
Algebraic Groups I. Dynamic approach to algebraic groups

1. Subgroups associated to a 1-parameter subgroup

Let G be a smooth affine group over a field k, and λ : Gm → G a k-homomorphism (possibly
trivial, though that case is not interesting). One often calls λ a 1-parameter k-subgroup of G,
even when kerλ 6= 1. Such a homomorphism defines a left action of Gm on G via the functorial
procedure t.g = λ(t)gλ(t)−1 for g ∈ G(R) and t ∈ R× for any k-algebra R. In lecture we introduced
the following associated subgroup functors of G: for any k-algebra R,

PG(λ)(R) = {g ∈ G(R) | lim
t→0

t.g exists }, UG(λ)(R) = {g ∈ G(R) | lim
t→0

t.g = 1},

and

ZG(λ)(R) = {g ∈ G(R) |λR centralizes g}.
In the March 10 lecture it was proved that these are all represented by closed k-subgroup schemes
of G, with PG(λ) = ZG(λ) n UG(λ).

By a direct calculation with graded modules over the dual numbers, it is shown in Proposition
2.1.8(1) of “Pseudo-reductive groups” that when using the Z-grading ⊕n∈Zgn of g = Lie(G) defined
by the Gm-action induced by conjugation through λ (i.e., gn is the space of v ∈ gn such that
AdG(λ(t))(v) = tnv for all t ∈ Gm), we have

Lie(ZG(λ)) = g0, Lie(UG(λ)) = g+ :=
⊕
n>0

gn.

For example, if T ⊂ G is a split k-torus and λ is valued in T , then using the resulting T -weight
space decomposition g = Lie(ZG(T ))⊕ (⊕a∈Φga) (with Φ the set of nontrivial T -weights on g) we
see that for any n ∈ Z− {0},

gn =
⊕
〈a,λ〉=n

ga

since the adjoint action of λ(t) on ga is multiplication by a(λ(t)) = t〈a,λ〉. Hence,

g0 = Lie(ZG(T ))⊕ (⊕〈a,λ〉=0ga), Lie(UG(λ)) = g+ = ⊕〈a,λ〉>0ga.

We write λ−1 to denote the reciprocal homomorphism t 7→ λ(t)−1 = λ(1/t). In HW10 you are
led through a proof that if G = GL(V ) then the multiplication map

µ = µG,λ : UG(λ−1)× PG(λ)→ G

is an open immersion, with PG(λ) a subgroup of “block upper-triangular matrices” and UG(λ) its
unipotent radical (even over k). We first wish to deduce the open immersion property for general G
from this, which immediately implies that UG(λ), PG(λ), and ZG(λ) are all smooth (direct factors
inherit smoothness) and that they are connected when G is connected. Likewise, it would follow
that UG(λ) is unipotent in general since functoriality with respect to an inclusion G ↪→ GLn would
reduce this to the settled case of GLn. Finally, by iterating the connectedness of ZG(λ) several
times (using λ’s that generate a given torus in Gk) it would follow that if G is connected then so
is ZG(S) for any k-torus S in G.

In general, with a general pair (G,λ), consider a k-subgroup inclusion j : G ↪→ G′ into another
smooth affine k-group (the case of interest being G′ = GL(V )), and let λ′ = j ◦λ. By the functorial
definition,

PG(λ) = G ∩ PG′(λ′), UG(λ±1) = G ∩ UG′(λ′
±1

), ZG(λ) = G ∩ ZG′(λ′).
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In particular, if UG′(λ′−1)∩PG′(λ′) = 1 then UG(λ−1)∩PG(λ) = 1. In other words, if µ′ = µG′,λ′ is a
monomorphism then so is µ. This monicity hypothesis on µ for G′ = GL(V ) (and any 1-parameter
k-subgroup λ′ of GL(V )) is verified in HW10, so µ is monic in general. But is it an open immersion?
If µ′ is an open immersion (as is proved on HW10 for G′ = GL(V )!) then the same holds for µ by
means of the following non-obvious lemma:

Lemma 1.1. With notation as above, if µ′ is monic then

G ∩ (UG′(λ′
−1

)× PG′(λ′)) = UG(λ−1)× PG(λ)

as subfunctors of G.

Proof. Since PG′(λ′) = UG′(λ′) o ZG′(λ′), by evaluating on points valued in k-algebras R we have
to show that if

u′− ∈ UG′(λ′
−1

)(R), u′+ ∈ UG′(λ′)(R), z′ ∈ ZG′(λ′)(R)

and u′−u
′
+z
′ = g ∈ G(R) then that u′+, u

′
−, z

′ ∈ G(R).
As usual, we can pick a finite-dimensional k-vector space V , a k-homomorphism ρ : G′ → GL(V ),

and a line L in V such that G is the scheme-theoretic stabilizer of L in G′. Let v ∈ L be a basis
element, so ρ(g)(v) = cv in VR = R⊗k V for a unique c ∈ R×. Since g = u′−u

′
+z
′, we get

(1) ρ(u′+z
′)(v) = cρ((u′−)−1)(v)

in VR.
For any point t of Gm valued in an R-algebra R′, the point λ′(t) of G′(R′) lies in G(R′) and so

acts on v (through ρ) by some R′×-scaling. Hence, we can replace v with ρ(λ′(t)−1)(v) on both
sides of (1). Now act on both sides of (1) by ρ(λ′(t)), and then commute ρ(λ′(t)−1) past ρ(z′) (as
we may, since z′ ∈ ZG′(λ′)(R)) to get the identity

(2) ρ((t.u′+)z′)(v) = cρ(t.(u′−)−1)(v)

as points of the affine space V R over R covariantly associated to VR.
Viewing the two sides of (2) as R-scheme maps (Gm)R → V R, the left side extends to an R-map

P1
R − {∞} = A1

R → V R and the right side extends to an R-map P1
R − {0} → V R. By combining

these, we arrive at an R-map P1
R → V R from the projective line to an affine space over R. The only

such map is a constant R-map to some v0 ∈ V R(R) = VR (concretely, R[t] ∩ R[1/t] = R inside of
R[t, 1/t]), so both sides of (2) are independent of t (and equal to v0). Passing to the limit as t→ 0
on the left side and as t → ∞ on the right side yields ρ(z′)(v) = v0 = cv. We have proved that
z′ carries v to an R×-multiple of itself. Thus, the point z′ ∈ G′(R) is an R-point of the functorial
stabilizer of L inside of V . This stabilizer is exactly G, by the way we chose ρ, so z′ is an R-point
of G ∩ ZG′(λ′) = ZG(λ).

Since ρ(z′)(v) = cv, by cancellation of c on both sides of the identity (2) we get

ρ(t.u′+)(v) = ρ(t.(u′−)−1)(v)

with both sides independent of t and equal to c−1v0 = v. Taking t = 1, this says that u′± lies in

the stabilizer G of v, so u′± is an R-point of G ∩ UG′(λ′±1) = UG(λ±1), as required. �

At the end of the March 10 lecture, we used the open immersion property for µ to prove the
following crucial result:

Proposition 1.2. Let f : G � G′ be a surjective k-homomorphism between smooth connected
affine k-groups, and let λ : Gm → G be a k-homomorphism. For λ′ = f ◦ λ, the natural maps
PG(λ)→ PG′(λ′), UG(λ)→ UG′(λ′), and ZG(λ)→ ZG′(λ′) are surjective.
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We have shown that surjective homomorphisms between smooth connected affine k-groups carry
maximal k-tori onto maximal k-tori and Borel k-subgroups onto Borel k-subgroups. Another related
important compatibility is the good behavior of torus centralizers under surjective homomorphisms.
This follows from the preceding proposition:

Corollary 1.3. Let f : G � G′ be a surjective k-homomorphism between smooth connected affine
k-groups. Let S be a k-torus in G, and S′ = f(S). Then f(ZG(S)) = ZG′(S′).

This result is Corollary 2 to 11.14 in Borel’s book. You may find it instructive to compare the
proofs.

Proof. We may assume k = k. If S1 and S2 are k-subtori in S such that S1 · S2 = S, which is to
say that the k-homomorphism S1 × S2 → S is surjective, it is an exercise (do it!) to check that
ZG(S) = ZZG(S1)(S2). (Note that since torus centralizers in smooth affine groups are smooth, this
equality may be checked by computing with geometric points.) Hence, by induction on dimS, we
may and do assume S ' Gm.

With S ' Gm, the inclusion of S into G is given by a k-homomorphism λ : Gm → G with image
S. Likewise, λ′ = f ◦ λ : Gm → G′ has image S′. Hence, ZG(S) = ZG(λ) and ZG′(S′) = ZG′(λ′).
Thus, the map ZG(S) → ZG′(S′) that we wish to prove is surjective is identified with the natural
map ZG(λ)→ ZG′(λ′). By Proposition 1.2, this latter map is surjective! �

2. Conjugacy for split tori

It is a deep fact that in smooth connected affine groups G over any field k, all maximal k-split
k-tori S in G (not to be confused with k-split maximal k-tori, which may not exist!) are G(k)-
conjugate. Their common dimension is called the k-rank of G; it could be considerably smaller
than the common dimension of the maximal k-tori (which may be called the geometric rank, since
it is the k-rank of Gk). The proof of this conjugacy result rests on the theory of reductive groups
(and pseudo-reductive groups when k is imperfect).

The special case of PGL2 plays a role in getting the structure theory of reductive groups off the
ground, so we now give an elementary direct proof in the special case of PGLn and GLn:

Proposition 2.1. Let V be a finite-dimensional vector space over a field, and G = GL(V ) or
PGL(V ). The maximal k-split k-tori in G are G(k)-conjugate to each other.

Proof. Using the quotient map GL(V )→ PGL(V ) whose kernel is Gm and which is surjective on k-
points (!), it is easy to reduce to the case of GL(V ) in place of PGL(V ) (check!). By HW5, Exercise
5, such k-tori correspond precisely to commutative k-subalgebras A ⊆ End(V ) of the form A ' kn
with n = dimV . Such a k-subalgebra amounts to a kn-module structure on an n-dimensional
vector space V , which is nothing more or less than a decomposition of V into a direct sum of lines.
But any two such decompositions are clearly related via the action of Autk(V ) = GL(V )(k), so we
are done. �

Now we turn out attention to an “axiomatic” G(k)-conjugacy result. The axioms turn out to
hold for all connected reductive k-groups containing a split maximal k-torus, as one shows when
developing the structure theory of connected reductive groups. The verification of the axioms lies
deeper in the theory (see Remark 2.4), but we note here that it rests on the dynamic method (which
is why we mention the topic in this handout, to illustrate how useful the dynamic viewpoint is).

Theorem 2.2. Let G be a smooth connected affine k-group such that for every maximal torus T
in Gk, ZGk

(T ) = T and the finite group WGk
(T ) acts transitively on the set of Borel subgroups of

Gk containing T . Also assume that any Borel subgroup B of Gk satisfies NG(k)(B) = B(k).
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Assume that G contains a k-split maximal k-torus, and that for all such k-tori T there is a Borel
k-subgroup B containing T . All such pairs (T,B) are G(k)-conjugate to each other.

The centralizer hypothesis on the maximal tori of Gk is invariant under conjugation, so by the

G(k)-conjugacy of all maximal tori of Gk it suffices to check this condition for one maximal torus
of Gk. The same holds for the normalizer hypothesis on Borel subgroups.

Remark 2.3. In the homework we have seen many examples of G for which ZG(T ) = T for some
maximal k-torus T , such as GLn, SLn, Sp2n, and SOn with their “diagonal” (split) maximal k-tori.
But don’t forget that there are plenty of interesting nontrivial k-anisotropic connected reductive
groups, such as SL(D) for a finite-dimensional central division algebra D 6= k and SO(q) for an
anisotropic quadratic space (V, q) over k with dimV ≥ 3, and in such cases there is no nontrivial
k-split torus at all, let alone one which is maximal as a k-torus (so in such cases the proposition
concerns an empty collection of k-tori).

Remark 2.4. It is a general fact that ZG(T ) = T for every maximal torus T in any connected
reductive group G, but this is not at all obvious from the definitions; it is proved as part of a
general development of basic structure theory of connected reductive groups. Likewise, the general
development verifies the transitivity axiom on Weyl groups in Theorem 2.2 for connected reductive
groups, as well as the fact that any k-split maximal k-torus (if one exists!) in a connected reductive
k-group lies in a Borel k-subgroup. Finally, the self-normalizing property of Borel subgroups is a
fundamental result of Chevalley, valid for any smooth connected affine k-group. It underlies the
entire structure theory of connected reductive groups.

To begin the proof of Theorem 2.2, let T and T ′ be k-split maximal k-tori in G, and choose
Borel k-subgroups B ⊃ T and B′ ⊃ T ′. We have T = ZG(T ) and T ′ = ZG(T ′), since such equality
among k-subgroups may be checked over k (where it follows from the hypotheses). The proof goes
in two steps: conjugacy over ks, and then a Galois cohomology argument to get down to k. But
we follow the usual “reduction step” style and argue in reverse, by first showing that the general
case can be reduced to the separably closed case, and then handling the case k = ks.

Let’s first reduce to the case of maximal tori over separably closed k: we will prove that if Tks
and T ′ks are G(ks)-conjugate then they are G(k)-conjugate by an element carrying Bks to B′ks . Pick

g ∈ G(ks) such that T ′ks = gTksg
−1, so gBksg

−1 and B′ks are Borel ks-subgroups containing T ′ks .
We first seek to choose g so that also these Borel ks-subgroups coincide.

By hypothesis, the group WGk
(T ′
k
) acts transitively on the set of Borel k-subgroups containing

T ′
k
. But WG(T ′) is a finite étale k-group, so its geometric points are defined over ks. Thus,

NG(T ′)(ks)/T
′(ks) = WG(T ′)(ks) = WG(T ′)(k) = WGk

(T ′
k
).

In other words, the group NG(T ′)(ks) = NG(ks)(T
′
ks

) acts transitively on the set of Borel k-

subgroups of Gk containing T ′
k
. Hence, replacing g ∈ G(ks) with its left-translate by some element

of NG(T ′)(ks) (which doesn’t affect the condition that gTksg
−1 = T ′ks !) brings us to the case that

the Borel ks-subgroups gBksg
−1 and B′ks containing T ′ks coincide over k and hence coincide over ks.

Now we can carry out a Galois cohomology argument to push down the G(ks)-conjugacy to
G(k)-conjugacy. For any γ ∈ Gal(ks/k) we apply γ to both sides of the equalities

T ′ks = gTksg
−1, B′ks = gBksg

−1.

This gives

T ′ks = γ(g)Tksγ(g)−1, B′ks = γ(g)Bksγ(g)−1,
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so γ(g)−1g normalizes Tks as well as Bks . By hypothesis NG(k)(Bk) = B(k), so

γ(g)−1g ∈ B(k) ∩G(ks) = B(ks)

and likewise γ(g)−1g ∈ NG(T )(ks).
If we did not have available the Borel k-subgroups and only worked with the split maximal k-tori,

we would only have γ(g)−1g ∈ NG(T )(ks) and then we would get hopelessly stuck due to possible
obstructions in H1(ks/k,WG(T )). Now the importance of using the Borel k-subgroups emerges:
B(ks) ∩NG(T )(ks) = T (ks)! Indeed, since T = ZG(T ) (by our hypotheses) we can express this as
the statement that NB(T )(ks) = ZB(T )(ks), and this in turn is a special case of:

Lemma 2.5. Let H be a connected solvable smooth affine group over a field k, and let T be a
maximal k-torus in H. Then NH(T )(k) = ZH(T )(k).

Proof. Since Tk is a maximal torus in Hk, and the problem of showing a k-point of H lies in the

closed subset ZH(T ) may be checked over k, it is harmless to extend the ground field to k so that k is
algebraically closed. Hence, the structure theorem for connected solvable groups becomes available:
H = T n U for U = Ru(H). To show that any h ∈ H(k) normalizing T actually centralizes T , we
may assume h = u ∈ U(k). Hence, for any t ∈ T (k) we have

utu−1 = t(t−1ut)u−1.

But (t−1ut)u−1 ∈ U(k) since U is normal in H = T nU , so the condition that utu−1 ∈ T (k) forces
it to equal t. �

Thus, we have obtained a function c : γ 7→ γ(g)−1g from Gal(ks/k) to T (ks). This functor
factors through the quotient Gal(K/k) for a finite Galois extension K/k inside of ks such that
g ∈ G(K). It is therefore easy to check that c ∈ Z1(ks/k, T (ks)). Consider the cohomology class
[c] ∈ H1(ks/k, T ). Since T ' Gr

m, this cohomology group vanishes by Hilbert 90. Hence, c = γ(t)t−1

for some t ∈ T (ks). Thus, if we replace g with gt (as we may!), we get to the case when γ(g) = g
for all γ, so g ∈ G(k). That does the job. (This idea adapts to pull down the result from k by
using Hilbert 90 for the fppf topology, but we give a more hands-on procedure below to get down
to ks from k.)

Now we can assume that k = ks, and it remains to show:

Proposition 2.6. If T and T ′ are maximal tori in a smooth connected affine group G over a
separably closed field k then T and T ′ are G(k)-conjugate.

This says that the general conjugacy result over algebraically closed fields actually holds over
separably closed fields. I think it is due to Grothendieck. Regardless, the argument we give is a
version of the method he used in SGA3 for smooth affine groups over any scheme (working locally
for the étale topology). The idea is similar to the trick with Isom-schemes in HW4 Exercise 5.

Proof. Consider the functor I on k-algebras defined by

I(R) = {g ∈ G(R) |T ′R = gTRg
−1}.

This is a subfunctor of G, and its restriction Ik to k-algebras is represented by a smooth closed

subscheme of k: since T ′
k

= g0Tkg
−1
0 for some g0 ∈ G(k) by the known “geometric” case over k,

we see that Ik(R) consists of points g ∈ G(R) such that g−1
0 g ∈ ZG(R)(TR). In other words, Ik is

represented by g0ZG(T )k. By HW8, Exercise 3, this is smooth and non-empty. Thus, if we can

prove that I is represented by a closed k-subscheme of G then its k-fiber represents Ik and hence is
smooth (and non-empty)! But we know that a smooth non-empty scheme over a separably closed
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field always has a k-point, so it would follow that I(k) 6= ∅, so the desired G(k)-conjugacy of T and
T ′ would follow.

It remains to prove that I is represented by a closed k-subscheme of G. We will do this by
approaching tori through their torsion-levels. For each n ≥ 1 not divisible by char(k), define a
functor on k-algebras as follows:

In(R) = {g ∈ G(R) |T ′[n]R = gT [n]Rg
−1}.

Clearly I is a subfunctor of In. Since T [n] and T ′[n] are finite étale, each is just a finite set of
k-points in G (as k = ks). Thus, it is rather elementary to check that In is represented by a closed
subscheme of G (verify!). The infinite intersection ∩nIn as subfunctors of G is likewise represented
by a closed subscheme of G (form the infinite intersection of representing closed subschemes for
the In’s). Thus, we just have to check that the inclusion I(R) ⊆ ∩nIn(R) is an equality for all
k-algebras R.

Equivalently, picking a point g of G(R) lying in ∩nIn(R) and conjugating TR by this point, we are
reduced to proving that gTRg

−1 and T ′R coincide if their n-torsion subgroups coincide for all n ≥ 1
not divisible by char(k). By the same “relative schematic density” argument used in your solution
to HW3 Exercise 3(iii), since the union of the T [n](k) is Zariski-dense in T (why?) and likewise
for T ′ it follows that a closed subscheme of GR which contains all T [n]R’s (resp. all T ′[n]R’s) must
contain TR (resp. T ′R). The automorphism of g-conjugation on GR then implies likewise that a
closed subscheme of GR which contains every gT [n]Rg

−1 must contain gTRg
−1. We conclude that

if gT [n]Rg
−1 = T ′[n]R for all n ≥ 1 not divisible by char(k) then the two closed subschemes gTRg

−1

and T ′R of GR each contain the other and hence are equal as such. �


