
Algebraic Groups I. Grothendieck’s theorem on tori (based on notes by S. Lichtenstein)

1. Introduction

In the early days of the theory of linear algebraic groups, the ground field was assumed to be
algebraically closed (as in work of Chevalley). After experts acquired some experience, the needs
of number theory and finite group theory (“finite simple groups of Lie type”!) led them to escape
this hypothesis, and they were able to get the theory of connected reductive groups off the ground
over a perfect field (using Galois-theoretic techniques to pull things down from the algebraically
closed case). The needs of number theory over local and global function fields provided motivation to
eliminate the perfectness assumption, but it was not at all clear how to do this. Then Grothendieck
came along and in Theorem 1.1 of Exposé XIV of SGA3 he proved the decisive result which made
it possible to make the theory of reductive groups work over an arbitrary field. The result was this:

Theorem 1.1 (Grothendieck). Let G be a smooth connected affine group over a field k. Then G
contains a maximal k-torus T such that Tk is maximal in Gk.

Remark 1.2. The hardest case of the proof is when k is imperfect, and it was for this purpose that
Grothendieck’s scheme-theoretic ideas in SGA3 were essential, at first. (In Remark 1.5(d) of Exp.
XIV, he gave an especially scheme-theoretic second proof for infinite k, invoking the “scheme of
maximal tori” which he had constructed earlier and later proved to be rational over k in Theorem
6.1 of Exp. XIV, so he could invoke the elementary fact that rational varieties over infinite fields
have rational points!) Borel found the SGA3 proof(s) to be “too technical” for such a concrete
result over fields, and in his book he eliminates all the group schemes by using clever Lie-theoretic
methods (which amount to working with certain infinitesimal group schemes in disguise, as we
shall see). The proof we give is my scheme-theoretic interpretation of the argument in Borel’s book
[Borel, §18.2(i)]. It is very different from Grothendieck’s proof.

In class we saw that Theorem 1.1 and torus-centralizer arguments (along with dimension induc-
tion) yield the following crucial improvement:

Corollary 1.3. For any maximal k-torus T ⊂ G and every field extension K/k, TK ⊂ GK is
maximal. In particular, taking K = k, dimT is independent of the maximal k-torus T .

The common dimension of the maximal k-tori is called the reductive rank of G because it coincides
with the same invariant for the reductive quotient Gk/Ru(Gk).

Remark 1.4. We have seen in class that if G is a smooth connected affine k-group such that Gk
contains no nontrivial torus then Gk is unipotent (and so by definition G is unipotent). But
Corollary 1.3 gives that Gk contains no nontrivial torus if and only if G contains no nontrivial
k-torus, so we conclude that G is unipotent if and only if G contains no nontrivial k-torus (the
implication “⇐” being trivial).

Beware that if k 6= ks then typically there are many G(k)-conjugacy classes of maximal k-tori,
unlike the case of an algebraically closed field. For example, if G = GLn then by HW5 Exercise
5(ii) the maximal k-tori in G are in bijective correspondence with maximal finite étale commutative
k-subalgebras of Matn(k). In particular, two maximal k-tori are G(k)-conjugate if and only if the
corresponding maximal finite étale commutative k-subalgebras of Mat)n(k) are GLn(k)-conjugate.
Hence, if such k-subalgebras are not abstractly k-isomorphic then their corresponding maximal
k-tori are not G(k)-conjugate. For example, non-isomorphic degree-n finite separable extension
fields of k yield such algebras. Thus, when k 6= ks there are typically many G(k)-conjugacy classes
of maximal k-tori in G.
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We saw in class that Gk has no nontrivial tori if and only if Gk is unipotent, so it follows from
Grothendieck’s theorem that every smooth connected affine k-group is either unipotent or contains
a nontrivial k-torus. If all k-tori in G are central then for a maximal k-torus T the quotient
G/T is unipotent (as (G/T )k = Gk/Tk contains no nontrivial torus). Hence, in such cases G is
solvable. Thus, in the non-solvable case there are always k-tori S whose centralizer ZG(S) (which
are always again smooth and connected, by HW8 Exercise 3 for smoothness and discussion in class
for connectedness) has lower dimension than G. This enables us to “dig holes” in non-solvable
smooth connected k-groups when trying to prove general theorems. Of course, the solvable case
has its own bag of tricks (somewhat delicate over imperfect fields).

Definition 1.5. For a maximal k-torus T in a smooth connected affine k-group G, the associated
Cartan k-subgroup C ⊂ G is C = ZG(T ), the scheme-theoretic centralizer.

By the torus-centralizer results from HW8 Exercise 3 and class discussion, Cartan k-subgroups
are smooth and connected. Since T is central in its Cartan C, it follows that T is the unique
maximal k-torus in C. (Indeed, if there were others then the k-subgroup they generate along with
the central T would be a bigger k-torus.) We have Ck = ZGk

(Tk) since the formation of scheme-

theoretic centralizers commutes with base change, and over k all maximal tori are conjugate.
Hence, over k the Cartan subgroups are conjugate, so the dimension of a Cartan k-subgroup is
both independent of the choice of Cartan k-subgroup and invariant under extension of the ground
field. This number is called the nilpotent rank of G in SGA3, and the rank of G in Borel’s book.

For example, if G is reductive then it turns out (as is shown in the handout “Unipotent radicals
and reductivity”) that C = T . That is, in a connected reductive group the Cartan subgroups are
precisely the maximal tori.

Remark 1.6. It is a very difficult theorem that in any smooth connected affine group G over any
field k, all maximal k-split tori are G(k)-conjugate. This is 20.9(ii) in Borel’s textbook for reductive
G, which we will treat in the sequel course. The general case was announced without proof by Borel
and Tits, and is proved as Theorem C.2.3 in the book “ Pseudo-reductive groups”. The dimension
of a maximal split k-torus is thus also an invariant, sometimes called the k-rank of G (and mainly
of interest in the reductive case).

As a final comment before we embark on the proof of Theorem 1.1, note that since tori split over
a finite separable extension, we have the following important consequence of Theorem 1.1.

Corollary 1.7. For a smooth connected affine group G over a field k, there exists a finite Galois
extension k′/k such that Gk′ has a split maximal k′-torus.

2. Start of proof of theorem 1.1

We will primary focus on the case in which k is infinite, which ensures that kn ⊂ An
k

is Zariski-

dense, and thus in particular g = Lie(G) is Zariski-dense in gk. The case of finite k requires a
completely different argument, using “Lang’s theorem”, and is explained in Proposition 16.6 of
Borel’s book. (In general, §16 of Borel’s book explains the elegant technique due to Lang which is
often useful to overcome difficulties with lack of Zariski-density over finite fields. In SGA3 the case
of finite k is likewise handled by using Lang’s trick.)

We first treat the “easy” case in which Gk has a central maximal torus S. (This case will

work over all k, even finite fields.) Since all maximal tori are G(k) conjugate, a unique one is
automatically normal in Gk. By HW 6, Exercise 3(ii), a normal torus in a smooth connected k-
group is automatically central. (This is basically because the automorphism scheme of a split torus
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of rank n is the constant group GLn(Z) that is étale, so the conjugation action of Gk on a normal
torus is classified by a homomorphism to the étale automorphism scheme, which in turn must be
trivial when G is connected. Note the similarity with how one proves the commutativity of the
fundamental group of a connected Lie group.)

Thus, we are in the situation where there exists a unique maximal k-torus S ⊂ Gk. Our problem
is to produce one defined over k. This is rather elementary over perfect fields via Galois descent,
but here is a uniform method using group schemes that applies over all fields; this technique will
be useful later on as well.

Let Z = Z0
G, the identity component of the scheme-theoretic center of G. Since the formation

of the center (and identity component) commutes with base change, we have S ⊂ (Zk)red as a

maximal torus in the smooth commutative k-group (Zk)red. By the structure of smooth connected

commutative k-groups, it follows that (Zk)red = S × U for a smooth connected unipotent k-group
U . For any n not divisible by char(k), consider the torsion subgroup Z[n]. This is a commutative,
affine algebraic k-group, and since the derivative of [n] : Z → Z is n : Lie(Z) → Lie(Z), it follows
that Lie(Z[n]) is killed by n ∈ k×. Thus Lie(Z[n]) = 0, so Z[n] is finite étale over k.

This implies that

Z[n]k = Zk[n] ⊃ (Zk)red[n] ⊃ Zk[n] = Z[n]k,

so Z[n]k = (Zk)red[n]. Since U is unipotent, U [n] = 0. Hence, Z[n]k = S[n].

Set H = (
⋃
n Z[n])0 ⊂ G, where the union is taken over n not divisible by char(k). This is a

smooth connected closed k-subgroup of G.

Lemma 2.1. The k-group H is a torus descending S.

Proof. By Galois descent, the formation of H commutes with scalar extension to ks, so we can
assume k = ks. Hence, the finite étale groups Z[n] are constant, so H is the identity component
of the Zariski closure of a set of k-points. It follows that the formation of H commutes with any
further extension of the ground field, so

Hk = (
⋃
n

Zk[n])0 = (
⋃
n

S[n])0 = S

where the final equality uses that in any k-torus, the collection of n-torsion subgroups for n not
divisible by char(k) is dense (as we see by working over k and checking for GL1 by hand). �

Now we turn to the hard case, when Gk does not have a central maximal torus. In particular,
there must exist a non-central S = GL1 ↪→ Gk. We are going to handle these cases using induction
on dimG. (Note that the general case dimG = 1 is trivial.)

Lemma 2.2. It suffices to prove that G contains a nontrivial k-torus.

Proof. Suppose there exists a nontrivial k-torus M ⊂ G. Consider ZG(M), which is a smooth
connected k-subgroup of G. The maximal tori of ZG(M)k = ZGk

(Mk) must have the same dimen-
sion as those of Gk, as can be seen by considering one containing Mk. So if we can find a k-torus

in ZG(M) that remains maximal as such after extension of the ground field to k then the k-fiber
of such a torus must also be maximal in Gk for dimension reasons. Thus it suffices to prove the
theorem with G replaced by ZG(M).

Now consider ZG(M)/M . Since M was assumed nontrivial, this has strictly smaller dimension
(even if ZG(M) = G, which might have happened). Hence, by dimension induction, there exists a
k-torus T ⊂ ZG(M)/M which is geometrically maximal. Let T be the scheme-theoretic preimage
of T in ZG(M). Since M is smooth and connected, the quotient map ZG(M) → ZG(M)/M is
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smooth, so T is a smooth connected closed k-subgroup of G. It sits in a short exact sequence of
k-groups

1→M → T → T → 1.

Since M and T are tori and T is smooth and connected, by the structure theory for solvable groups
it follows that T is a torus.

Now we claim T is geometrically maximal in ZG(M). To prove this, first note that any maximal
torus T ′ in ZG(M)k must contain the central Mk (since otherwise the subgroup T ′Mk would be
a bigger torus). Thus, maximality of T ′ in ZG(M)k is in fact equivalent to the maximality of the
quotient T ′/Mk in (ZG(M)/M)k. In particular, Tk is maximal in ZG(M)k, and thus in Gk as we
already remarked. �

So much for motivation: now we need to find such an M . The basic idea for infinite k is to use
Lie(S) = gl1 ⊂ gk, a non-central Lie subalgebra, plus the Zariski-density of g in gk (infinite k!),

to create a suitable nonzero X ∈ g that is “semisimple” and such that ZG(X)0 ⊂ G is a lower-
dimensional smooth subgroup in which the maximal k-tori are maximal in Gk, so a geometrically

maximal k-torus in ZG(X)0 will do this job. (Below we will define what we mean by “semisimple”
for elements of gk. This is a Lie-theoretic version of Jordan decomposition for linear algebraic
groups.) The motivation is that whereas it is hard to construct tori over k, it is much easier to use
Zariski-density arguments in gk to create semisimple elements in g. Those will serve as a substitute
for tori to carry out a centralizer trick and apply dimension induction.

There will be some extra complications in positive characteristic, and the case of finite fields
needs a separate argument (as noted above).

3. The case of infinite k

Now we assume k is infinite, but otherwise arbitrary. To flesh out the preceding basic idea,
consider the following hypothesis:

(?) there exists a non-central semisimple element X ∈ g.

To make sense of this, we now have to define what we mean by “non-central, semisimple” in g.
The definition of “semisimple” will involve G. This is not surprising, since the trivial 1-dimensional
Lie algebra k arises for both Ga and Gm, and in the first case we want to declare all elements
of the Lie algebra to be nilpotent (since unipotent subgroups of GLN have all elements in their
Lie algebra nilpotent inside glN , by the Lie-Kolchin theorem) and in the latter case we want to
declare all elements of the Lie algebra to be semisimple! (Observe that the same issue is relevant
in the study of ordinary connected Lie groups over R and C: the case of commutative or solvable
Lie groups is a source of confusion because the exponential map relates additive and multiplicative
groups, and it is very far from an isomorphism in the complex-analytic case.)

We now briefly digress for an interlude on Lie algebras of smooth linear algebraic groups over
general fields k. The center of a Lie algebra g is the kernel of the adjoint action

ad : g→ End(g), X 7→ [X,−].

In Borel’s book (see §4.1–§4.4), a general “Jordan decomposition” is constructed as follows in
gk. Choose a closed k-subgroup inclusion G ↪→ GLN , and consider the resulting inclusion of Lie
algebras g ↪→ glN over k. For any X ∈ gk we have an additive Jordan decomposition X = Xs +Xn

in glN (k) = MatN (k). In particular, [Xs, Xn] = 0. Borel proves that Xs, Xn ∈ gk and that that are
independent of the initial choice of G ↪→ GLN ; the arguments are similar to what we did long ago
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to make the Jordan decomposition in G(k). Borel also shows that this decomposition is functorial,
so in particular ad(Xs) = ad(X)s and ad(Xn) = ad(X)n.

Definition 3.1. An element X ∈ g is semisimple (resp. nilpotent) when X = Xs (resp.X = Xn).

Remark 3.2. Note that we are not claiming that ad(X) alone detects the semisimplicity or nilpo-
tence, nor that the definition is being made intrinsically to g. The definitions of semisimplicity and
nilpotence rest upon k-group inclusions G ↪→ GLN (and more specifically, involve the k-group G).
Moreover, by definition, these concepts are preserved under passage to gk (and as with algebraic
groups, the Jordan components of X ∈ g are generally only rational over the perfect closure of k).

If p = char(k) > 0, then upon choosing a faithful representaiton G ↪→ GLN , the resulting
inclusion g ↪→ glN makes the p-power map on glN induces the structure of a p-Lie algebra on g.
This is a certain kind of a Frobenius semi-linear map X 7→ X [p] : g → g that is functorial in G
(independent of the chosen faithful linear representation) and has the intrinsic description of being
the map D 7→ Dp from the space of left-invariant derivations to itself. One can compute using
glN that ad(X [p]) = ad(X)[p] (as is one of the axioms for p-Lie algebras). For further details on
p-Lie algebras, see §3.1 in Borel’s book and Appendix A.7 (especially Lemma A.7.13) in “Pseudo-
reductive groups”.

Remark 3.3. In characteristic p > 0, if X ∈ g is nilpotent, then X [pr] = 0 for r � 0. This is very
important below, and follows from a computation in the special case of glN .

Returning to our original problem over infinite k, let us verify hypothesis (?) in characteristic
zero. The non-central S = GL1 ↪→ Gk gives an action of S on gk (via the adjoint action of Gk on
gk), and this decomposes as a direct sum of weight spaces

gk =
⊕

gχi .

The S-action is described by the weights ni, where χi(t) = tni .

Lemma 3.4. There is at least one nontrivial weight.

Proof. The centralizer ZG(S) is a smooth (connected) subgroup of Gk, and by functorial consider-

ation with the dual numbers we see that Lie(ZGk
(S)) = gS

k
is the subspace of S-invariants in gk.

Thus, if S acts trivially then ZGk
(S) has Lie algebra with full dimension, forcing ZGk

(S) = Gk
by smoothness, connectedness, and dimension reasons. This says that S is central in Gk, which is
contrary to our hypotheses on S. �

If we choose a k-basis Y for Lie(S) then Y ∈ gk is semisimple since any Gk ↪→ GLN carries S
into a torus and hence Lie(S) into a semisimple subalgebra of glN . By Lemma 3.4, some weight
is nonzero. Thus, in characteristic zero (or more generally if char(k) - ni for some i) we know
moreover that ad(Y ) is nonzero. Hence, Y is semisimple and in characteristic 0 is non-central.

We have not yet verified (?), since Y ∈ gk, and we seek a non-central semisimple element of
g. To fix this, consider the characteristic polynomial f(X, t) of ad(X) for generic X ∈ g, as a
polynomial in k[g∗][t]. Viewed in k[g∗][t] = k[g∗

k
][t], the existence of the noncentral, semisimple

element as established above shows that f(X, t) 6= tdim g. In other words, there are lower-order
(in t) coefficients in k[g∗] which are nonzero as functions on gk. Since g ⊂ gk is Zariski-dense

(as k is infinite) it follows that there exists X ∈ g such that f(X, t) ∈ k[t] is not equal to tdim g.
In particular, ad(X) is not nilpotent, so ad(X)s is nonzero. Since ad(Xs) = ad(X)s 6= 0, Xs is
noncentral and semisimple in gk. When k is perfect, such as a field of characteristic 0, the Jordan
decomposition is rational over the ground field, so then Xs satisfies the requirements in (?).



6

4. Hypothesis (?) for G implies the existence of a nontrivial k-torus

Now we assume there exists X ∈ g that is noncentral and semisimple. We will show (for
infinite k) that there exists a smooth k-subgroup G′ ⊂ G which is a proper subgroup (and hence
dimG′ < dimG) such that g′ = Lie(G′) contains a nonzero semisimple element of g. This implies
that G′

k
is not unipotent (for if it were, its Lie algebra would be nilpotent). By dimension induction,

G′ contains a geometrically maximal k-torus. Since G′
k

is not unipotent, this means G′ (and hence

G!) contains a nontrivial k-torus, which is all we need to prove (Lemma 2.2).
In characteristic zero, it’s very easy to finish the proof, as follows. Consider the scheme theoretic

centralizer ZG(X) of X (for the action Ad : G→ GL(g)). By Cartier’s theorem, Z is smooth. We
must have ZG(X) 6= G (in any characteristic) for the following reason. If ZG(X) = G then X is
fixed by Ad(G), so by differentiating we get ad(X) = 0 on g. But X was non-central, so this is a
contradiction. Thus ZG(X) is a smooth subgroup of G distinct from G, and its Lie algebra contains
the nonzero semisimple X. This does the job as required above, so we are done in characteristic 0.

Remark 4.1. Borel’s book shows in §9.1 that ZG(X) is smooth in any characteristic, but the problem
is that hypothesis (?) may not hold in positive characteristic. We will avoid this approach because
we have not developed any general theory for semisimple elements of g. The reader who is happy
with Borel’s proof of the smoothness of ZG(X) should skip ahead to §5.

For the remainder of the proof, we will assume char(k) = p > 0. Now we will make essential
use of p-Lie algebras, and especially an interesting construction from SGA3, Exposé VIIA, 7.2, 7.4
(also formulated in “Pseudo-reductive groups”, Proposition A.7.14): p-Lie subalgebras h ⊂ g are in
functorial bijection with infinitesimal k-subgroup schemes H ⊂ G of height 1 (meaning ap = 0 for
all a ∈ mH) via H 7→ Lie(H), and moreover h is commutative if and only if H is. (The idea behind
the proof of this is to emulate the classical Lie-theoretic version, by defining H to be “exp(h)”
and using the p-Lie subalgebra property to prove that this makes sense, i.e. the power series stops
before division by zero becomes an issue.) The more precise statement proved in SGA3 is this:

Theorem 4.2 (SGA3, Exposé VIIA, 7.2, 7.4). Let B be a commutative Fp-algebra. The functor
H  Liep(H) is an equivalence between the category of finite locally free B-group schemes whose
augmentation ideal is killed by the p-power map and the category of finite locally free p-Lie algebras
over B.

In particular, if k is a field of characteristic p > 0 and G is a k-group scheme of finite type, then
the p-Lie algebra functor defines a bijection

Homk(H,G) = Homk(H, kerFG/k) ' Hom(Liep(H),Liep(kerFG/k)) = Hom(Liep(H),Liep(G)).

In this result, FG/k : G → G(p) denotes the relative Frobenius morphism, discussed in §A.3
(especially up through A.3.4) in “Pseudo-reductive groups”. (For GLn it is the p-power map on
matrix entries, and in general it is functorial in G.) Also, note that by (an easy instance of)
Nakayama’s Lemma, a map H → G is a closed immersion if and only if the p-Lie algebra map is
injective. This will be used implicitly without comment. Finally, we note that in §A.7 of “Pseudo-
reductive groups”, the basic aspects of Lie algebras and p-Lie algebras of general group schemes
over rings are developed from scratch.

Remark 4.3. In the special case of commutative k-groups whose augmentation ideal is killed by the
p-power map, the equivalence with finite-dimensional commutative p-Lie algebras over k is nicely
explained in the unique Theorem in §14 in Mumford’s “Abelian Varieties”, via a method which
works over any field (even though he always assumes his ground field is algebraically closed). But
beware that the commutative case is really not enough, since we need the final bijection among
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Hom’s in the preceding theorem, and that rests on using the k-group scheme kerFG/k which is
generally very non-commutative.

Let h = Spank(X
[pi]). This is manifestly closed under the map v 7→ v[p]. Moreover (as can be

seen by using an embedding g ↪→ gln arising from a k-group inclusion of G into GLn), the X [pi] all
commute with one another. Thus h is a commutative p-Lie subalgebra of g. A linear combination
of commuting semisimple operators is semisimple. Moreover the pth power of a nonzero semisimple
operator is nonzero. So v 7→ v[p] has no kernel on h. It is a general fact in Frobenius-semilinear
algebra (see §1 in Exposé XXII of SGA7 for a nice discussion, especially (1.0.9) and Proposition
1.1 there, or alternatively the Corollary at the end of §14 of Mumford’s book “Abelian Varieties”
over algebraically closed fields, which is enough for our needs) that if V is a finite-dimensional
vector space over a perfect field F of characteristic p and if φ : V → V is a Frobenius-semilinear
endomorphism then there is a unique decomposition V = Vss ⊕ Vn such that φ is nilpotent on Vn

and (Vss)F admits a basis of “φ-fixed vectors” (φ(v) = v).
Now set Z = ZG(h).

Lemma 4.4. The k-subgroup scheme Z in G is smooth.

Proof. Without loss of generality, we can take k = k, as smoothness can be detected over k and the
formation of scheme theoretic centralizers commutes with base change. Now using Theorem 4.2,
set H = exp(h) ⊂ G to be the infinitesimal k-subgroup scheme whose Lie algebra is h ⊆ g.

As observed above, h splits as a direct sum of (·)[p]-eigenlines,

h =
⊕

kXi, X
[p]
i = Xi.

Thus, H is a power of the order-p infinitesimal commutative k-subgroup corresponding to the p-Lie
algebra kX with X [p] = X. But there are only two 1-dimensional p-Lie algebras over k: the one
with X [p] = 0 and the one with X [p] = X for some k-basis X. (Indeed, if X [p] = cX for some

c ∈ k× then by replacing X with Y = aX where ap−1 = c we get Y [p] = Y ; semi-linear algebra
can be even better than linear algebra!) Hence, there are exactly two commutative infinitesimal
order-p groups over an algebraically closed field, so the non-isomorphic µp and αp must be these
two possibilities.

Which is which? To figure it out, consider the embeddings αp ↪→ Ga and µp ↪→ Gm which
induces isomorphisms on p-Lie algebras. Nonzero invariant derivations on Ga resp. Gm are given
by ∂t and t∂t. Taking p-th powers (which is the derivation-version of the (·)[p]-map), we have ∂pt = 0

and (t∂t)
p = t∂t. Thus, the condition X [p] = X forces us to be in the µp-case. That is, H = µNp for

some N .
By Lemma A.8.8 in “Pseudo-reductive groups” (taking Λ = Z/mZ there), µm has completely

reducible representation theory over any field, just like a torus. Applying this with µp over k, we
can emulate the proof of smoothness of torus centralizers from the homework (or see [loc. cit.,
Proposition A.8.10(2)]) to show via the infinitesimal criterion that ZG(H) is smooth. (Note that
the scheme-theoretic centralizer ZG(H) makes sense since G is smooth, even though H is not.) To
conclude the proof, it will suffice to show that the evident inclusion ZG(H) ⊆ ZG(h) as k-subgroup
schemes of G is an equality.

Theorem 4.2 provides more: if R is any k-algebra, then the p-Lie functor defines a bijective
correspondence between R-group maps HR → GR and p-Lie algebra maps hR → gR. Hence, by
Yoneda’s lemma, ZG(H) = ZG(h) because to check this equality of k-subgroup schemes of G it
suffices to compare R-points for arbitrary k-algebras R. �
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As in the characteristic zero case, since h contains noncentral elements of g, it follows that
ZG(h) 6= G. And as we saw above, this guarantees the existence of a nontrivial k-torus in G, by
dimension induction (applied to the identity component ZG(h)0).

We have completed the proof of Theorem 1.1 in characteristic zero, since (?) always holds in
characteristic 0, and more generally we have completed it over any k whatsoever (even finite k!)
for G that satisfy (?) when the conclusion of Theorem 1.1 is known over k in all lower dimensions
(as we may always assume, since we argue by induction on dimG).

5. The case char(k) = p > 0 and (?) fails

Now the idea is to find a central infinitesimal k-subgroup M ⊂ G such that G/M satisfies (?).
We will then lift the result from G/M back to G when such an M exists, and if no such M exists
then we will use a different method to produce a nontrivial k-torus in G.

Lemma 5.1. Regardless of whether (?) holds (but still assuming, as we have been, that Gk has a
noncentral GL1), there exists a nonzero semisimple element X ∈ g.

Proof. Arguing as at the end of §3, and using the infinitude of the field k (finally!), there exists
X0 ∈ g such that ad(X0) is not nilpotent. Consider the additive Jordan decomposition X0 =
Xss

0 +Xn
0 in gk as a sum of commuting semisimple and nilpotent elements. For r � 0 we see that

X := X
[pr]
0 = (Xss

0 )[pr] is nonzero and semisimple, and also (as the prth power of X0 also in g) lies
in g. �

Obviously if (?) fails for G then every semisimple element of g is central. Assume this is the
case. Set

m = Spank(all semisimple X ∈ g) ⊂ g;

this is nonzero due to Lemma 5.1. Since all the semisimple elements are central, this is a commu-
tative Lie subalgebra of g. Since the pth power of a semisimple element of MatN (k) is semisimple,

m is (·)[p]-stable. So m is a p-Lie subalgebra, and hence we can exponentiate it to M ⊂ G. As a
linear combination of commuting semisimple elements in MatN (k) is semisimple, m consists only

of semisimple elements; this implies that (·)[p] has vanishing kernel on mk. Thus, as we saw earlier,

it follows that Mk = µNp for some N > 0.

Lemma 5.2. The k-subgroup scheme M in G is central.

Proof. Let V ⊂ gks be the ks-span of all semisimple central elements of gks . Manifestly we have
mks ⊂ V . Let Γ = Gal(ks/k). Since V is Γ-stable, by Galois descent we have V = (V Γ)ks . Since
V Γ ⊂ m, obviously, this gives V = mks . By inspection, it’s clear that V is stable under the action
of G(ks), which is Zariski-dense in Gks . So Gks preserves V = mks ⊂ gks under the adjoint action.
Hence, G preserves m, so M = exp(m) is normal in G. (Here we are again using that the exponential
procedure has good functorial meaning over k-algebras, as was noted earlier.)

We now need to use Cartier duality H  D(H) for finite locally free commutative group schemes.
This is nicely explained in §14 of Mumford’s book “Abelian Varieties” (he works over an alge-
braically closed field, but his method applies over any ring at all, say working Zariski-locally so
that a finite locally free coordinate ring becomes a free module). This duality operation is con-
travariant and self-inverse, and µp is dual to Z/pZ, so

Aut(Mk) ' Aut(D(Mk))
opp = Aut((Z/pZ)N )opp,

which is the constant group GLN (Z/pZ)opp, so it is étale. Hence, the conjugation action map
Gk → Aut(Mk) from a connected group to an étale group must be trivial. Consequently Mk is
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central in Gk, so M is too. (This is the same argument which proves that normal tori in connected
group schemes are central.) �

Now consider the central purely inseparable k-isogeny π : G → G′ := G/M . Note that G′ is
smooth and connected of the same dimension as G, and even contains a non-central torus πk(S)

over k (as π is bijective on k-points). Does G′ satisfy (?)? If it does not, then we can run through

the same procedure all over again to get a nontrivial central M ′ ⊂ G′ such M ′
k
' µN

′
p , and can

then consider the composite purely inseparable k-isogeny

G→ G/M = G′ → G′/M ′.

This is not so bad: it turns out that the kernel E of this composite map is also a central k-subgroup,
and it satisfies Ek '

∏
µpni for various ni. To prove this, it is convenient to introduce the following

terminology:

Definition 5.3. An infinitesimal k-group M is multiplicative if Mk '
∏
µpni for some integers

ni ≥ 1.

Under the Cartier duality operation on finite commutative k-group schemes (whose formation
commutes with direct products and extension of the ground field), µpn is Cartier dual to Z/pnZ.
Hence, over k we can say that the multiplicative infinitesimal k-groups are Cartier dual to the finite
étale k-groups of p-power order. The multiplicative infinitesimal k-groups exhibit many properties
of tori (and in fact they are precisely the infinitesimal k-subgroup schemes of k-tori, but we do not
use this). What we need is:

Lemma 5.4. The automorphism scheme of an infinitesimal multiplicative k-group is étale, and if

1→M ′ → E →M → 1

is a short exact sequence of finite k-group schemes with M and M ′ multiplicative infinitesimal
k-groups then so is E; in particular, E is commutative.

For finite k-schemes X, the automorphism functor R  AutR(XR) on k-algebras is easily seen
to be representable by an affine finite type group schemes, since the coordinate ring is a finite-
dimensional k-algebra (with algebra structure governed by “structure constants”). The same goes
for the automorphism functor of a finite k-group scheme. So no deep theorems on automorphism
functors are required here.

Proof. We may assume k = k. Then a multiplicative k-group M is Cartier dual to the constant
group associated to a finite abelian p-group C. Since Cartier duality works over any base scheme
(and is contravariant), it follows that the automorphism functor of M is the “opposite group” to
the automorphism functor of C. But for a finite constant group, the automorphism functor is the
finite constant group associated to the ordinary automorphism group. This proves that M has
étale automorphism functor.

Now consider the given short exact sequence. The infinitesimal nature of M and M ′ implies that
E(k) = 1 too, so E is infinitesimal (hence connected). The normality of M ′ in E implies that the
conjugation action of E on M ′ is classified by a k-group homomorphism from the connected E to
the étale automorphism group scheme of M ′. This classifying map must be trivial, so M ′ is central
in E. Since M = E/M ′ is commutative, Hence, the functorial commutator E × E → E therefore
factors through a k-scheme morphism

[·, ·] : M ×M = (E/M ′)× (E/M ′)→M ′
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which is seen to be bi-additive by thinking about M = E/M ′ in terms of fppf quotient sheaves. In
other words, this bi-additive pairing corresponds (in two ways!) to a k-group homomorphism

M → Hom(M,M ′),

where the target is the affine finite type k-scheme classifying group scheme homomorphisms (over
k-algebras). By the exact same Cartier duality argument used in the analysis of automorphism
schemes of multiplicative infinitesimal k-groups, it follows that this Hom-scheme is also étale, so the
map to it from M must be trivial. This shows that E has trivial commutator, so E is commutative.

With commutativity of E established, it makes sense to apply Cartier duality to our original
short exact sequence. This duality operation is contravariant and preserves exact sequences (since
it is order-preserving and carries right-exact sequences to left-exact sequences), so we get an exact
sequence

1→ D(M)→ D(E)→ D(M ′)→ 1.

The outer terms are finite constant groups of p-power order, so the middle one must be too. Hence,
E is also multiplicative, as desired. �

Returning to our setup of interest, under a composite isogeny

G→ G/M = G′ → G′/M ′,

the kernel E fits into a short exact sequence

1→M → E →M ′ → 1

of k-group schemes. Hence, E must be infinitesimal and multiplicative. But it is normal in G and
has étale automorphism scheme, so by the usual argument with connectedness of G it follows that
E must be central in G. In other words, this composite isogeny is again a quotient by a central
multiplicative infinitesimal k-group.

Now we’re in position to wrap things up in positive characteristic (when k is infinite, arguing
by induction on dimG). First, we handle the case when the above process keeps going on forever.
This provides a strictly increasing sequence M1 ⊂ M2 ⊂ . . . of central multiplicative infinitesimal
k-subgroups of G. This is all happening inside of the k-subgroup scheme ZG, so it forces ZG to
not be finite (as otherwise there would be an upper bound on the k-dimensions of the coordinate
rings of the Mj ’s). Since (ZG)0

k
/((ZG)0

k
)red is a finite infinitesimal group scheme, for large enough

j the map to this from (Mj)k must have non-trivial kernel. In other words, the smooth connected

commutative group ((ZG)0
k
)red contains a non-trivial infinitesimal subgroup that is multiplicative.

This group therefore cannot be unipotent (since we know from HW5 Exercise 1 that a smooth
unipotent group cannot contain µp), so it must contain a non-trivial torus! We conclude by the
same argument with ZG[n]’s as before (using n not divisible by char(k) = p) that ZG contains a
non-trivial k-torus, so we win.

There remains the more interesting case when the preceding process does eventually stop, so we
wind up with a central quotient map

G→ G/M

by a multiplicative infinitesimal k-subgroup M such that G/M satisfies (?); beware that now Mk
is merely a product of several µpni ’s, not necessarily a power of µp. We therefore get a nontrivial
k-torus T in G/M , so if E ⊂ G denotes its scheme-theoretic preimage then there is a short exact
sequence of k-group schemes

1→M → E → T → 1

with M central in E. We will be done (for infinite k) if any such E contains a nontrivial k-torus.
This is the content of the following lemma.
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Lemma 5.5. For any field k of characteristic p > 0 and short exact sequence of k-groups

1→M → E → T → 1

with a central multiplicative infinitesimal k-subgroup M in E and a nontrivial k-torus T , there is
a nontrivial k-torus in E.

Proof. Certainly Ek is connected, since T and M are connected. The commutator map on E factors
through a bi-additive pairing T ×T →M which is trivial since T is smooth and M is infinitesimal.
Hence, E is commutative. The map Ek → Tk is bijective on k-points, so (Ek)red is a smooth

connected commutative k-group. It is therefore a direct product of a torus and a smooth connected
unipotent group, and the unipotent part must be trivial (since Tk is a torus). Hence, (Ek)red is a
torus. Now we can play the usual game: since E is commutative, the identity component of the
Zariski-closure of the k-subgroup schemes E[n] for n not divisible by p is a k-torus in E which maps
onto (Ek)red and hence is nontrivial. �


