
Algebraic Groups I. Conjugacy into a maximal torus
This handout addresses an intermediate step in the general proof of conjugacy of maximal tori

in a smooth connected affine group over an algebraically closed field. We wish to prove:

Proposition 0.1. Let G be a solvable smooth connected group over an algebraically closed field k,
and choose a semidirect product expression G = T nU with T a torus and U unipotent. Then every
semisimple s ∈ G(k) admits a G(k)-conjugate contained in T .

Recall from the handout on “covering by Borel subgroups” (which only required G(k)-conjugacy
of Borels, and no solvability hypotheses) that every semisimple element must lie in some torus.
The problem is to relate things to a specific torus, and we cannot appeal to conjugacy of maximal
tori since the proof of that rests on the above proposition in the solvable case (applied to a Borel
subgroup). So to prove the proposition, we need to give a direct argument making essential use of
the solvability of G.

The idea of the proof is to induct on dimension with the help of a composition series, but we
will use a composition series whose terms are normal in G and have as successive quotients not
individual Ga’s and Gm’s but rather vector groups and tori of possibly big dimension. Ultimately
the problem will be reduced to the 2-dimensional case with T and U each of dimension 1, in which
case a direct calculation becomes possible with little difficulty.

As a first step, we reduce to the case when U is commutative. To do this, first note that if {Ui}
is any characteristic composition series of U (i.e., each Ui is smooth connected and stable under all
k-automorphisms of U) then all Ui are normalized by G(k) and hence are normal in G (as k = k).
Thus, we could then consider T n (Ui/Ui−1) separated, moving down the composition series and
inducting on dimU (the case dimU = 0 being trivial). Applying these considerations to the derived
series {D i(U)} thereby reduces us to the case when U is commutative. Going a step further, if
char(k) = p > 0 then the commutative U is killed by pN for some big N and each image piU is a
smooth connected k-subgroup of U (in contrast with the torsion subgroups U [pi]!). This is also a
characteristic composition series of U , so we can get to the case when U is p-torsion.

By Exercise 2(ii) in HW9, if char(k) = 0 then U ' Gn
a with T acting linearly. Thus, we get

a weight space decomposition for the action of the k-split U and can take a flag adapted to T -
eigenlines to get a T -stable flag in U . That permits us to reduce to the case U = Ga with a linear
T -action when char(k) = 0. Let us reach the same special case when char(k) = p > 0. In these cases,
Exercise 2(i) in HW9 (which rests on the beautiful work of Tits on the structure of unipotent smooth
connected groups, presented in Appendix B of “Pseudo-reductive groups”, especially Theorem B.4.3
there) implies that U ' U0×V where U0 has trivial T action (and mysterious structure!) and V is
a vector group with a linear T -action for some choice of isomorphism V ' Gn

a . Thus, we can again
reduce to the special case U = Ga with a linear T -action (as the case of U with trivial T -action is
obvious).

Now back in the case of any characteristic, the linear T -action on Ga is given by some k-
homomorphism χ : T → Gm, and we can assume χ 6= 1 (as otherwise G = T ×U and we are clearly
done). Thus, T/(kerχ) ' Gm via χ. Note that kerχ ⊂ ZG, so we can easily pass to G/(kerχ)
and replace T with T/(kerχ) without loss of generality to get to the case G = Gm nGa with the
standard action t.x = tx of Gm on Ga = Ru(G). This is just the “ax+ b group” via

(t, x) 7→
(
t x
0 1

)
.
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The semisimple point s = (t, x) ∈ G(k) must have t 6= 1 (i.e., s 6∈ Ga(k)), and then for
x′ = x/(t− 1) it is easy to compute

(1, x′)g(1,−x′) = (t, 0) ∈ T (k).


