of Z-groups µ2 → Z/2Z is the trivial
one. By flatness, to prove such triviality it suffices to check after localization to Z(2). But over the
local base Spec Z(2) the scheme µ2 is connected and thus it must be killed by a homomorphism into
a constant group.

Proposition 4.1. Assume n ≥ 3. The functorial centers of SO(q) and SO′(q) coincide. This
common center is represented by µ2 in the central Gm ⊂ GL(V ) when n is even, and it is trivial
when n is odd.

Proof. By Lemma 1.3, it suffices to treat the Bureau of Standards form qn and S = Spec k for a
ring k. We will use a method similar to the treatment of ZSp2n

in HW4 Exercise 1: we will exhibit
a specific torus T that we show to be its own centralizer in G := SO′(q) (so T its own centralizer
in SO(q)) and then we will look for the center inside this T . To write down an explicit such T , we
will use the standard form of q.

First suppose n = 2m, so relative to a suitable ordered basis {e1, e
′
1, . . . , em, e

′
m} we have q =∑m

i=1 xix
′
i. In this case we identify GLm1 with a k-subgroup T of SO′(q) via

j : (t1, . . . , tm)→ (t1, 1/t1, . . . , tm, 1/tm).

To prove that ZG(T ) = T , we consider the closed subgroup Tj ' Gm given by the jth factor of
GLm1 (so T =

∏
Tj). It is easy to compute that the centralizer of Tj in GL(V ) = GL2m is a direct

product Dj ×GL2m−2 according to the decomposition

V = (kej ⊕ ke′j)
⊕

(
⊕
i 6=j

kei ⊕ ke′i),

where Dj ⊂ GL2 is the diagonal torus. Thinking functorially, the centralizer of T in GL(V ) is the
(scheme-theoretic) intersection of the centralizers of the Tj ’s, so this is the diagonal torus D in
GL(V ). But the explicit form of q shows that D

⋂
SO′(q) = T .

Now suppose n = 2m+ 1 with m ≥ 1. Pick a basis {e0, e1, e
′
1, . . . , em, e

′
m} relative to which

q = x2
0 +

m∑
i=1

xix
′
i.

If we define T in the same way (using the span of e1, e
′
1, . . . , em, e

′
m) then the same analysis gives

the same result: T is its own scheme-theoretic centralizer in SO′(q). The point is that there is
no difficulty created by e0 because we are requiring the determinant to be 1. (If we try the same
argument with O(q) then the centralizer of T would be µ2 × T .)

With ZSO′(q)(T ) = T proved in general, we are now in position to identify the center of SO′(q)

when n ≥ 3. First we assume n ≥ 4 (i.e., m ≥ 2). In terms of the ordered bases as above, consider
the automorphisms obtained by swapping the ordered pairs (ei, e

′
i) and (e′1, e1) for 1 < i ≤ m.

(Such i exist precisely because m ≥ 2.) These automorphisms lie in SO′(q) since the determinant
is (−1) · (−1) = 1, and a point of T =

∏
Sj centralizes it if and only if the components along S1
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and Si agree. Letting i vary, we conclude that the center is contained in the “scalar” subgroup
GL1 ↪→ T given by t1 = · · · = tm. This obviously holds when m = 1 (i.e., n = 3) as well.

Letting t denote the common value of the tj , to constrain it further we consider more points of
SO′(q) against which it should be central. First assume m ≥ 2. Consider the automorphism f of
V which acts on the plane kei

⊕
ke′i by the matrix w = ( 0 1

1 0 ) (and leaves all other basis vectors
invariant) for exactly two values i0, i1 ∈ {1, . . . ,m}, so det f = 1. Clearly f preserves q, so f lies
in SO′(q)(k). But f -conjugation of t viewed in SO′(q) (or GL(V )) carries ti to 1/ti for i ∈ {i0, i1}.
Thus, the centralizing property forces t ∈ µ2. This is the central µ2 in GL(V ), so ZSO′(q) = µ2 when

n ≥ 4 is even. If n is odd then the central µ2 in GL(V ) has trivial intersection with SO′(q) = SO(q),
so ZSO′(q) = 1 for odd n ≥ 5.

Next, we give a direct proof that ZSO3 = 1. The action of PGL2 on sl2 via conjugation defines an
isomorphism PGL2 ' SO3; see the self-contained calculations in Example 5.2. By HW3 Exercise
4(ii) the scheme-theoretic center of PGLr is trivial for any r ≥ 2 (and for PGL2 it can be verified
by direct calculation), so SO3 has trivial center.

We have settled the case of odd n ≥ 3, and for even n ≥ 4 we have proved that SO′(q) has center
µ2 that also lies in SO(q). It remains to show, assuming n ≥ 4 is even, that the functorial center
of SO(q) is no larger than this µ2. We may and do assume q = qn. The torus T constructed above
in SO′n lies in the open and closed subgroup SOn for topological reasons, and ZSOn(T ) = T since
T has been shown to be its own centralizer in SO′n. Thus, it suffices to show that the central µ2

is the kernel of the adjoint action of T on Lie(SOn) = Lie(On). The determination of the weight
space decomposition for T acting on Lie(On) is classical, from which the kernel is easily seen to be
the diagonal µ2. �

Corollary 4.2. For n ≥ 3, the functorial center of O(q) is represented by the central µ2.

Proof. If n is odd then the identification O(q) = µ2×SO(q) yields the result since SO(q) has trivial
functorial center for such n. Now suppose that n is even. In this case the open and closed subgroup
SO(q) contains the central µ2 is its functorial center. To prove that µ2 is the functorial center of
O(q) we again pass to the case q = qn. It suffices to check that the diagonal torus T in SOn is its
own centralizer in On.

Writing n = 2m, we may rearrange variables so that q =
∑m

i=1 xixi+m. Now the diagonal torus

T consists of block matrices ( t 0
0 t−1 ), and its centralizer in GL2m consists of block matrices ( a 0

0 a′ )
with diagonal a, a′ ∈ GLm. Membership in the orthogonal group is the condition aa′ = 1, so indeed
T is its own centralizer in On. �

5. Accidental isomorphisms

The study of (special) orthogonal groups provides many examples of accidental isomorphisms be-
tween low-dimensional members of distinct “infinite families” of algebraic groups. This is analogous
to the isomorphisms between small members of distinct “infinite families” of finite groups (such as
Z/3Z ' PGL2(F2), S4 ' PGL2(F3), S5 ' PGL2(F5), and so on). In fact, when such accidental
isomorphisms among algebraic groups are applied at the level of rational points of algebraic groups
over finite fields one obtains many of the accidental isomorphisms among small finite groups.

Just as isomorphisms among small finite groups are due to the limited range of possibilities for
finite groups of small size, the accidental isomorphisms between certain low-dimensional algebraic
groups are due to a limitation in the possibilities for a “small” case of the root datum that governs
the (geometric) isomorphism class of a connected semisimple group.
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Example 5.1. Suppose n = 2. In this case O(q) is an étale form of

O2 = T
∐

T

(
0 1
1 0

)
for T =

{(
a 0
0 1/a

)}
.

Hence, O(q) is smooth and SO(q) is a rank-1 torus, whereas SO′(qs) = O(qs) is disconnected when
char(k(s)) = 2.

Example 5.2. Suppose n = 3. In this case SO(q) is an étale form of SO3. We claim that SO3 '
PGL2. To see this, consider the linear “conjugation” action of PGL2 = GL2/Gm on the rank-3
affine space sl2.

This action preserves the non-degenerate quadratic form Q on sl2 given by the determinant.
Explicitly, Q( x y

z −x ) = −(x2 + yz) is, up to sign, the Bureau of Standards quadratic form q3 in 3
variables. Preservation of q3 is the same as that of −q3, so the sign does not affect the group. We
get a homomorphism PGL2 → O3 = µ2 × SO3 over Z with trivial kernel. By computing on the
Q-fibers, the map to the µ2-factor must be trivial. Thus, the map PGL2 → O3 factors through
SO3. Since PGL2 is smooth and fiberwise connected of dimension 3, it follows that the monic map
PGL2 → SO3 is an isomorphism on fibers and hence is an isomorphism (Lemma 3.1).

Example 5.3. Suppose n = 4. In this case SO(q) is not “absolutely simple”; i.e., on geometric
fibers it contains nontrivial smooth connected proper normal subgroups. (This is the only n ≥ 3
for which that happens, and in terms of root systems it corresponds to the equality D2 = A1×A1.)
In more concrete terms, we claim that

(SL2 × SL2)/M ' SO4

with M = µ2 diagonally embedded in the evident central manner.
To see where this comes from, apply a sign to the third standard coordinate to convert q4 into

Q = x1x2 − x3x4, which we recognize as the determinant of a 2 × 2 matrix. The group SL2 acts
on the rank-4 space of such matrices in two evident commutating ways, via (g, g′).x = gxg′−1, and
these actions preserve the determinant by the very definition of SL2. This defines a homomorphism
SL2 × SL2 → SO′(Q) ' SO′4 whose kernel is easily seen to be M . This map visibly lands in SO4

since SL2 is fiberwise connected and O4/SO4 = Z/2Z. Hence, we obtained a monomorphism

(SL2 × SL2)/M → SO4

that must be an isomorphism on fibers (as both sides have smooth connected fibers of the same
dimension), and therefore an isomorphism.

Remark 5.4. In the preceding example, we can also consider the action by the smooth connected
affine group GL2 × GL2 via (g, g′).x = gxg′−1. This preserves the determinant provided that
det g = det g′, so if H = GL2 ×GL1 GL2 (with fiber product via determinant) then we get a
homomorphism H → SO4 whose kernel is the diagonal GL1.

Example 5.5. Suppose n = 5. In this case SO5 is the quotient of Sp4 by its center µ2. (This
corresponds to the accidental isomorphism of root systems B2 = C2.) To establish the isomorphism,
consider a rank-4 symplectic space (V, ω0) with ω0 ∈ ∧2(V )∗ = ∧2(V ∗) the given symplectic form.
The rank-6 vector bundle ∧2(V ) contains a rank-5 subbundle W of sections killed by ω0, and
on ∧2(V ) there is a natural non-degenerate quadratic form q valued on L = det(V ) defined by
q(ω, η) = ω ∧ η. The action of SL(V ) clearly preserves q, the restriction q|W is non-degenerate (by
direct calculation), and Sp(ω0) preserves W (due to the definition of W ). Thus, the Sp(ω0)-action
on W defines a homomorphism

Sp(ω0)→ O(q|W )
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that must factor through SO(q|W ) (as we can check by passing to the standard symplectic space
(V, ω0) of rank 4 over Z and computing over Q), and it kills the center µ2.

We claim that the resulting map h : Sp4/µ2 → SO5 is an isomorphism. A computation shows
that kerh has trivial intersection with the “diagonal” maximal torus, so kerh is quasi-finite and
hence h is surjective for fibral dimension reasons. This forces h to be fiberwise flat, hence flat [EGA,
IV3, 11.3.10], so h has locally constant fiber rank that we claim is 1. By base change, it suffices
to treat the standard symplectic space of rank 4 over Z, for which we can compute the fiber rank
over Q. But in characteristic 0, isogenies between connected semisimple groups of adjoint type are
necessarily isomorphisms.

Example 5.6. Finally, suppose n = 6. In this case SO6 is the quotient of SL4 by the subgroup
µ2 in the central µ4. This corresponds to the accidental isomorphism of root systems D3 = A3,
and to explain it we will again use the natural action of SL(V ) on the rank-6 bundle ∧2(V )
equipped with the non-degenerate quadratic form q(ω, η) = ω ∧ η valued in the line bundle detV .
The homomorphism SL(V ) → O(q) defined in this way clearly kills the central µ2, and it factors
through SO(q) (as O(q)/SO(q) = Z/2Z).

To prove that the resulting map h : SL(V )/µ2 → SO(q) is an isomorphism, by Lemma 1.3 we
may pass to q6 over Z. As in Example 5.5, we reduce to the isomorphism problem over Q. Isogenies
between smooth connected groups in characteristic 0 are always central, and µ4/µ2 is not killed by
h, so we are done.
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