
Algebraic Groups I. Quotient formalism

Let G be a group scheme of finite type over a field k, and H a closed k-subgroup scheme (possibly
not normal). We have defined a good notion of quotient π : G → G/H in general, and proved
existence when G is smooth and affine, with G/H smooth and quasi-projective in such cases.
Moreover, if H is normal we have seen that G/H is naturally a k-group if it exists, and that G/H
is also affine when G is smooth and affine.

But one can ask for more: can we carry over basic manipulations with quotients as in elementary
group theory? The first part of this handout addresses such questions in many cases (and the reader
who is familiar with Grothendieck topologies can adapt the arguments to a more general setting,
as is also treated in SGA3). In the second part of this handout, we discuss the classification of all
smooth affine k-groups G fitting into a short exact sequence

1→ G′ → G→ G′′ → 1

with G′, G′′ ∈ {Ga,Gm}.
In the final part, we apply these results to describe the structure of a k-split solvable group over

any field k as a semidirect product of toric and unipotent parts. This description is not canonical
(generally there are many choices for the torus subgroup), but it is a decisive tool in the proof of
general results for solvable groups.

1. Coset spaces and isomorphism theorems

We begin by relating closed subschemes of G/H to certain closed subschemes of G. For this we
do not need any smoothness or affineness assumption; we merely need to assume that the quotient
π : G → G/H exists (under the definition given in class, so it is required to be separated and of
finite type over k). Recall that existence has been proved when G is smooth and affine (and it is
proved in general over fields in SGA3, as was noted in class).

Proposition 1.1. If Z is a closed subscheme of G/H then π−1(Z) is a closed subscheme of G
which is stable under the right-translation action of H on G, and Z 7→ π−1(Z) is a bijective
correspondence between the set of closed subschemes of G/H and the set of closed subschemes of G
stable under the right translation action of H.

We have Z1 ⊆ Z2 if and only if π−1(Z1) ⊆ π−1(Z2).

Proof. By computing with the functor of points, it is clear that π−1(Z) has the asserted properties.
To prove that Z = Z ′ when π−1(Z) = π−1(Z ′), recall that π is faithfully flat map between noether-
ian schemes, so it suffices to prove in general that if f : X → Y is a faithfully flat quasi-compact
map between scheme then a closed subscheme Z in Y is uniquely determined by f−1(Z). We can
assume Y is affine, and then by replacing X with the disjoint union of the constituents of a finite
open affine covering we can assume X is also affine. But if A→ B is a faithfully flat map of rings
and J is an ideal of A then A ∩ JB = J , so we get the assertion.

Now let W be a closed subscheme of G which is invariant under the right action of H. We seek
to prove that W = π−1(Z) for some (necessarily unique) closed subscheme Z ⊂ G/H. Under the
action isomorphism

G×H ' G×G/H G

defined by (g, h) 7→ (g, gh), W ×H goes over to W ×G/H W due to the right-invariance hypothesis
on W . But W ×G/H G goes over to a closed subscheme of G × H which must be contained
in W × H (by computing with first projections), so the containment W ×G/H W ⊆ W ×G/H G
of closed subschemes of G ×G/H G is an equality. Applying the “flip” automorphism, it follows
that likewise W ×G/H W = G ×G/H W . Hence, W ×G/H G = G ×G/H W . In other words, if
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q1, q2 : G ×G/H G ⇒ G are the two projections then q−11 (W ) = q−12 (W ). Since π : G → G/H is
faithfully flat and quasi-compact, by descent theory for closed subschemes (which is descent theory
for quasi-coherent sheaves, applied to ideal sheaves inside of the structure sheaf) it follows that
W = π−1(Z) for a closed subscheme Z in G/H.

To prove that the bijective correspondence respects inclusions in both directions it suffices to
prove that if π−1(Z1) ⊆ π−1(Z2) then Z1 ⊆ Z2. Letting Z = Z1 ∩Z2, we have π−1(Z) = π−1(Z1)∩
π−1(Z2) = π−1(Z1), so Z = Z1. Hence, Z1 ⊆ Z2, as required. �

Continuing to assume that G/H exists (a hypothesis we have proved when G is smooth and
affine), we get the following existence result for additional quotients by H:

Corollary 1.2. For any closed subscheme Z ⊆ G stable under the right H-action, the quotient
Z → Z/H exists and is the projection from Z onto the unique closed k-subscheme Z ⊆ G/H such
that π−1(Z) = Z.

Of course, the definition of a quotient map Z → Z/H is identical to the definition of the quotient
map G→ G/H as in class (which never used the k-group structure on G apart from the right H-
action on G arising from it). In particular, by the argument used in class, if such a quotient exists
it automatically satisfies the expected universal property for H-invariant maps from Z.

Proof. Since Z = π−1(Z), the map π : Z → Z is faithfully flat and quasi-compact (even finite
type). This map is also clearly invariant under the right H-action on Z. By thinking in terms of
functors, we see that Z×G/H Z = Z×Z Z. But the preceding proof shows that Z×G/H Z = Z×H
via the right action map, so Z × H ' Z ×Z Z via the action map. Thus, Z → Z satisfies the
requirements to be a quotient by the H-action. �

As a nice application, we can now construct some more quotients in the affine case without
smoothness hypotheses:

Example 1.3. Let H ′ be an affine k-group of finite type that is a closed k-subgroup of GLn for some
n ≥ 1. Then for any closed k-subgroup H ⊆ H ′, the quotient H ′/H exists and is quasi-projective
over k. Indeed, we apply the preceding corollary to Z = H ′ and the smooth affine G = GLn upon
picking a faithful linear representation. (In SGA3 it is proved that every affine group of finite type
over a field admits a closed k-subgroup inclusion into some GLn. For our purposes, what matters is
that if we begin life with a smooth affine k-group and then pass to collections of closed k-subgroups,
the coset schemes always exist and are quasi-projective over k.)

Here is a group scheme version of some basic isomorphism nonsense from group theory.

Proposition 1.4. Assume G is smooth and affine, and H is normal in G. Equip G := G/H with

its natural k-group structure. Then H
′ 7→ H ′ := π−1(H

′
) is a bijective correspondence between

closed k-subgroup schemes of G/H and closed k-subgroup schemes of G containing H. Moreover,

H ′CG if and only if H
′
CG, and if H ′ ⊆ H ′′ is a containment between such k-subgroups of G then

the natural map H ′′ → H
′′
/H
′

is right H ′-invariant and the induced map H ′′/H ′ → H
′′
/H
′

is an
isomorphism.

Note that under the hypothesis on G, Example 1.3 applies to prove that H ′′/H ′ exists for any

such pair (H ′′, H ′) inside of G. The same goes for H
′′
/H
′
, since G is smooth and affine. This is the

only reason for assuming G is smooth and affine (rather than merely a k-group of finite type). If
we grant the existence results for quotients in the generality of SGA3 then the proof below works
verbatim without these restrictions on G.



3

If one approaches these matters from the viewpoint of Grothendieck topologies, the following
proof can be done much more easily: it is identical to the version of sheaves of groups on a
topological space (if done without the crutch of stalks), which in turn is modeled on the version in
ordinary group theory.

Proof. Since π is a k-homomorphism, the formation of (scheme-theoretic!) preimages under π car-
ries closed subgroups to closed subgroups and preserves normality. To prove the converse direction,
consider a closed subscheme Z ⊆ G such that Z := π−1(Z) is a k-subgroup of G. We wish to prove
that Z is a k-subgroup of G, and that it is also normal if Z is normal in G. We have to check three
properties: containment of the identity, stability under inversion, and stability under the ambient
group law morphism.

We have 1 ∈ Z(k) since π(1) = 1 and 1 ∈ Z(k). Also, the inversion involution of the k-
scheme G is compatible via π with the inversion involution of the k-scheme G, so the fact that
Z is carried isomorphically to itself under inversion on G forces the analogue for Z due to the
condition π−1(Z) = Z uniquely determining Z as a closed k-subscheme of G. Finally, to prove that
m : G×G → G carries Z × Z into Z, we reformulate it as the condition Z × Z ⊆ m−1(Z). Since
π is a homomorphism, it is easy to check that

m−1(Z) = (π × π)−1(m−1(Z)) ⊇ (π × π)−1(Z × Z) = Z × Z.

This completes the proof of the bijective correspondence between closed k-subgroups.
To check the normality claim, we first observe that for any k-algebra R,

H ′(R) = {g ∈ G(R) |π(g) ∈ H ′(R)}.

This is clearly normal in G(R) when H
′
(R) is normal in G(R). Conversely, suppose H ′ is normal

in G. We seek to prove that H
′

is normal in G. In other words, we want the conjugation map

c : G × H
′ → G defined by (g, h

′
) 7→ (gh

′
g−1) to factor through H

′
. But as we saw in our

construction of the k-group structure on G = G/H in the normal case, the natural map

G×H ′ → G×H ′

is a quotient by the right translation action of H × H. Hence, in view of the general universal
mapping property of quotients, it suffices to prove that the map

G×H ′ → G

defined by (g, h′) 7→ π(gh′g−1) factors through H
′
. But this map factors as

G×H ′ → H ′ ↪→ G→ G

where the first map is (g, h′) 7→ gh′g−1 due to the normality of H in G. Since the second and third

steps in this diagram have composite equal to the quotient map H ′ → H
′

followed by the inclusion

of H
′

into G, we are done.
Finally, we prove that if H ′ ⊆ H ′′ is a containment between closed k-subgroups of G containing

H, then H ′′ → H
′′
/H
′

is right H ′-invariant with the induced map θ : H ′′/H ′ → H
′′
/H
′

an

isomorphism. Since H ′′ → H
′′

is a k-homomorphism which carries H ′ into H
′
, the desired right H ′-

invariance is immediate since the quotient map H
′′ → H

′′
/H
′

is right H
′
-invariant. To prove that

the induced map θ is an isomorphism, it is equivalent to prove that the natural map q : H ′′ → H
′′
/H
′

satisfies the requirements to be a quotient by H ′.
We have just seen that q is right H ′-invariant, and it is faithfully flat and quasi-compact since

it is the composite of the maps H ′′ → H ′′/H = H
′′

and H
′′ → H

′′
/H
′

which both have these
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properties. Thus, it remains to check that the natural map

(1) H ′′ ×H ′ → H ′′ ×
H

′′
/H

′ H ′′

defined by (h′′, h′) 7→ (h′′, h′′h′) is an isomorphism. Consider the isomorphism

H ′′ ×
H

′′
/H

′ H ′′ = H ′′ ×
H

′′ (H
′′ ×

H
′′
/H

′ H
′′
)×

H
′′ H ′′ = H ′′ ×

H
′′ (H

′′ ×H ′)×
H

′′ H ′′,

where the final term has the second projection map H
′′ × H ′ → H

′′
equal to the multiplication

map in the group law of G. It follows that for any k-algebra R and h′′1, h
′′
2 ∈ H ′′(R), their images

in (H
′′
/H
′
)(R) coincide if and only if the image points h

′′
1, h
′′
2 ∈ H

′′
(R) are related by the right

H
′
(R)-action. But that says precisely that the point (h′′1)−1h′′2 ∈ H ′′(R) lies in π−1(H

′
(R)) = H ′(R)

(since H ′ = π−1(H
′
)), so (1) is bijective on R-points for every R. Hence, (1) is an isomorphism. �

Remark 1.5. In Proposition 1.4, it is natural to wonder about the relationship between smoothness

properties for H ′ and H
′
. Since H ′ → H

′
is faithfully flat, if H ′ is smooth then so is H

′
(as

its coordinate ring on small affine opens is geometrically reduced, due to the same for H ′). The
converse direction is more subtle, and the best that can be said in general is that if H is also

smooth then smoothness of H
′

implies the same for H ′. In other words, under the quotient map
π : G � G/H with smooth G and H, we claim that the scheme-theoretic preimage H ′ in G

of a smooth k-subgroup H
′ ⊆ G/H is again smooth. To prove this in an elementary manner

(without needing the general theory of smooth morphisms), we may extend scalars to k so that k is

algebraically closed. For a smooth subgroup H
′ ⊆ G/H, consider the smooth subgroup π−1(H

′
)red

in G whose image in G/H is clearly H
′
. This subgroup of G contains Hred = H since H is smooth,

so it is H-stable. Hence, under the bijective correspondence it must go over to its image H
′
red = H

′

since π−1(H
′
)red/H is certainly smooth. The bijectivity therefore forces π−1(H

′
) = π−1(H

′
)red, so

we get the claim.

The last general nonsense issue we wish to address is the “image” of the natural map H → G/H ′

for a smooth affine k-group G, a closed k-subgroup H ′, and an auxiliary closed k-subgroup H (not
assumed to have any containment relation with H ′ in either direction). Clearly H ∩H ′ is a closed
k-subgroup of H, normal when H ′ is normal in G, and the quotient H/(H ∩H ′) exists since G is
smooth and affine (so Example 1.3 can be applied). We then get an induced map

j : H/(H ∩H ′)→ G/H ′,

and it is natural to wonder: is this map a locally closed immersion? In some nice cases things work
out well:

Proposition 1.6. Assume H is smooth. If H ′ is normal in G then j is a closed immersion. If
instead H ′ is smooth then j is a locally closed immersion.

Proof. First assume H ′ is normal, so j is a homomorphism between smooth k-groups of finite type.
Thus, to prove it is a closed immersion we just have to prove triviality of the kernel. By the
construction of quotients, it suffices to show that H → G/H ′ has kernel H ∩H ′. Since G→ G/H ′

has kernel H ′, we are done.
Now suppose H ′ is smooth. The same Galois descent technique (using that k/ks is purely

inseparable) as in our proof of the closed orbit lemma can be used to prove that the constructible
image X of H ×H ′ → G/H ′ is locally closed and is smooth with its reduced structure. (We get
around the fact that H ×H ′ has no relevant group structure here by using left translation by H
and right translation by H ′.)
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We thereby obtain a surjective map H → X between smooth equidimensional k-schemes of finite
type, and by computation on k-points the geometric fibers are all equidimensional of the same
dimension (translates of H ∩ H ′ after a ground field extension). Thus, by the Miracle Flatness
Theorem, H → X is faithfully flat. This map is visibly H ∩H ′-invariant on the right, so it remains
to check that the natural map

H × (H ∩H ′)→ H ×X H

is an isomorphism. Thinking in terms of functors, H ×X H = H ×G/H′ H. Thus, the desired result
is clear since G×G/H′ G = G×H ′ via the natural map. �

Example 1.7. Since H is closed in G, it may seem surprising that j may fail to be a closed immersion
(and just be locally closed). But the relevant topology inside of G is not H but rather the image
of H ×H ′ under multiplication. This could be non-closed. Such a possibility happens very often
in the theory of reductive groups, especially with the so-called Bruhat decomposition.

We illustrate this in the most basic (yet very important) case: G = SL2, H
′ = B the upper

triangular k-subgroup, and H = U− the lower triangular unipotent k-subgroup. In this case G/H ′

is identified with P1
k and H ∩ H ′ = 1, with j becoming the standard open immersion A1

k → P1
k

complementary to 0. This example “works” the same way with real and complex Lie groups, so it
has nothing to do with the peculiarities of algebraic geometry.

2. Classifying some extension structures

In this section we wish to describe all smooth connected affine k-groups G for which there is a
short exact sequence of smooth affine k-groups

1→ G′ → G→ G′′ → 1

with G′, G′′ ∈ {Ga,Gm}. We say that G is an extension of G′′ by G′.
The case G′ = G′′ = Ga is the most subtle of all (especially in nonzero characteristic), and is

addressed in HW9 Exercise 2. Also, if G′ = G′′ = Gm then G must be a k-split torus of dimension
2, so there is nothing to do (as the character group explains everything in such cases). Thus, the
focus of our attention is on the other two cases.

Proposition 2.1. For any short exact sequence 1 → Gm → G → Ga → 1, necessarily G is
commutative and the exact sequence is uniquely split over k.

Proof. By HW6, Exercise 3, G′ = Gm is central in G. By HW9 Exercise 4, the commutator map
G×G→ G factors through a k-scheme map G′′×G′′ → G′. A calculation with (geometric) points
shows that this map Ga×Ga → Gm is bi-additive. But the only such map is the trivial one, since
there are no nontrivial homomorphisms from Ga to Gm over k. Thus, the commutator map is
trivial, so G is commutative.

It follows that if the given exact sequence splits then the splitting is unique, as the set of splittings
is a torsor under Homk(Ga,Gm) = 1. In view of the uniqueness, to construct the splitting over k it
suffices (by Galois descent) to work over ks. Hence, we can assume k = ks. Since G is solvable and
not a torus, in the decomposition Gk = T ×U for a torus T and U := Ru(Gk) we must have U 6= 1
and T is the copy of Gm from the given short exact sequence. Hence, the given exact sequence
splits over k, so it splits over some finite extension k′/k with k = ks. This settles the case when k
is perfect.

To handle possibly imperfect k, I do not know a way to copy the Galois descent argument by using
faithfully flat descent because general nonsense does not ensure the uniqueness of a splitting over
k′′ = k′ ⊗k k

′: there do exist nontrivial k′′-homomorphisms Ga → Gm! (For example, x 7→ 1 + εx
for nonzero ε ∈ k′′ with ε2 = 0.) Instead, the only method I know is to use faithfully flat descent
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theory in a different way, as follows. The exact sequence identifies G with a Gm-torsor over Ga for
the fppf or étale topologies. The isomorphism class of this torsor is classified by an element in the
Picard group of Ga relative to the fppf or étale topologies. By descent theory for quasi-coherent
sheaves, this is the same as the Picard group relative to the Zariski topology, which is trivial since
k[x] is a PID. Hence, it follows that the quotient map G→ Ga admits a section σ over k as a map
of k-schemes. Composing with a suitable G(k)-translation then brings us to the case σ(0) = 1.

To summarize, we have an isomorphism of pointed k-schemes G = Gm ×Ga with group law

(t, x)(t′, x′) = (tt′h(x, x′), x+ x′)

where h(0, 0) = 1. The only units on Ga × Ga are the elements of k×, so h = 1. This is the
standard group law, as desired. �

Now consider an extension G of G′′ = Gm by G′ = Ga. By the method of solution of HW9
Exercise 4, since G′ is commutative the conjugation action of G on itself uniquely factors through
an action of G/G′ = G′′ = Gm on G′ = Ga. I claim this action must be t.x = tnx for a unique
n ∈ Z. To prove this, let S = Gm and H = S ×Ga viewed as an S-group. The map H → H
defined by (t, x) 7→ (t, t.x) is an S-group automorphism of the additive affine line H over S. Since
S is reduced, the only such automorphisms are given by scalar of the line parameter by a unit on
the base, as may be checked by working at the generic points of S and then Zariski-locally on S.
Hence, t.x = c(t)x for a k-scheme map c : S → Gm. Clearly c(1) = 1, and the only units on S are
k×-multiples of powers of t. Hence, c(t) = tn for some n ∈ Z, as desired. Observe that n = 0 if and
only if Ga is central in G. It turns out that this is equivalent to the commutativity of G. More
generally:

Proposition 2.2. There is a k-group isomorphism between G and the semidirect product GaoGm

defined by the action t.x = tnx.

Proof. We cannot trivially use Galois descent, for the reason that the semidirect product structure
is not unique when n 6= 0. That is, even if there is a k-group section to the quotient map G→ Gm,
we can compose it with G(k)-conjugations to get more such sections when G is not commutative.
Thus, we need a different method (and in the end will use Galois descent, but in a manner which
is less elementary than above).

It suffices to find a nontrivial k-torus T in G. Indeed, T ∩Ga = 1 (by applying HW5 Exercise
1 after picking a faithful linear representation of G and using k-rational conjugation so that Ga

lands in the standard upper triangular unipotent k-subgroup), so the induced nontrivial map T →
G/Ga = Gm is an isomorphism. That would yield the desired semidirect product structure.

To construct a nontrivial k-torus in G, we first treat the case when k is not algebraic over a
finite field, and then we use that case to handle the case when k is algebraic over a finite field. Now
assume k is not algebraic over a finite field, so k× contains an element c with infinite order. The
fiber of q : G → Gm over c is geometrically a translate of Ga, so it is smooth and non-empty and
hence has ks-points. Thus, q−1(c)(ks) is a torsor under translation by Ga(ks) = ks, with torsor
structure that is Gal(ks/k)-equivariant. Hence, the obstruction to q−1(c) having a k-point is a class
in H1(Gal(ks/k), ks) = 0. That is, there exists g ∈ G(k) such that q(g) = c. If char(k) = p > 0
then the geometric Jordan decomposition of g may have a nontrivial unipotent part. Replacing g
(and so c) with a suitable p-power in such cases then brings us to the case when g is geometrically
semisimple. Likewise, if char(k) = 0 then the Jordan decomposition of g is defined over k (as k
is perfect), and the unipotent part must have trivial image in Gm. Hence, in such cases we can
replace g with its semisimple part in G(k). To summarize, under the assumption that k is not



7

algebraic over a finite field, we have constructed g ∈ G(k) that is geometrically semisimple and has
image in Gm(k) = k× with infinite order.

By working with a faithful linear representation of Gk, it follows that the closure of the cyclic
subgroup generated by g in G(k) has identity component that is a nontrivial k-torus. (Beware
that g may not lie in the identity component of this k-group!) This settles the case when k is not
algebraic over a finite field.

Suppose instead that k is algebraic over a finite field. Let K = k(u) be a rational function field
over K. We can apply the preceding arguments to GK , so we get a K-subgroup Gm ↪→ GK . This
closed immersion over K = k(u) “spreads out” to a closed subgroup scheme inclusion over k[u][1/h]
for some sufficiently divisible nonzero h ∈ k[u]. If k is infinite then we can specialize at a point
u0 ∈ k for which h(u0) 6= 0. If k is finite then such a u0 can be found in a finite extension k′/k.

It remains to treat the case when k is finite, and we have a section σ : Gm → Gk′ for some finite
Galois extension k′/k. We will use nothing special about finite fields. It is an elementary calculation
that for any field F , the F -group sections to GaoGm → Gm (using the nth-power action to define
the semidirect product) are precisely the maps t 7→ (h(t), t) where h(tt′) = h(t) + tnh(t′) (which
forces h(1) = 0). The regular function h on Gm is a Laurent polynomial over F (i.e., h ∈ F [t, 1/t]),
and it is elementary to verify that the only Laurent polynomials over F which satisfy the required
functional equation are h(t) = ctn − c for a unique c ∈ F . But this in turn is exactly the effect
of applying conjugation by (c, 1) to the canonical section! In other words, in our situation with G
(whose k-structure is not yet known), any two sections to Gk′ � Gm are related via conjugation by
a unique element of Ga(k′) ⊆ G(k′). Hence, the obstruction to the existence of a Ga(k′)-conjugate
of σ that admits a k-descent (i.e., the measure of failure of σ to have a Ga(k′)-conjugate that
is Gal(k′/k)-equivariant) is an element in H1(Gal(k′/k), k′) = 0. It follows that after applying a
suitable Ga(k′)-conjugation to σ it is defined over k, and so we get the desired nontrivial k-torus
in G. �

3. Structure of split solvable groups

Let G be a k-split solvable group, with k any field. (Recall this requires G to be a smooth
connected affine k-group, among other things.) We wish to describe the structure of G in the
form of a semidirect product U o T for a smooth connected unipotent k-group U and a k-torus T ,
with U and T each k-split. Note that if there is such a decomposition then U = Ru,k(G) and the
description persists over any extension field, so UK = Ru,K(GK) for any extension field K/k. In
particular, Uk = Ru,k(Gk). We then call U the unipotent radical of G.

Remark 3.1. Beware that if k is not perfect, there always exist examples of smooth connected
commutative affine k-groups G such that Ru,k(Gk) is nontrivial and does not descend to a k-

subgroup of G. Thus, the possibility of a semidirect product description G = U o T over a general
field k relies in an essential way on the k-split hypothesis.

Before we take up the general case, let’s consider the low-dimensional cases. If dimG ≤ 1, then
by the very definition of “k-split solvable” we are done (G is either Ga or Gm). If dimG = 2 then
by the definition of being k-split solvable, G is of the sort considered in §2. In particular, if it is
an extension of Ga by Ga then G is unipotent so we can take U = G and T = 1. Likewise, if G
is an extension of Gm by Gm then G is a k-split k-torus (as we noted early in §2), so we can take
T = G and U = 1. The other two possibilities are addressed in Proposition 2.2 and Proposition
2.1. The case dimG ≥ 3 will be deduced from these low-dimensional cases by using induction on
dimG with the help of a composition series as in the definition of G being k-split solvable.

Here is the main result.
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Theorem 3.2. Let G be a k-split solvable group over a field k. Then G = U o T for a k-split
smooth connected unipotent k-group U and a k-split k-torus T equipped with an action on U .

In the proof, we freely make use of §1, and especially Remark 1.5 when arguing “as if” we
were using ordinary groups (especially not needing to worry about smoothness issues when forming
certain preimages through quotient maps by smooth normal k-subgroups).

Proof. As we have seen in the preceding discussion, the cases dimG ≤ 2 are settled. We will first
treat the commutative case, and then the general case (by using dimension induction and the com-
mutative case applied to G/D(G) when G is non-commutative). Assuming G to be commutative,
a k-split composition series for G provides a k-split smooth connected k-subgroup G′ ⊂ G of codi-
mension 1 such that G/G′ is either Ga or Gm. Thus, dimension induction implies G′ = T ′ × U ′
for a k-split k-torus T ′ and a k-split smooth connected commutative unipotent k-group U ′. If
G/G′ = Gm then G/U ′ is an extension of Gm by G′/U ′ = T ′, so G/U ′ is a k-split k-torus. If
G/G′ = Ga then G/T ′ is an extension of Ga by G′/T ′ = U ′, so G/T ′ is k-split unipotent.

Thus, G is either an extension of T by U or of U by T , where T is a k-split k-torus and U is
a unipotent smooth connected commutative k-group that is also k-split. That is, either there is a
short exact sequence

1→ T → G→ U → 1

or

1→ U → G→ T → 1,

so it suffices (for the case of commutative G) to prove that any such exact sequence with commu-
tative G is split over k.

The category of smooth connected commutative k-groups is not abelian (think of isogenies which
are not isomorphisms), but it is an additive category and has a notion of short exact sequence
which enjoys familiar properties as in the axioms for an “exact category”. This permits us to
endow the set Extk(H,H ′) of commutative k-group extensions of one object by another with a
natural commutative group structure making it an additive bifunctor, and when given a short
exact sequence in either H or H ′ (with the other variable fixed) we get a natural 6-term exact
sequence in Homk’s and Extk’s. Our task in the commutative case is to prove that Extk(T,U) and
Extk(U, T ) both vanish. By using composition series for T and U with each successive quotient
k-isomorphic to Gm and Ga respectively, the 6-term exact sequence formalism (just in the Extk
aspect) reduces us to the case T = Gm and U = Ga. Now Proposition 2.1 and Proposition 2.2 give
the required vanishing (since the commutative case in Proposition 2.2 forces n = 0).

Moving a bit beyond the commutative case, we next treat a case with a slightly weaker hypothesis
which turns out to still imply commutativity.

Lemma 3.3. Any extension H of Ga by a k-split torus T is k-isomorphic to Ga × T .

Proof. The same argument as at the start of the proof of Proposition 2.1 (replacing Gm there with
T ) implies that G is commutative. Thus, by the settled commutative case we have G = S × U
for a k-split torus S and a k-split unipotent smooth connected k-group U . Clearly T ⊆ S since
G� G/S = U must kill T , and likewise S ⊆ T since G� G/T = Ga must kill S. Hence, S = T ,
so U ' Ga. �

Turning to the general case, we may assume dimG ≥ 3. We may also assume that G is neither
unipotent nor a torus. Choose a k-split composition series for G over k, so we get a codimension-1
k-split solvable k-subgroup G′ ⊂ G with G/G′ isomorphic to either Ga or Gm. By induction,
G′ = U ′oT ′ for a smooth connected unipotent k-subgroup U ′ and a k-torus T ′, and U ′ and T ′ are
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each k-split. Observe that since G′ is normal in G and necessarily U ′
k

= Ru,k(G′
k
), it is automatic

that U ′ is also normal in G! Thus, G/U ′ makes sense and is an extension of either Ga or Gm by
T ′. In the latter case, G/U ′ is a k-split torus, so U ′ = Ru,k(G) and this is k-split. In the former
case, G/U ′ is an extension of Ga by T ′, and in the latter case G/U ′ = Ga × T ′ as in Lemma 3.3.
Thus, in this latter case the preimage U of Ga in G is a k-split unipotent smooth connected k-group
which is normal in G and has quotient G/U that is a k-split torus. In other words, in the general
case G is an extension of a k-split torus T by a k-split unipotent smooth connected k-group U . In
particular, we have shown that Ru,k(G) is k-split and Ru,k(G)k = Ru,k(Gk).

It suffices to find a k-torus S in G that maps isomorphically onto G/U = T . Since G is not
unipotent and not a torus, we have T 6= 1 and U 6= 1. We claim that U admits a composition series
{Ui} consisting of k-split unipotent smooth connected k-subgroups which are normal in G and for
which Ui/Ui−1 is a vector group. Once this is proved, by induction on dimU we can then pass to
the case when U is a vector group. To construct this composition series {Ui} we treat characteristic
0 first. In this case we can take it to be the derived series, since a commutative unipotent smooth
connected group in characteristic 0 is always a vector group (HW9, Exercise 2(ii)). If instead
char(k) = p > 0, we will use Tits’ structure theory for unipotent smooth connected k-groups, as
developed in Appendix B of “Pseudo-reductive groups”. By Proposition B.3.2 there, since U is
k-split it contains a central Ga. In general, a p-torsion commutative smooth connected k-group is
a vector group if and only if it is k-split. (This follows from Lemma B.1.10 and Corollary B.1.12,
together with a dimension induction.) The maximal such k-subgroup U1 in U is nontrivial, and it
formation commutes with with scalar extension to ks, due to Galois descent and the fact that the
property of being a vector group is insensitive to scalar extension to ks (Corollary B.2.6). Hence,
(U1)ks is stable under all automorphisms of Uks , such as G(ks)-conjugations, so U1 is normal in G.
Passing to G/U1 and the k-split U/U1 then allows us to construct {Ui} by dimension induction.

Now we are in the case that U is a vector group. In particular, since U is commutative in G
the natural G-action on U factors through an action of G/U = T on U . We wish to describe this
action in more concrete terms. If char(k) = 0, it follows from HW9 Exercise 2(ii) that the T -action
on U ' GN

a respects the linear structure. If char(k) = p > 0 then by Theorem B.4.3 there is a
decomposition U = U ′ × U ′′ with U ′′ a vector group admitting a linear structure respected by the
T -action and U ′ having trivial T -action. But U ′ is also a vector group since it is k-split (being
a quotient of the k-split U), so we conclude as in characteristic 0 that there is an isomorphism
U ' GN

a making the T -action linear. Any linear representation of a split torus is a direct sum
of 1-dimensional representations, so to lift T through the quotient map G � G/U we can use a
filtration by such lines to reduce to the case U = Ga (via induction on dimU)!

Finally, we are in the case that G is an extension of a split torus T by Ga, in which the T -action
on Ga is given by some χ ∈ X(T ). Letting S be the k-subtorus (kerχ)0red, so S is k-split. The
preimage H of S in G is a central extension of S by Ga. The commutator pairing argument as in
the beginning of the proof of Proposition 2.1 can now be adapted to this setting to infer that H is
commutative. Hence, H ' S ×Ga. It follows that S as a k-torus in H is central in G. If χ = 1
then S = T and we are done. Otherwise we can pass to G/S to reduce to the case T = Gm. Now
G is in exactly the setup for Proposition 2.2. �


